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Abstract 
This work reveals the existence of a new dynamic load amplification mechanism due to 

ground surface loads.  It is caused by the interaction between a moving vehicle’s axle configuration 

and the vibration characteristics of the underlying soil-guideway system.  It is more dominant than 

the traditionally considered ‘critical velocity’ dynamic amplification mechanism of the guideway-

ground structure, and is of relevance to very high speed transport systems such as high speed rail. 

To demonstrate the new amplification mechanism, first a numerical model is developed, 

capable of simulating ground-wave propagation in the presence of a series of discrete high speed 

loads moving on a soil-guideway system.  The model couples analytical equations for the 

transportation system guideway with the thin-layer element method for ground simulation.  As a 

practical example, it is validated using high speed railroad field data and then used to analyse the 

response of a generalised single moving load at high speed.  Next the effect of multiple discrete 

vehicle-guideway contact points is studied and it is shown that dynamic amplification is highly 

sensitive to load spacing when the speed is greater than the critical velocity.  In particular, large 

resonant effects occur when the axle/magnet loading frequency and the propagating wave vibration 

frequency of the soil-guideway structure are equivalent.  As an example, it is shown that for an 

individual case, although critical velocity might increase displacements by 50-100%, for the same 

scenario, axle configuration can increase displacements by 400%.  It is also shown that resonance is 

sensitive to the total number of loading points and the individual frequencies excited by various 

spacings.  The findings are important for current (e.g. high speed railway) and potential future (e.g. 

hyperloop) transport systems required to operate at speeds either close-to, or greater than the 

critical velocity of their supporting guideway-soil structure.  In such situations, it is important to 

design the vehicle and supporting structure(s) as a combined system, rather than in isolation. 

1. Introduction 
The aspirational speeds of vacuum transport and car technology  are 1200 km/h [1] and 

1600 km/h [2] respectively.  Also, the current railway speed record is 603km/h and 574km/h for 

Maglev and steel-wheel technologies respectively.  These indicate the desire to increase the 

operational speed of transport systems.  To achieve these high speeds under commercial operating 

conditions requires a high performance guideway that safely shepherds the vehicle in the desired 

direction.  In practise, steel-wheel/maglev trains are guided by concrete/ballast railway track, 

automobiles move upon flexible/rigid pavement, and hyperloop systems will operate inside tubes 

([3]). 
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Some sections of road and railway guideways are elevated above the natural ground using 

viaducts to avoid challenging ground conditions.  However, as vehicle speeds increase, vertical and 

horizontal guideway alignment tolerances also reduce, meaning the radius of vertical/horizontal 

curves must be much greater.  Considering very high speed technologies are only practical over large 

distances, a guideway with very straight alignment is then likely to encounter significant changes in 

topography and ground conditions along its route.  Thus, considering the cost of very deep cuttings 

(e.g. through hills/mountains), it is unlikely that an entire route can be supported on viaduct.  This 

means that for many practical applications, even if viaducts are the de-facto guideway support, 

sections of the route will likely be constructed underground ([4]) or close to the earth’s surface. 

If the guideway of a transport system is supported directly by earthworks ([5], [6]), then the 

moving load has the potential to approach or exceed the ‘critical velocity’ of its supporting 

guideway-soil system ([7], [8], [9]).  In this situation, significant displacement amplification of the 

guideway occurs, which can be safety-critical at high speed.  Dynamic amplification is a well-

accepted design consideration when constructing transportation infrastructure, particularly in the 

field of high speed rail. 

To de-risk railways from critical velocity induced deflection amplification, traditional 

designers use highly engineered granular soils ([10]) and modern compaction methods to maximise 

foundation stiffness.  However, as vehicle speeds continue to increase, artificial soil stiffening (e.g. 

lime or cement) is sometimes required to further increase shear wave velocities (e.g. [11]).  This is 

expensive and thus challenging to justify over larger distances (e.g. across significant length of a 

transport network), particularly if very high soil shear wave velocities are needed.  Therefore it may 

be necessary to run at speeds close to, or above the critical velocity.   

To investigate this challenge, this paper uses numerical analysis to assess the effect of loads 

moving at different ratios of the critical speed.  In particular, multi-load combinations are 

investigated and the relationship between axle spacing and support vibration frequency are studied.  

This is important because the ground and guideway both have vibration frequencies (Figure 1b-c) 

which combine to yield a common vibration frequency for the entire system.  The vehicle also has 

excitation frequencies associated with its axle/magnet spacing (Figure 1a - hereafter called ‘axles’), 
at a certain speed.  If the vehicle excitation frequency and the propagating wave vibration frequency 

of the soil-guideway coincide then there is a potential for resonance. 

Although there is a lack of research into moving load resonance relationships, early 

analytical studies into critical velocity included [12], [13] and [14] who simulated the problem as a 

generalised point load moving on an elastic foundation.  Krylov [15] expended upon this and used 

Green’s functions to better tailor the analysis towards high speed rail problems.  This was followed 

using similar approaches proposed by [16] and [17].  Alternatively, [18] proposed a semi-analytical 

approach, where a more complex track model was coupled with a Thomson-Haskell method for the 

soil. 

