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Abstract

A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal
development, several of which are associated with childhood fractures. Given the rise in obesity
worldwide, it is of particular concern that excess fat accumulation during childhood appears to be
a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater
propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and
excessive adipose tissue that may have direct or indirect detrimental effects on skeletal
development. To date, there remains little resolution or agreement about the impact of obesity and
adiposity on skeletal development as well as the mechanisms underpinning these changes.
Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and
differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear
relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may
confer advantages to the developing cortical and trabecular bone compartments, provided that
gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive
levels, unfavorable metabolic changes may impede skeletal development. Mechanisms
underpinning these changes may relate to changes in the hormonal milieu, with adipokines
potentially playing a central role, but again findings have been confounding. Changes in the
relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is
needed to better understand the controversial impact of fat and obesity on skeletal development
and fracture risk during childhood.
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Introduction

Pediatric osteoporosis is often characterized by failure to accrue optimal bone mass and
structural adaptations that consequently increase susceptibility to fractures. Whereas the
focus in pediatrics has historically been on optimizing peak bone mass [1], mounting
evidence demonstrates that modeling adaptions which occur during growth lead to important
structural changes independent of bone mass that may not only determine peak bone
strength (and thus resistance to fracture) [2], but also track throughout life [3]. However,
traditional approaches (e.g., dual-energy X-ray absorptiometry [DXA]) for skeletal
assessments in growing children have neither the sensitivity nor specificity for optimal
fracture risk assessment and are unable to assess critical aspects of bone’ s complex design
[4]. Thus, in recent years, there has been a shift towards measuring biomechanically relevant
determinants of bone strength in children.

Like osteoporosis, obesity has also become a world-wide public health concern, reaching
epidemic proportions globally [5], even in children. Indeed, data from the World Obesity
Federation indicate that the prevalence of childhood overweight and obesity has risen
substantially over the past three decades in several low-, middle-, and high-income countries
[6]. For example, recent survey data in the United States show that 17% of children are
obese [7]. Beyond the predominantly consistent observation that obese children are
overrepresented in fracture groups [8—18] (Table 1), emerging evidence from both
translational and basic cellular/molecular studies suggests that adipose tissue can have a
multitude of effects on bone metabolism [19, 20]. Despite great strides, our understanding of
the relationship between adipose tissue and bone is still evolving, with recent evidence
indicating that the effect of adipose tissue on bone may be fat-depot specific. Indeed,
pathogenic depots such as visceral fat may exert negative effects on bone, whereas non-
pathogenic fat depots appear to mediate positive skeletal effects [21].

Specific skeletal sites (e.g., weight-bearing versus non-weight-bearing) as well as skeletal
compartments (e.g., cortical versus trabecular) may also be differentially affected by obesity.
In children, these complex interactions between fat and bone are further complicated by both
skeletal growth and a rapidly changing hormonal environment. It is likely that this

complexity contributes to the consistent finding that overweight and obese children are
overrepresented in fracture groups (Table 1), and why this effect may be most noticeably
observed in the peripubertal years. Indeed, during this critical period of rapid skeletal

growth, it may be that excessive adiposity provides an additional insult on the skeleton at a
microarchitectural level.

Importance of assessing bone structure and strength during growth in

children

Because multiple components of adult bone strength are established during growth [1], the
value of accurately measuring bone geometry and microarchitégtufi® in children and
adolescents has become increasingly evident. Fortunately, the more recent development and
application of alternative tools, such as magnetic resonance imaging (MRI) and peripheral
guantitative computed tomography (pQCT), has made it feasible to accurately estimate
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volumetric BMD (vBMD) and bone structural parameters (e.g., periosteal and endocortical
surfaces) in children and adolescemts/vo. Such information is valuable because these
parameters can be utilized to calculate indices of bone strength (e.g., bone strength index
[BSI] at metaphyseal sites and strength-strain index [SSI] at diaphyseal sites). It is
noteworthy that BSI and SSI have been shown to predict up to 85% of the variance in bone
failure properties in human cadaveric tissues [22]. In recent years, additional technologic
advances have occurred, including high-resolution pQCT (HRpQCT), a method which
essentially allows for the safe performance of a vikmalvo “non-invasive bone biopsy” of

the distal radius and tibia. Indeed, by applying novel advances in image acquisition and
analysis, this technique can evaluate bone macro- and microarchitecture (e.g., trabecular
connectivity, cortical thickness, vBMD, and porosity), as well as micro-finite element (UFE)-
derived bone strength (i.e., failure load), to better understand skeletal development and
fracture risk in children and adolescents [23—-25]. Application of these techniques will be
crucial toward improving our knowledge of the underlying biomechanical factors that
influence fracture risk during growth, as well as the impact of fat and obesity on bone
microarchitectural development and strength during growth.

