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1 Supplementary Methods

1.1 P-value of sum of edge weights

The recursursive functions refered to in the main text are:

P(x > zqp|cap = 1) = cdfi(zap|cap = 1) =

/ " bty edfy (70 — p)dy (1)

— 00

and
pdf, (z) = / pdf,  (y)pdfy (z — y)dy @)

— 00
, where cdf; () and pdf; (z) are the cumulative density function and proba-
bility density function, respectively, for the distribution of edge weights, which
we estimate with kernel density estimates (density function in R).
Equation (1) and (2) come from standard formulas for calculating pdfs and
cdfs for sums of pairs of continuous random variables. In particular, for two
probability distributions A and B:

clipsn(a) = [ " pdty(y)edfs (e — y)dy 3)
and -
pdf s () = / pdf 4 (4)pdts (= — y)dy (4)



PAFway 3

In our case, we say that if c,, = ¢, then z,; is constructed by sampling
1 values from the probability distribution of edge weights and summing these
values together. This will give the same final outcome as would the following
procedure:

1. Sample ¢ — 1 values from the distribution of edge weights and find the sum
2. Sample one more value from this distribution of edge weights
3. Find the sum of (1) and (2).

This means that when we calculate Equation 2, we can calculate P(z >
Zap|Cap = 1) from P(x > zgplcap = (1 —1)).

1.2 Implementation with Fast Fourier Transform (FFT)

Note that both the functions for pdf,(z) and cdf;(x) are convolutions of two
functions; recall the definition of convolution:

comolution(f.)(y) = | T f@)gly — 2)de (5)

This can be expressed in terms of Fourier transforms:

/jo f(z)g(y — z)dx = Fourier ! (Fourier(f(z))Fourier(g(z))) (6)

We estimate this with a discrete Fourier transform via the Fast Fourier Trans-
form (FFT). This means that instead of calculating an integral, we sample f(x)
and g(z) at m discrete points, forming the vectors f[z] and g[x] of length m. The
discrete form of the convolution can be calculated by the following summation:
hlk] =" flz]g[k —m — ] for all valid z, leading to a vector of hlx] of length 2m.
In order to prevent the vector from expanding in size too much as we estimate
pdf, (z), we drop the elements in the beginning and end of the vector that have
values that are very close to zero (by default f[z] < e — 05).

2 Supplementary Results

2.1 Biological evidence that the PAFway network in Arabidopsis
thaliana is reasonable

The main output of PAFway is a network of functional annotations, which is
shown in Fig. 1 in the main text for an Arabidopsis thaliana network. These
results are consistent with what we would expect: for instance, cold acclimation
is known to be related to response to salt stress [5], response to salt stress is
known to be related to water homeostasis [1], and response to cold is related to
developmental growth [7]. Also, by definition, heat acclimation will impact the
plant’s response to heat. Some edges are more surprising and warrant further
investigation, such as whether cell growth impacts cold acclimation.
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Fig. 1. Verification that PAFway produces reasonable outputs. (A) PAFway produces
results that are consistent with a pairwise association score. (Note that a higher pair-
wise association suggests a lower p-value) (B) The FFT-based approach for estimating
p-values with edge weights produces results that are consistent with a binomial test,
when the edge weights do not vary substantially from 1.
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Fig. 2. Verification that PAFway produces reasonable outputs for a Rich-Get-Richer
(RGR) network. (A) A random RGR network was made, by making the probability of
generating a new edge associated with a node be proportional to the current number
of edges associated with that node. This is the distribution of edge weights that were
produced. (B) This is the equivalent figure to Fig. 1(A) for this RGR network. (C)
This is the equivalent figure to Fig. 1(B) for this RGR network.
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2.2 Verification that method performs accurately

First, we compare the results of PAFway to a pairwise association score that
is similar to the one proposed by [3,14], where S(a,b) is the association score
between GO term a and b, p, p is the proportion of edges in the network that go
from GO term a and b, and p, and p; are the proportion of genes in the network
that have GO terms a and b, respectively.

S(a,b) = Lot
PaPb

Values greater than 1 indicate that the edge type is enriched in the network,
while values less than 1 indicate that the edge type is under-represented in the
network. However, this metric does not indicate whether the over- or under-
representation in the network is significant. Additionally, this method does not
enable us to incorporate information about edge weights.

We find that the results are highly correlated to one another when the edge
weights are one (Fig 1(A)) or close to one (Fig 1(B), edge weights sampled from
a Gaussian with a mean of 1 and standard deviation of 0.001), in a random
network with 300 genes, 1000 edges and 14 functional annotations and scale-free
(Fig 2) networks.

2.3 Comparison to NaviGO

NaviGO [13] is a tool that allows the user to calculate the similarity between
pairs of GO terms, based on either semantic similarity [11,12,6] or how often
they appear together in gene annotations [3], the scientific literature [3], and in
physically interacting proteins [14].