As an alternative to analytical critical velocity modelling [19], [20], [21] developed 2D finite 

element models.  To overcome the limitations of 2D modelling, 3D approaches were proposed by 

[22], [23], [24], [25], [26], [27], [28].  A challenge with 3D approaches however is that they require 

significant computational effort to solve.  Therefore 2.5D models were also proposed by [29], [30], 

[31], [32].  Additionally, a variety of these modelling strategies were combined to make wide ranging 

findings into critical velocity effects ([9]). 



Despite the large number of studies into transport ground dynamics, most have focused on 

either the effect of multiple axles at speeds lower than the critical speed, or the effect of a single 

axle above the critical speed.  Therefore this paper investigates the effect of multiple axles moving at 

speeds close to or greater than the critical velocity.  First a high-accuracy, yet computationally 

efficient modelling approach is presented based upon the thin-layer element method.  Then a 

generic high speed rail case is discussed.  First the case of a single axle is presented, followed by a 

multi-axle case.  It is shown that when approaching the critical speed (e.g. >90%), resonance 

becomes a governing parameter on vibration amplification.  In particular, resonance can have a 

larger amplification effect compared to the amplification induced by moving load speed. 

 

 
Figure 1: Vibration of linear transport infrastructure, (a) Vehicle axles, (b) Track and/or tube/tunnel structure, (c) Soil.  

Dashed black lines indicate examples of wave propagation. 

2. Numerical model description 
The numerical model is comprised of two coupled sub-models, 1) an analytical guideway model, and 

2) a thin-layer element ground model.  The frequency-wavenumber domain is used to solve both 

sub-models and coupling is performed in the same domain.  This approach is advantageous because 

the thin-layer method allows for deep soil wave propagation to be simulated quickly even at large 

depths.  This is vital for moving load simulations close-to and above the critical velocity. Further, the 

analytical guideway model allows for guideway displacements to be computed in a rapid and 

straightforward manner. 

2.1 Soil 

The thin-layer element method (TLM) is used to compute the 3D response of the soil.  It is 

advantageous because it can efficiently simulate arbitrarily layered soils (i.e. it has no limitations 

regarding low-stiffness sandwich layers, or layer thicknesses).  It assumes that the soil behaviour is 

linear elastic, and non-linear ([33], [34], [35]) behaviour is ignored. 

 First the soil domain is discretised into a finite number (𝑛) of horizontal layers which must be 

parallel and thin with respect to all wavelengths under consideration.  In the vertical direction, 



displacements are computed assuming numerical approximation of the solution through parabolic 

shape functions.  This assumption is valid as long as all thin layers thicknesses’ (h) fulfil the criteria:  

 ℎ = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ8 = 2𝜋8𝑘𝑚𝑎𝑥      (1) 

where 𝑘𝑚𝑎𝑥 is the maximum wavenumber.  Three-node quadratic elements are used to accurately 

simulate stress-strain behaviour, resulting in a total of 17 nodes per wavelength. 𝑘𝑥 and 𝑘𝑦 are 

wavenmbers in the x and y directions respectively.  The lower boundary can be modelled as a half-

space, however for the purpose of this work, to create a well-defined soil natural frequency, the 

majority of cases consider it to be rigid bedrock.  Although such a shallow bedrock might be rare in 

real-life, it presents a useful test case to accentuate the analysis and discussion. 

The problem is solved in the frequency-wavenumber domain by computing the response of 

individual frequencies under steady-state harmonic conditions.  This is achieved via:  

 (𝐊 − 𝛚2𝐌)𝐔 = 𝐏     (2) 

where P is traction, U is displacement, M is the mass matrix and ω is frequency.  Further, K is 

the stiffness matrix shown in Equation 3:  

 𝐊 = 𝐊𝟎 + i𝑘𝑥𝐊𝟏 + i𝑘𝑦𝐊𝟐 + 𝑘𝑥2𝐊𝟑 + 𝑘𝑦2𝐊𝟒 + 𝑘𝑥𝑘𝑦𝐊𝟓   (3) 

where i = √−1 and K0-5 are given in [11].  Finally, frequency independent hysteric damping 

is simulated using complex functions for Lames elastic constants: 𝜆 = 𝜆(1 + 2𝑖𝜉𝜆) and 𝜇 = 𝜇(1 +2𝑖𝜉𝜇), where 𝜉𝜆 is the damping ratio for dilatational waves and 𝜉𝜇 is the damping ratio for shear 

waves.  𝜉𝜆 = 𝜉𝜇 is assumed in this work. 