Fractures in children and adolescents

Fractures are a common occurrence in the pediatric population. One of the leading causes of
hospital admission following injury [26], fractures occur in approximately one in three

children who are otherwise healthy [27, 28]. Further, children who suffer a fracture are 2- to
3-fold more likely to sustain a repeat fracture as compared to age-matched peers with no
fracture history [9]. Importantly, fracture incidence in children has increased over the past 30
years [29]; thus, a greater effort is needed to identify the key biomechanical and functional
parameters that determine bone strength and fracture risk in children and adolescents and to
refine our knowledge of the risk factors that influence those parameters. As now recognized,
a complex interplay of genetic, environmental, hormonal, and behavioral factors [30—33]
affect bone strength, several of which (e.g., low birth weight, inadequate dietary calcium
intake, excess soft drink consumption, insufficient vitamin D levels, physical inactivity, and
obesity) have also been associated with childhood fractures [9, 13, 15, 16, 34-39]. These
factors tend to be associated with precipitating events (e.g., falls) and underlying
predisposition (e.g., suboptimal skeletal accrual and/or impaired bone structure), and the
latter can have long-term negative consequences for bone health and fracture risk. Moreover,
associations with earlier age at first fracture [40] and obesity [9, 13, 15, 16, 39] implicate
developmental or behavioral traits, respectively, that could extend into adulthood. Thus,
interventions designed to affect modifiable risk factors could potentially have an important
impact on skeletal development and subsequent fracture risk.

It has become increasingly clear that fractures during growth are associated with skeletal
fragility [41, 42]. Although fractures can occur at any time and at any skeletal site, forearm
fractures are most common in normal healthy children, with an incidence that peaks during
the early adolescent growth spurt [27, 28]. However, whereas fractures due to high trauma
(e.g., motor vehicle accidents) are likely to occur regardless of bone strength, fragility
fractures (i.e., due to moderate/mild trauma) may result from underlying skeletal deficits.
Interestingly, studies using HRpQCT to assess bone microarchitecture in children and
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adolescents have suggested that transient thinning and decreased load sharing by the cortex
during the pubertal growth spurt may account for the peak in forearm fracture incidence that
coincides with rapid skeletal accrual [23, 43]. Potential contributing factors may include
enhanced bone turnover during peak longitudinal growth leading to increased cortical
porosity and/or a lag in endocortical apposition, which may transiently induce a transient
deficit in bone strength, thereby leaving the already thin metaphyseal cortex particularly
vulnerable to fracture [44, 45]. Given that the timing of these cortical bone changes virtually
mirrors the peak in forearm fracture incidence in early adolescence [27, 28], it is logical to
ask whether children with forearm fractures have deficits in bone microarchitecture and
strength. Using HRpQCT imaging, recent work has demonstrated that children and
adolescents with forearm fractures due to mild trauma have significant deficits in failure

load at the radius, worse fall load-to-strength ratios, and significantly thinner metaphyseal
cortices [25]. By contrast, boys and girls with moderate trauma fractures have bone
parameters which are virtually identical when compared to peers (matched for various
confounding factors) with no fracture history [25]. From these data, it can be inferred that
forearm fractures during growth appear to have two distinct etiologies: those which occur
due to underlying skeletal deficits and result in fractures in response to mild trauma versus
those which occur due to more significant trauma in the setting of normal bone strength [25].
Future studies are needed to define the key risk factors, such as obesity, that potentially
influence fracture risk in children and adolescents who suffer mild trauma fractures.

Important considerations when examining fat-bone relationships during
childhood

Peak bone mass is dependent on bone mass accrual during childhood and adolescence and
may be a determinant of fracture risk in adulthood [1]. Achieving an optimal peak bone

mass during adolescence is thought to prevent or delay the onset of osteoporosis in later life
by up to 13 years [46]. Bone mass * tracks’ through childhood and adolescence due to the
strong influence of heredity and genes [47], but environmental factors may lead to a

deviation from the predicted developmental path. Despite the profound changes in skeletal
structure and architecture during growth, there remains a paucity of longitudinal studies
examining the impact of obesity on skeletal development particularly in respect to changes

in skeletal microarchitecture. When studying the effect that increasing body mass has on
children's bones, two outcomes need to be considered: the relative influence that increasing
fat mass or lean mass have on the size, geometry, mineral content, and architecture of bones
and whether these changes confer a structural disadvantage, leading to an increased fracture
risk. Normally, fat mass rises during growth and puberty; the effect the maturational increase
in fat mass on skeletal development, microarchitecture and maturation may potentially be
different compared to the presence of excess fat mass from obesity. Thus, the relationship
between fat mass and bone during childhood must be considered in the context of the
guantity and distribution of fat. Skeletal maturity must also be considered as obese children
enter puberty earlier and thus bone development may vary as a consequence of earlier
skeletal maturation and consolidation [48].
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Fracture risk in obese children