The GO consortium have organised all GO terms into three non-overlapping
directed acyclic graphs (DAG) that describe their relationships [4]; for instance,
there are many different GO terms describing specific responses to many kinds
of stress, but these all fall under the GO term ‘response to stress’ and so are
connected to this GO term in the DAG. Semantic similarity scores reference the
structural relationships between GO terms within this DAG. For instance, the
Resnik score is calculated by first finding the lowest common ancestor of the
two GO terms and taking —log of the proportion of genes that have that anno-
tation [11]. The Lin score [6] is the information content of the lowest common
ancestor and the relevance semantic similarity (RSS) score [12] weighs the infor-
mation content by the probability of observing a common ancestor by chance.
On the other hand, the Co-occurrence Association Score (CAS), Pubmed Associ-
ation Score (PAS), and Interaction Association Score (IAS) measure the relative
enrichment of two terms co-occurring in gene annotations (CAS), the literature
(PAS), and in protein interaction networks (IAS) [3, 14]. These three metrics use
a similar ratio as the pairwise association score S(a,b) described in the previous
section.

To evaluate how our results using PAFway are correlated to these other
metrics, we began by selecting a number of GO terms that are relevant to the
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Fig. 3. Comparison of selected GO terms under semantic similarity (Lin) and other
pairwise-association scores (PAS, CAS, IAS). Resnik and RSS are not shown because
they produce results that are extremely similar to Lin.
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Fig. 4. Comparison of PAFway to other metrics that compare pairs of GO terms. (A)
PAFway summary network of AraNet, when edge counts are considered. (B) PAFway
summary network of AraNet, when edge weights are considered. (C) Comparison be-
tween PAFway p-values and other metrics in NaviGO.

main research interests of our lab group. These included GO terms associated
with sensing and acclimating to light, temperature and water, stress response,
growth, and flower development. Then, we calculated the following values for the
AraNet gene network: (i) various pairwise GO comparison metrics using NaviGO
(Fig 3) and (ii) the PAFway p-values, with and without edge weights.

For all GO term pairs where there was at least one connection in AraNet,
we compared their PAFway associated p-values with the scores produced by the
three semantic similarity metrics (Resnik, Lin, and RSS) and the three pairwise
association scores (CAS, PAS, and TAS). Interestingly, there was more of a corre-
lation between semantic similarity measures and the results from PAFway when
edge counts (not edge weights) were considered. On the other hand, when edge
weights were considered, the results were more significantly associated with the
CAS and PAS scores, which measure co-occurrence of GO terms in gene annota-
tions and in the literature. This suggests that while PAFway provides results that
are somewhat consistent with other metrics of pairwise GO term similarities, it
also provides new insights that cannot be directly gleaned by these metrics.

2.4 Comparison to BINGO

BiNGO [8] is a popular cytoscape plugin that is similar to PAFway, in that it de-
picts the GO terms as a network. More specifically, it identifies GO terms that
are enriched in clusters (or communities) within a network, and then depicts
these enriched GO terms as a network, where edges represent the underlying
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network structure of the GO DAG. For instance, phosphate metabolic process
points to dephosphorylation because dephospholylation is a type of phosphate
metabolic process. Non-enriched GO terms are also included in the BINGO net-
work if they are required to make it fully-connected. The BINGO GO term
network differs from the PAFway network, because PAFway edges relate to GO
term associations within the original biological network, rather simply reflecting
the GO term definitions. In this section, we demonstrate the differences between
these networks and illustrate how they can work together to improve our ability
to interpret large biological network.

First, we find communities within the AraNet network, using spinglass com-
munity detection[10] (5 runs), followed by consensus clustering with K-means.
We found 131 unique communities, but 20 of these communities were substan-
tially larger than the others, so we focus on these. Fig 5(A) shows some of the
key words found among the GO terms in a random selection of the largest com-
munities.

Fig 5(A) shows the BiNGO network that results from the analysis of the
first of these communities (the word cloud in the top left). The full networks
output of BiNGO is shown in the upper right panel of Fig. 5(B), but this is too
large to be easily visualised, so we include a zoomed-in version of an interesting
sub-network related to amino acid biosynthesis.

For our PAFway analysis, we decided to focus on GO terms that were highly
enriched in each community (p-value< le — 10) and that were not commonly
found to be enriched among the top 20 largest communities (were found to be
enriched in less than four of the 20 other communities). The results of PAFway
(with no edge weights) are shown in Fig. 5(C-D) as for the BiNGO network
in Fig. 5(B) and for a sample of other sub-networks in Fig. 6. These can be
expressed as either a network (Fig. 5(C)) or a heatmap (Fig. 5(D)). From this,
we learn additional information that we cannot see from the BiNGO network.
For instance, the close relationships between the biosynthesis pathways of the
hydrophobic amino acids leucine, isoleucine and valine is much clearer from the
PAFway output.

However, since BINGO and PAFway provide different information, they can
be used hand-in-hand to analyse a network. In particular, BINGO can be used
as an initial tool to identify GO terms of interest, which can be investigated in
the context of the network structure using PAFway.