 

 

 

Figure 2 – Soil model discretisation using thin-layer elements 



 

[  
   
  𝐸𝐼𝑟𝑘𝑥4 + 𝑘𝑝∗ − 𝜔2𝑚𝑟 −𝑘𝑝∗ 0−𝑘𝑝∗ 𝑘𝑝∗ + 2𝜔𝐸𝑏∗𝑏𝛼tan (𝜔ℎ𝑏𝐶𝑝 )𝐶𝑝 − 𝜔2𝑚𝑠 −2𝜔𝐸𝑏∗𝑏𝛼sin (𝜔ℎ𝑏𝐶𝑝 )𝐶𝑝0 −2𝜔𝐸𝑏∗𝑏𝛼sin (𝜔ℎ𝑏𝐶𝑝 )𝐶𝑝

2𝜔𝐸𝑏∗𝑏𝛼tan (𝜔ℎ𝑏𝐶𝑝 )𝐶𝑝 + 𝑘𝑒𝑞]  
   
  { 𝑢̃𝑟(𝑘𝑥, 𝜔)𝑢̃𝑠(𝑘𝑥 , 𝜔)𝑢̃𝑏𝑏(𝑘𝑥, 𝜔)}

= {𝑃̃(𝑘𝑥 , 𝜔)00 }                       
(4) 

 

2.2 Guideway model 

The guideway model is formulated in the wavenumber-frequency domain as described in [36] and 

[37].  It is based upon a high speed railway guideway as shown in Figure 3.  It comprises rail, railpad, 

sleeper, and ballast components.  Equation 4 describes the equations of motion, where 𝑘x is the 

Fourier image of 𝑥 and , 𝑚𝑟 and 𝑚𝑠 are the mass of rail and sleepers (distributed per metre) 

respectively. 𝑘𝑝∗  is the complex stiffness of the railpad, defined as 𝑘𝑝∗ = 𝑘𝑝(1 + 𝑖𝜔𝑐𝑝), where 𝑐𝑝 is 

the railpad damping.  𝐶𝑝, 𝐸𝑏 and ℎ𝑏 are the compressional wave speed, the Young’s modulus and 
height of the ballast respectively.  Finally, 𝑏 is the contact width between soil and guideway, 𝑢̃𝑟, 𝑢̃𝑠and 𝑢̃𝑏𝑏 are the rail, sleeper, and ballast deflections respectively, and 𝑃 is force applied by the 

moving axle load on the upper rail surface. 

 

Figure 3 – Railway guideway structure layout 

 

 

Guideway-subgrade coupling is implemented using a complex stiffness (𝑘̃𝑒𝑞(𝑘𝑥, 𝜔))  shown 

as a spring in Figure 3:  

 𝑘̃𝑒𝑞(𝑘𝑥, 𝜔) = 2𝜋∫ 𝑢̃𝑧𝑧𝐺 (𝑘𝑥 , 𝑘𝑦, 𝑧 = 0,𝜔)𝐶𝑡𝑔d𝑘𝑦+∞−∞         (5) 

Where 𝑢̃𝑧𝑧𝐺  is the Green’s function of the vertical soil surface displacement, extracted from U 

in equation 2.  

 As vehicle speed increases and nears critical velocity, there is increased deep-wave 

propagation inside the soil and across the guideway-ground interface.  Therefore coupling is 

implemented through the equilibrium of forces and the compatibility of displacements across the 

guideway-soil interface, at the track centre point, assuming relaxed boundary conditions [38].  This is 

achieved via:  



𝐶𝑡𝑔 = sin(𝑘𝑦𝑏) 𝑘𝑦𝑏⁄  

After the TLM is used to compute, 𝑘̃𝑒𝑞(𝑘𝑥, 𝜔), it is inserted into the guideway model 

(Equation 4), thus yielding the displacements of its individual components.  These displacements are 

then scaled linearly depending upon the moving load magnitude.  The rail response, 𝑢̃𝑟(𝑘𝑥, 𝜔), is 

used throughout this work as the measure of guideway deflection.   

The displacement Green’s function, 𝑢𝑔(𝑘𝑥, 𝑘𝑦, 𝜔),  relates the input force and displacement 

response of the system.  The displacement Green’s function scaled by a load of arbitrary magnitude 

is denoted, 𝐺𝑢(𝑘𝑥, 𝑘𝑦, 𝜔), and obtained via: 

 𝐺𝑢(𝑘𝑥, 𝑘𝑦, 𝜔) = (𝐿(𝑘𝑥 , 𝜔)𝐶𝑡𝑔)𝑢𝑔(𝑘𝑥, 𝑘𝑦, 𝜔)  (6)  

 

Where, 𝐿(𝑘𝑥 , 𝜔)𝐶𝑡𝑔 is a function that scales the load transmitted from guideway to ground using the 

equivalent stiffness and lower track displacement [11].  Finally, the ground displacement response in 

the frequency-wavenumber domain is converted to the time-space domain using: 

 𝑅(𝑥, 𝑦, 𝑡) = 1(2𝜋)3 ∫ ∫ ∫ 𝑅(𝑘𝑥 , 𝑘𝑦, 𝜔)∞
−∞

∞
−∞

∞
−∞ 𝑒𝑖(𝜔𝑡−𝑘𝑥𝑥−𝑘𝑦𝑦)d𝑘𝑥d𝑘𝑦d𝜔    (7) 

It should also be noted that the moving load effect is accounted for by using the shift property of the 

Fourier transform, relating frequency and wavenumber domains.  This is achieved via: 𝜔 = Ω −𝑘𝑥𝑉𝑡, where 𝑉𝑡 is train speed and Ω is excitation frequency, which is set to 0Hz. 