Obese children are at a greater risk of fracture (Table 1), suggesting that the * excessive’
accumulation of fat mass may have a detrimental impact on the skeleton either directly or by
limiting gain in bone mass in proportion to body size. Additional plausible explanations for
this higher fracture risk include a greater propensity for falls (e.g., due to poor balance and
abnormalities in gait [49]), greater force generation upon fall impact [50], unhealthy lifestyle
habits (e.g., low physical activity levels, inadequate dietary calcium intake), and excessive
adipose tissue that may have direct or indirect detrimental effects on skeletal development
[21, 51]. In addition, it is known from pediatric cases of slipped capital femoral epiphyses
[52] and tibia vara [53] that extreme mechanical loading on the skeleton from excessive
adiposity can result in skeletal complications.

Cross-sectional study evidence for a relationship between adiposity and
bone strength

To date, several cross-sectional studies of adiposity and DXA-derived bone mineral content
(BMC) and areal bone mineral density (aBMD) in children and adolescents have reported
conflicting findings [54-59] with studies demonstrating that fat mass is either positively [54,
55], negatively [56, 57], or not related [58, 59] to bone mass and density. However, much of
this confusion may stem from reliance on DXA imaging which has inherent limitations for
skeletal assessment in growing children and adolescents [60, 61]. Thus, in order to gain
insight into why overweight and obese children are more prone to fractures, it is important to
consider the underlying skeletal parameters that determine bone quality and strength.

Several studies, summarized in Table 1, have used either conventional CT or standard pQCT
to examine the influences of fat mass on bone geometric parameters and vBMD in children
and adolescents. For example, Janicka et al. [62] used conventional CT imaging in 300
mature adolescent males and females and reported that total body fat mass (TBFM) was not
associated with vertebral or femoral bone size. In contrast, Pollock et al. [63] used pQCT
imaging in 115 late adolescent females and reported that those with a higher body fat
percentage (>32%) had significantly lower bone size and cortical bone strength (SSI) at both
the radius and tibia as compared to age- and sex-matched controls with a normal body fat
percentage. It is also noteworthy that with pQCT imaging of 445 early pubertal boys and
girls (aged 9-11 years), Wetzsteon et al. [64] reported that overweight (B =85

percentile) children had greater indices of bone strength at the tibia as compared to normal
weight children (BMI <74' percentile), but that bone strength was adapted to lean mass
rather than fat mass. Thus, because overweight and obese children have greater skeletal
muscle mass relative to their height [54], positive associations between body weight and
bone parameters might be accounted for by increased muscle mass alone. This possibility is
supported by studies demonstrating that children with excess adiposity have lower bone
mass [56] and suboptimal bone structural parameters [65] relative to their body size, which
may contribute to the increased fracture risk observed in obese children [8-18] (Table 1).
Consistent with this possibility, several lines of evidence support the notion that muscle
forces and muscle-secreted factors (so-called “myokines”) can result in mechanical coupling
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and muscle-bone crosstalk, respectively, that both stimulate bone formation [2, 66].
Therefore, greater lean mass in obese children may having positive effects on the skeleton,
although in the case of severe obesity, excessive fat mass and in particular accumulation of
pathogenic fat, may attenuate these lean mass effects by negatively modifying bone
microarchitecture within trabecular and cortical compartments.

The potential adverse effects of excess adiposity on skeletal development may also be
skeletal site-specific, which led to the proposal that despite augmenting bone size, excessive
fat mass may in fact impair bone quality [51]. To test this premise, Farr et al. [67] used
HRpQCT in boys and girls (aged 8-15 years) and found that fat mass may have differential
associations with bone microarchitecture and bone strength (as assessed by micro-finite
element analysis [UFEA]) at non-weight-bearing versus weight-bearing (tibia) skeletal sites.
After adjusting for potential confounders, the relationship between fat mass and radial bone
strength was essentially non-existent, whereas positive (albeit weak) associations were
observed between fat mass and tibial bone strength. In addition and consistent with previous
studies, data from this same cohort of children clearly indicated that muscle mass is strongly
associated with both cortical and trabecular microarchitecture as well as pFEA-derived bone
strength at both the radius and tibia. Thus, these findings emphasized the importance of
muscle mass for optimizing bone microarchitecture and strength during childhood and
adolescence, and suggested that the strength of the distal radius does not commensurately
increase with excessive gains in fat mass during growth. Rather, this may result in a
mismatch between the strength of the radius and the load experienced by the distal forearm
during a fall, a load which is greater in obese individuals. Collectively, these observations
may at least in part explain why obese children are overrepresented in forearm fracture
groups (Table 1). Notwithstanding, while there is increasing concern that obesity may be
associated with the suboptimal development of bone strength, there is also a lack of
longitudinal data to support cross-sectional findings. Inevitably, there is a need for carefully
designed longitudinal studies using appropriate methodologies to definitively establish the
level at which excess adiposity may negatively affect pediatric skeletal integrity, and whether
any deficits that occur during periods of rapid skeletal growth are temporary or extend into
adulthood.