3 Discussion

This manuscript introduces a method for condensing a large hairball network
into a network that links functional annotations or GO terms. We show that it
provides complementary biological insights to other methods for comparing pairs
of GO terms [13,3,14,11,12,6]. It also provides complementary information to
BiNGO, a popular way of visualising GO terms in a network format [8].
PAFway produces very different outputs depending on whether edge weights
are considered. This is because in the AraNet network, the distribution of edge
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weights has a long-tail, so a small number of edges that have a very high weight
play a more important role in the resulting network. On one hand, this is a good
thing because these edges are much more likely to be biologically meaningful,
so they should be weighed more heavily. On the other hand, the results may be
less robust, because they depend on the values of a few edges. We recommend
using both techniques and comparing the results.

Another consideration is whether to display the results of PAFway as a net-
work or heatmap. The heatmap allows us to visualise the distribution of p-values
that do not make the cut-off, so it can provide complementary information. For
instance, it is often easier to see ‘cluster’-like behaviours from the heatmap visu-
alisation. However, it may be tempting to add meaning to spurious relationships
between GO terms that are not significantly linked when observing the heatmap
visualisation, so in many ways the network representation is preferable.

Another issue is that most edges in these large hairball networks are likely to
be false positives. Indeed, many validation studies find that at most half of the
edges are direct targets [2,9]. While having many false positives will decrease the
sensitivity of our method to detect relationships between functional annotations,
this should not effect the specificity of the method if the false positive edges have
randomly distributed gene function annotations.
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Fig. 5. Comparison of BINGO and PAFway outputs. (A) Word clouds of key words
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20 largest communities in AraNet. (B) BiINGO network of one community (the one
represented by the top-left word cloud in (A). The full network is shown in the bottom
left portion of this panel, but a zoomed-in sub-network that is related to amino acid
biosynthesis and metabolism is also shown. (C) This is the network output of PAFway
for the community shown in (B). A heatmap representation of this PAFway network
is shown in (D).



PAFway 11

>
e

number of genes in cluster

0 20 40 60 80 100 120

cluster number (ordered by size)

Community 3

B
~signaling

defense response-
S

Community 2

U4 snRNA 3'-end processing
'y

RNA 3"-end processing
hd
Y

ncRNA processing
\

/
PAg

RNA prooslss@g

RNA metabolic process
Iy

X
N
\ /N
ribosome biogenegis | | /
I\ RNH methylation \ J
@Y% i o .
| trandgglption intracellular signaftransduction @¥tation
methylation. %
.
RNA biosynthetic process proteasomal ubiquitin-dependent protein catabolic process
3
Community 4
Community 5

cellular response to heatyonse to nfolded protein

ubiquitin-dependent,protein catabolic proces

protein ubiguitination
|

! v
v,
t proteasomal ubiquiﬁn—aependenl protein catabolic process
|

protein Mmg\m
4\ protel rsﬁldigkﬁs:
% respofisete heat |
\ |
|

|
| /

1
/ chaperone-mediated protein folding |
|
|

protein catabolic process

cellular response to unfolded protein

response to temperature stimulus

Fig. 6. Data from more communities (A) The size distribution of the communitities
(B) The PAFway network for a few additional communities, ignoring edge weights, and
correcting for multiple hypothesis testing with Bonferonni. The other 15 networks are

available on the Github.



12

10.

11.

12.

13.

14.

M. Mahjoub et al.

Marbach, D., Costello, J.C., Kiiffner, R., Vega, N.M., Prill, R.J., Camacho, D.M.,
Allison, K.R.., Consortium, D., Kellis, M., Collins, J.J., Stolovitzky, G.: Wisdom
of crowds for robust gene network inference. Nature methods 9(8), 796-804 (jul
2012). https://doi.org/10.1038 /nmeth.2016

Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys.
Rev. E 74, 016110 (Jul 2006). https://doi.org/10.1103/PhysRevE.74.016110,
https://link.aps.org/doi/10.1103 /PhysRevE.74.016110

Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure
and its Application to Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research (1999). https://doi.org/10.1613/jair.514

Schlicker, A., Domingues, F.S., Rahnenfiihrer, J., Lengauer, T.: A new measure for
functional similarity of gene products based on gene ontology. BMC Bioinformatics
(2006). https://doi.org/10.1186/1471-2105-7-302

Wei, Q., Khan, I.K., Ding, Z., Yerneni, S., Kihara, D.: NaviGO: Interactive tool for
visualization and functional similarity and coherence analysis with gene ontology.
BMC Bioinformatics (2017). https://doi.org/10.1186/s12859-017-1600-5

Yerneni, S., Khan, LK., Wei, Q., Kihara, D.: TAS: Interaction Specific
GO Term Associations for Predicting Protein-Protein Interaction Networks.
IEEE/ACM transactions on computational biology and bioinformatics (2018).
https://doi.org/10.1109/TCBB.2015.2476809