 

2.3 Validation 

When a moving load approaches the critical speed of its soil-guideway structure, dynamic guideway 

amplification occurs.  This is governed by wave propagation in the support-guideway system, which 

any prediction model must be able to simulate accurately.  Therefore Figure 4 shows a comparison 

between the proposed TLM results and field data collected during the passage of a high speed train 

on a ballasted line in Sweden (critical velocity ≈215km/h).  The details of the vehicle, guideway and 

soil properties are given in [39].  Results are presented for 2 speeds, both of which show much 

higher guideway deflections (10-15mm) than the typically allowable ≈1-2mm on high speed railway 

lines.  The proposed model predicts the displacement response with high accuracy in both cases, 

with strong correlation in shape and magnitude.  The small discrepancies are likely to be due to 

inaccuracies in input data, stemming from measurement accuracy and uncertainties associated with 

spatial variations in soil properties. 

 



 

Figure 4 – Displacement time history validation, a) 140 km/h, b) 180km/h 

 

3. Methodology 
The analytical-TLM model is used to investigate dynamic guideway amplification due to the 

relationship between axle spacing and propagating wave vibration frequency of the combined 

guideway-ground system.  Although a variety of current/future transport modes might operate at 

speeds comparable or greater than the critical velocity, guideway systems are likely to be refined to 

achieve these high speeds. Therefore, rather than attempt to anticipate future guideway designs, 

analysis is undertaken using the simplified railway-type guideway described earlier.  However, as a 

variety of bending stiffness’ are tested to give insights into how alternative systems might behave. 

 𝐹𝑠 = 𝑉𝑠4𝐻      (8) 

3.1 Analysis parameters 

Four soil configurations are investigated, three with shallow bedrock and a fourth which is a 

half-space (Table 1).  Shallow bedrock is chosen for three cases because due to the lower boundary 

condition, the first ground natural frequency is highly prominent.  This frequency is defined by 

Equation 8 ([40]), where Vs is the shear wave speed, H is layer thickness and 𝐹𝑠 is the first ground 

natural frequency.  This makes it straightforward to make comparisons between infrastructure 

frequencies and vehicle axle spacing, however the analysis is still valid for other soil stratum 

configurations.  Note though that the infinitely deep homogeneous soil case does not have a natural 

frequency, because as H approaches infinity, Fs reduces to zero. 

Case 
Young's modulus 

(MPa) 
Poisson's 

ratio 
Density 
(kg/m3) 

Shear wave 
velocity 
(m/s) 

Damping 
ratio 

Bedrock 
depth 
(m) 

Natural 
frequency (Hz) 

1 50 0.35 2000 96.2 0.03 2 12.03 

2 100 0.35 2000 136.1 0.03 2 17.01 

3 150 0.35 2000 166.7 0.03 2 20.83 

4 50 0.35 2000 96.2 0.03 inf n/a 

Table 1 – Soil properties 

 

Rail 
Eir1 (Nm2) 9.17 x 106 

Eir2 (Nm2) 1.29 x 107 



Eir3 (Nm2) 1.53 x 107 

mr (kg/m) 120 

Railpad 
kp (N/m2) 5 x 108 

cp (Ns/m2) 2.5 x 105 

Sleepers ms (kg/m) 490 

Ballast 

h (m) 0.35 

E (MPa) 125  

2b (m) 2.5 

ρ (kg/m3) 1590 

Table 2 – Guideway properties 

 

 The previously considered ballasted guideway structure is investigated with the properties 

shown in Table 2.  Three different cases are studied with varying rail bending stiffness, however the 

rail mass and all guideway components below the rail are kept constant.  This allows for analysis into 

the effect of infrastructure stiffness on system vibration frequency and dynamic amplification, and is 

important because future transport guideways may have different stiffness’s compared to current 

high speed rail lines. Note that the rail properties in Table 2 are for 2 rails.  This combination of four 

soils and three guideways results in 12 possible critical velocity permutations.  The critical velocity is 

defined as the speed of a point load that gives maximum downward vertical displacement of the 

guideway rail.  This condition can be shown to occur at the load speed at which there is a match 

between the wavelengths propagating in the guideway and ground. 

 

Guideway stiffness 

Soil case 

1 (50MPa) 
2 

(100MPa) 
3 

(150MPa) 

1 Soft  
Speed (m/s) 112.2 142.8 169.2 

Frequency (Hz) 25.5 38.2 37.7 

2 Moderate 
Speed (m/s) 118.4 150.0 175.5 

Frequency (Hz) 24.8 37.1 46.5 

3 Stiff 
Speed (m/s) 122.3 153.1 179.6 

Frequency (Hz) 23.0 36.5 45.6 

Table 3 – Critical velocities and frequencies 

 

Regarding the vehicle, it is modelled as a series of point loads, with each axle exerting a 

force of 180kN.  For each test case the speed is varied using ratios of the critical velocity (VCV) of the 

underlying guideway-ground structures.  These are shown in Table 3 and are determined by 

computing the speed-deflection curve for each case.  Note that the critical velocity of soil case 4, 

regardless of guideway type, is 90m/s.  Similarly, axle spacing passage frequency is also varied using 

as a ratios of critical velocity frequency (FCV).  In addition, a lower minimum practical axle spacing 

limit is set as 2.5m to remove all results caused by an unrealistic superposition of deflections.   



4. Numerical analysis 

4.1 Single load passage case 

Figure 5 shows a comparison between the displacement response of a single load moving on 

guideway type 2, resting on both homogenous vs layered soils (soils 1 and 4).  The homogenous soil 

shows greater deflection as expected because it has lower stiffness, due its lack of rigid support.  The 

faster vehicle speed gives rise to higher displacements, for both the case of the homogenous and 

layered ground.  This result is alternatively plotted as a 3D soil surface contour in Figure 7.  The same 

observations still hold, however it is clearer to see that the homogenous soil causes a wider area of 

soil across the 3D surface to experience deflection.   

When the load is moving at the critical velocity, the bedrock supported soil shows 

perturbations after the load has passed (Figure 5b).  These are not present for the half-space at the 

equivalent speed, or for either the half-space or layered ground at the lower speed.  This occurs post 

critical velocity because at this frequency the waves propagating within both the guideway and soil 

do not impede each other.  This is more clearly explained via Figure 6b where the first mode of the 

soil dispersion curve coincides with the guideway dispersion curve at 25Hz (assuming a rigid base).  

The ability of waves to propagate at a fixed frequency is confirmed through analysis of the layered 

ground in Figure 5b, where the frequency of vibration is identical (25Hz).  In contrast, Figure 6a 

shows that the soil is non-dispersive and thus waves cannot propagate at a fixed frequency. 

At all speeds greater than the critical velocity, waves propagate, while below it, they cannot.  

This is only true for ground with dispersive properties and does not occur for homogenous half-

spaces because they do not have a propagating wave vibration frequency.  However, in practise, 

true homogenous half-spaces rarely exist. 

  

Figure 5 – Time history response due to a moving point load, a) at 50% of critical velocity, b) at 100% of critical velocity 



  

Figure 6 – Dispersion curves, a) Homogenous ground, b) Bedrock (soil case 1)  

 

 

 

 

Figure 7 – Normalised ground displacement contours with downward displacements shown as upward deflection, a) 

homogenous soil with VCV=0.5, b) 2m bedrock soil with VCV=0.5,c) homogenous soil with VCV=1,d) 2m bedrock soil with 

VCV=1) 

 

Also, Figure 8a shows the frequency spectrum of the response at critical velocity for different 

bedrock depths.  The soil and guideway properties are taken from soil 1-guideway 2, however the 

bedrock depth is varied between 2-22m.  The homogeneous halfspace corresponds to the soil 4-

guideway 2 case.  It is seen that when bedrock exists a distinct propagating wave vibration frequency 

is present, however it converges to 0Hz as depth increases.  This is consistent with Figure 5 and 

occurs because a homogenous soil does not have a propagating wave vibration frequency.  Figure 8b 

also shows the relationship between the guideway-ground free-vibration frequency and critical 

velocity for the bedrock cases.  It is seen that there is a positive correlation between both, and that 



the free vibration frequency is always between 2-3 times greater than the free-vibrationsoil natural 

frequency.  This is expected, and caused by the high relative stiffness of the guideway and the 

doppler effect. 

  

 

Figure 8 –a) The effect of bedrock on frequency spectrum, b) The relationship between soil natural and propagating 

wave vibration frequencies 

 

With the aim of investigating post-critical speed behaviour, Figure 9a shows the rail 

displacement time histories for a single load passage, for a wider range of vehicle speeds.  It is seen 

that post-excitation oscillations only occur when VCV=1, while at speeds below this the response is 

relatively uniform.  Figure 9b shows the corresponding frequency contents of the deflection time 

histories.  At speeds of VCV<1, propagating wave vibration is absent, while at speed VCV=1, there is a 

distinct peak in the spectra.  This is related to the trailing vibrations present in the time history 

response, which have high amplitudes. 

Figure 9b also shows the relationship between the soil natural frequency and the soil-

guideway propagating wave vibration frequencies, including at the critical velocity.  When VCV=1, the 

propagating wave vibration frequency is 24.8Hz (Table 3), however higher VCV ratios result in lower 

propagating wave vibration frequencies, that are closer to the soil natural frequency.  This is shown 

more clearly in Figure 10 where the resonant frequency is plotted against varying vehicle speed.  The 

peak of the spectra is at VCV=1 and decreases with increasing VCV.  However, this decrease is 

relatively minor showing that it may be possible to approximate the critical frequency range of a 

post critical velocity load, using only the response of a single point-load.   

Figure 11 shows the effect of soil stiffness and guideway bending stiffness on resonance. In 

general it is seen that changing the soil stiffness has a greater impact on frequency response 

compared to changing guideway stiffness.  However, it is also seen that: 

1. When below the critical speed, changing soil stiffness shifts the low frequency response (i.e. 

static stiffness) but doesn’t greatly effect high frequency response 

2. When above the critical speed, changing soil stiffness has a large effect on resonant 

frequency and stiffness across the entire frequency range 

3. When below the critical speed, changing guideway stiffness has only a small effect on 

frequency response 



4. When above the critical speed, changing guideway stiffness shifts the resonant frequency to 

a lower value, but the impact is relatively low 

 

  

Figure 9 – Single axle response at different ratios of critical velocity, a) Time histories, b) Frequency contents 

 

   

Figure 10 – The effect of axle speed on guideway-ground propagation wave vibration frequency 

 



 

Figure 11 - Single axle response at different ratios of critical velocity, a) Effect of soil stiffness, b) Effect of rail stiffness 

 

4.2 Multi-load passage case 

The previous section discusses frequency and critical speed relationships for a single moving 

load.  This is useful to understand the generalised behaviour of the guideway-ground system, 

however in reality it is likely that current/future transport vehicles will interact with their guideway 

at multiple discrete loading locations (e.g. multiple axles).  Therefore this section expands upon the 

single moving load analysis to investigate multi-load combinations. 

Considering a typical high speed train as a benchmark, it is typically formed from a series of cars, 

bogies and axles.  A detailed discussion regarding rolling stock load spectrums is given in [41], 

however typical spacings are defined in Figure 12, where 𝐿𝑎 is axle spacing, 𝐿𝑏 is bogie spacing, and 𝐿𝑐 is car spacing.  The response of the track due to loading is affected by the static and dynamic 

stiffness of the guideway and soil.  For example, if the support is soft, after one axle passes, the 

guideway may be still be in a suppressed downwards position by the time the subsequent axle 

arrives.  This can then cause frequencies to be hidden by the bogie and car passage frequencies.   

 The superposition effect with respect to axle passage frequency is more clearly shown in 

Figure 13.  For the homogenous ground, two axle passages are shown, spaced at 4.7m and moving at 

50% and 100% of the critical velocity (note that 4.7m is larger than that for a typical train and is used 

as an example only).  The dashed line shows the resulting time history due to superposition.  It can 

be seen that there is an increase in the maximum magnitude of response, due to the individual axles 

influencing each other, however it is relatively minor.  Constructive interference is only visible at the 

moments of time where the guideway is experiencing forced deflection due to the load.   

In contrast, Figure 14 shows the same two axles with 4.7m spacing, however for layered 

ground 2, moving at both 50% and 100% of critical velocity.  The 4.7m spacing corresponds to both 

the propagating wave vibration wavelength and the wavelength at the critical speed (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =118𝑚/𝑠 4.7𝑚⁄ = 25𝐻𝑧).  At 50% of critical velocity constructive interference is minimal, however at 

100% of critical velocity the response is altered significantly.  For the faster speed, perturbations 

occur after the load passage corresponding to the propagating wave vibration wavelength.  Then, 

because the vehicle axle spacing is also at the same wavelength, constructive interference occurs.  

Depending upon the ground properties, guideway properties, vehicle axle spacing and vehicle loads, 

the total response may be combination of constructive and/or destructive interference.   

 



 

Figure 12 – Vehicle axle configuration 

 

 

 

Figure 13 – Superposition of displacement response, a) Homogenous ground at Vcv=0.5, b) Homogenous ground at Vcv=1 

 

 

Figure 14 – Superposition of displacement response, a) Layered ground at Vcv=0.5, b) Layered ground at Vcv=1 

 

Similar to the high speed train case, it is possible that future high speed vehicles will have 

axle-set configurations that give rise to multiple passage frequencies.  However, for this study, to 

more concisely investigate the behaviour of axle spacings on guideway response, constant axle 

spacings are considered.  Therefore Figure 15a shows the effect of multiple (10) axles instead of a 

single axle.  For each train, axle spacing is assumed constant and is normalised as a function of 

guideway-ground propagating wave vibration wavelength.  Note that some signals are truncated to 

remove unrealistically closely spaced axles as discussed previously.  Also note that when the ratio of 

axle passing frequency to critical velocity frequency is low, it means axles are spaced far apart, and 

when it is high, it means the axles are spaced close together.  



It is seen that at speeds below the critical velocity, the rail displacements remain almost 

constant regardless of axle spacing.  Also when the axle spacing is large, for all speeds, the rail 

displacement values correspond to the values shown on the single axle dynamic amplification curve 

(DAF - DAF curve (Figure 15b), indicating that the problem can be approximated as a series of 

independent loads.  However, when the critical velocity is reached, only when the axle spacing is 

wide do the rail displacements correspond to the DAF curve values.  Instead, as axle spacing 

decreases, and approaches the propagating wave vibration frequency of the guideway-ground-load 

system (shown in Figure 9b) large amplification occurs (i.e. when VCV≥1).  This amplification does not 

increase linearly with decreasing axle spacing though.  Instead, this resonant condition occurs at 

different spacings for different ratios of critical velocity, because at high speeds, the resonant 

frequency changes with speed (Figure 9).  In addition to the main peaks that occur when the axle-

passage frequency is equal to Fcv, sub-peaks are also visible with increasing axle spacing.  These are 

caused by two or more wavelengths occurring between adjacent wheels. 

Figure 16a shows a similar figure to Figure 15a, however guideway uplift is instead plotted.  

Again, when there is a large distance between individual axles, the rail displacements in Figure 16a 

correspond to the single axle case (Figure 16b).  Also, as recorded during field trials on high speed 

lines ([39]), uplift is more sensitive to increases in train speed compared to downward deflection.  

This is seen by comparing Figure 16b and Figure 15b, where the uplift at VCV=1 is a much greater 

percentage of the static deflection value, when comparing the uplift to downward deflection.   

Figure 17-Figure 18 also compare the deflections that occur solely due to critical velocity, 

versus those due to combined critical velocity and resonant effects.  It is seen that at low speed, 

resonance has negligible effect, but starts to affect the response as the critical velocity is 

approached. At speeds greater than VCV≥0.8, the resonant response starts to influence the results 

and at VCV≥1 the resonant deflections dominate the magnitude of deflections.  Therefore it is seen 

that when approaching the critical velocity, resonance can be much more important to consider 

compared to critical velocity alone. However, both effects are linked and resonance only occurs 

above critical velocity.  Further, it should also be noted that if the total number of axles changes, 

displacement amplification may also change.  Figure 15-Figure 17 are computed using 10 axles, 

however if different, the response may change (e.g. Figure 21). 

  

Figure 15 – The relationship between critical speed and axle spacing, a) downward displacement (note that smaller 

ratios indicate larger axle spacing), b) corresponding DAF curve (single axle) 



 

Figure 16 – The relationship between critical speed and axle spacing (note that smaller ratios indicate larger axle 

spacing), a) uplift displacement, b) corresponding DAF curve (single axle) 

 

 

Figure 17 – The effect of critical speed on CV and resonance amplification considering all possible axle spacing 

combinations (soil 1 & guideway 2) 

 

Figure 18 - The effect of critical speed on CV and resonance amplification considering all possible axle spacing 

combinations (soil 3 & guideway 2) 



Figure 19 shows selected time histories corresponding to Figure 15a-Figure 16a, for Vcv=1 and 

Vcv=1.5.  For plotting clarity purposes unitless time and truncating is used.  To do so, the time 

response signals for each axle spacing are appended sequentially.  Unitless time means that the 

timestep used for each of the three curves varies.  For the 3 axle spacings chosen, displacements are 

largest when Vcv=1, and the effect of resonance is quite clear for all, with many instances of 

constructive and destructive superposition visible.  For each case, propagating wave vibration is 

present after the 10 axles pass, however is more dominant at Vcv=1.5.   

 

Figure 19 – Time histories of 10 axle train response with different spacings (soil 1 & guideway 2), a) Vcv=1, b) Vcv=1.5 

 

4.2.1 Effect of the number of vehicle-guideway contact points 

The previous section analysed the effect of 10 axles on displacement response.  Depending upon 

vehicle type/configuration, this number may be significantly higher or lower.  Therefore Figure 20 

shows the effect of the number of axles on displacement response, when VCV=1.  The overall curve 

shape is similar to the 10-axle cases shown in figs Figure 15-Figure 16, with maximum amplification 

occurring at the critical velocity frequency, and lower magnitude peaks located at its sub-harmonics.  

This is because the guideway and ground structures are constant regardless of the number of axles, 

and therefore the propagating wave vibration frequency doesn’t change.  

To analyse the effect of axle spacing in more detail though, Figure 21 shows the effect of axle 

count on maximum rail displacement, when VCV=1 and VCV=1.5.  The displacements are normalised 

to the maximum 2-axle displacement, rather than 1-axle which is typically used to compute dynamic 

amplification curves.  It is seen that for both cases, when the total number of axles is low, 

displacements are highly sensitive to changes in axle number.  However as the number of total axles 

increases, sensitivity decreases, which is consistent with Figure 20.  This is true for all guideway and 

soil combinations.  It is noticeable though that the relationship between displacements and total 

axles is different when comparing VCV=1 and VCV=1.5.  At the higher speed, displacements are still 

increasing slightly when 32 axles are present, while at lower speed the displacements are largely 

constant in the same axle range.  This increase in displacements is due to additional superposition 

and the guideway not fully recovering to its neutral position before the next axle has arrived. 

This finding is important because many vehicles are formed from a finite number of discrete 

cars/carriages.  Therefore in reality there are likely to be several distinct axle spacings associated 

with the vehicle configuration (e.g. axle, bogie and car spacings), which correspond to a variety of 

sub-harmonics in the frequency domain.  Then, considering amplification can be induced by the 

spacing between only 2 axles, resonant amplification may become more problematic than entirely 



uniform spaced axles.  For example, Figure 20 shows numerous distinct and localised peaks 

depending upon the relationship between axle passing frequency and propagating wave vibration 

frequency.  If there are multiple dominant axle passing frequencies, then these peaks have the 

potential to merge and rail deflection will undergo complex amplification compared to the single 

axle case. 

  

Figure 20 – The effect of total number of axles and their spacing on rail displacement (soil 1, guideway 2 & VCV=1.0) 

 

  

Figure 21 – The effect of total number of axles on normalised rail displacement, a) VCV=1, b) VCV=1.5. Note that 

horizontal axis is log-scale ranging from 1-32 wheels 

 

 

5. Discussion 
The current railway speed record is 603km/h, while the aspirational maximum speeds of 

vacuum transport (e.g. hyperloop) and car technology (e.g. Bloodhound SSC) are 1200 km/h and 

1600 km/h respectively.  Further, the engineered Young’s modulus of earthwork structures that 

support transport infrastructure are often in the region of 100-250MPa, which is equates to shear 



wave velocities in the range 360-900km/h.  Therefore, depending upon guideway stiffness, future 

transport systems may need to operate, at least in-part, in the range 1<VCV<2.   

This is problematic because guideway-ground resonance occurs in the presence of multiple 

moving loads at speeds close to, and above, the critical velocity.  When considering Figure 17, it is 

seen that resonance results in very large dynamic amplifications in the range 1< VCV<2 (i.e. the speed 

range of future aspirational transport systems).  This is due to coincidence between the frequency of 

axle spacing and the guideway-ground propagating wave vibration frequency, and yields much 

greater amplification than simply the ‘critical velocity effect’ commonly considered on high speed 
rail lines.  Therefore axle spacing is an increasingly important consideration when designing 

transport systems operating at VCV≥1.  This will require more multi-disciplinary design approaches 

compared to existing industries where vehicles and guideway sub-structures are typically designed 

independently.  

Therefore, assuming VCV≈1 is the speed at which the axle spacing becomes important, the 

axle spacing that will give significant amplification at this speed is: 𝑎𝑥𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 𝑉𝑐𝑣𝐶𝑟𝑡𝑖𝑐𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐹𝑐𝑣𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

Considering the relatively minor change in guideway-ground resonant frequency for CV≥1 

(Figure 10), a scoping assessment can be performed by only checking all axle spacings greater than 

this value during design. As an example, considering the soil 2-guideway 1 case discussed previously, 

the critical axle spacing is 3.75m, which is close to the typical bogie/axle spacing on high speed trains 

(axle spacing is typically 2.5-3m).  Therefore there is a risk of resonant effects occurring when close 

to critical velocity. 

It is also shown that displacement amplification increases with the total number of axles, 

with even just 2 axles inducing amplification (i.e. meaning it is relevant for future car technologies 

such as Bloodhound SSC).  When the number of axles exceeds a critical threshold, adding further 

axles results in minimal additional amplification.  Considering amplification occurs for just 2 axles, it 

is likely that unevenly spaced axles will generate a larger number of amplification peaks at each 

speed.  Due to superposition these peaks may possibly result in similar or lower amplification, 

depending upon train speed.  Further, in reality, vehicles are configured in groups of axles with 

regular, but varied spacing.  This will increase the complexity of interference. 

Finally, it should be noted that the analysis in this paper is based upon a high speed rail 

inspired guideway.  This is in-part because vacuum transport infrastructure technology is still in its 

infancy, without a universal design for either vehicles or guideway/infrastructure. However, it should 

be noted that Hyperloop tube sections are likely to have a higher bending stiffness compared to the 

track studied here.  Further analysis is required to assess the effect of magnet/axle spacing and 

resonance for bespoke infrastructure/vehicle arrangements.  Also, this analysis assumes the soil only 

experiences low strain and behaves in a linear elastic manner.  In reality, if high displacements occur 

due to resonant effects, displacement amplitudes may be further magnified due to soil stiffness 

degradation, which is also highly sensitive to axle spacing. 

 

6. Conclusions 
The operational speed of ground transport systems is growing rapidly.  Proposed speeds indicate 

that vehicles may operate, at least on some sections of their network, between 100-200% of the 



guideway-ground critical velocity.  It is known that as moving load speeds approach the critical 

velocity of their support system, large dynamic effects are generated that result in high 

displacements.  However, the effect of axle/magnet spacing on dynamic amplification is still unclear.  

Therefore, for the first time, this paper analyses the effect of multiple loads moving at speeds above 

the critical velocity.  First a numerical model is developed and then validated using field data.  It is 

used to show: 

1. When vehicles operate at speeds greater than the critical velocity, vehicle axle spacing plays 

a dominant role in the displacement amplification of the guideway system 

2. Maximum guideway amplification occurs when the vehicle axle frequency is equal to the 

propagating wave vibration frequency of the guideway-ground system.   

3. At speeds lower than the critical velocity the guideway-ground system does not vibrate 

freely, meaning it cannot experience amplification due to resonance. At speeds below this, 

displacements are relatively constant regardless of axle spacing, unless axles are configured 

very close together 

4. Resonance can have a greater effect on displacement magnification compared to critical 

velocity effects.  For the case study shown, although critical velocity might increase 

displacements by 50-100%, for the same scenario, resonance can increase displacements by 

400% 

5. Resonant amplification can occur in the presence of 2+ axles, thus making it relevant to all 

practical high speed vehicle types with discrete axle/magnet spacings.  If a vehicle has a 

large number of regularly spaced axles, dynamic response will be magnified at the 

corresponding wavelengths.  Alternatively, if a vehicle has a large number of irregularly 

spaced axles, a broader range of wavelengths will be subject to amplification.   
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