Longitudinal impact of fat mass on bone health during skeletal growth

Much of the information relating to the impact of excess fat mass on the developing skeleton
has come from amalgamating cross-sectional studies of obese children at different ages.
However, changes identified from cross-sectional studies may not necessarily reflect
changes that occur in skeletal development over time [68]. Generally, bone mass in
childhood is a strong predictor of bone status in young adulthood, a process termed
“tracking’ [69]. Greater gains in lean mass can improve bone mass gains during skeletal
maturation in excess of the normal predicted bone mass in adulthood. In contrast, excess fat
mass appears to limit the effect of lean mass on skeletal maturity or can negatively impact on
the normal tracking process of skeletal maturation [70]. At a microarchitectural level, greater
longitudinal gain in fat mass during puberty appears to negatively impact the cortex of the
appendicular skeleton with reductions observed in cortical BMD, thickness, and area at
increasing levels of fat mass [68, 71]. However, the same negative relationship between
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increasing adiposity and cortical or trabecular bone compartments does not appear to be
present in earlier childhood [72]. Others have suggested that fat mass positively predicts
either bone size in isolation [73], or improves bone size and mineral content independently
during early childhood [71]. Whatever the influence of fat mass on skeletal development,
bone mass and additionally bone strength are more strongly influenced by an increase in
lean mass in overweight children [64, 74]. However, stating that excess fat mass in
childhood has a negative or positive impact on skeletal development may well be overly
simplistic and outcomes may vary according to age and pubertal development. During the
first year of life, both fat and lean mass are associated with gain in total body BMC in both
sexes [75]. As children enter puberty, the positive relationship between fat mass and bone
appears to attenuate and then reverse [76], although this changing relationship may be
confined to females [68, 76]. Moreover, despite the age-related impact of fat mass in
females, menarche may modify this relationship, suggesting that hormonal changes during
puberty may additionally affect fat-skeletal interactions [68]. Others have suggested that the
negative impact of adiposity on skeletal development may happen prior to puberty [77, 78],
and that the negative impact of childhood and adolescent obesity on bone persists through
the post-pubertal years and into early adulthood [79].

The contradictory findings among studies may in part relate to the degree of childhood
adiposity, fat mass distribution, and metabolic profile. Longitudinal studies utilizing DXA

and pQCT indicate that a * fat mass threshold’ may exist in childhood at which the effects of
increasing fat mass change from positive to detrimental [68, 71] and that these changes may
predominate in the cortex [71]. However, the curvilinear relationship proposed between
escalating fat mass and bone may be confined to females [68, 71]. Co-morbidities relating to
obesity such as cardiovascular risk and the metabolic syndrome are more closely related to
an increase in visceral adiposity [80, 81]. Variation in the relationship between adiposity and
bone at different ages may also relate to fat distribution, a factor that is rarely considered in
pediatric studies. Cross-sectional studies in children assessing fat distribution in relation to
bone mass, architecture and strength demonstrate that android fat distribution or visceral fat
appears to be detrimental to bone with the greatest impact on the skeletal cortex [71, 82, 83].
Metabolic status may also influence findings relating to the fat-bone relationship in
childhood. For example, overweight prepubertal children with pre-diabetes have lower total
body BMC, compared to overweight children without pre-diabetes suggesting that the
metabolic consequences of escalating adiposity may unfavorably impact on bone mass
accrual at a critical stage of development [84].

The impact of bariatric surgery on bone health in adolescents

Adolescents who undergo Roux-en-Y gastric Bypass (RYGB) experience dramatic weight
loss, losing 58% to 73% of their excess weight by 1 year [85-87]. In the adult population,
bariatric surgery results in a reduction in BMC, area, and density particularly in relation to
malabsorptive procedures [88]. The relevance of the bone loss is debatable with some
suggesting that bone loss and reduction in BMD is detrimental [89, 90], while others suggest
that the reduction in bone mass with increase in bone turnover following bariatric surgery
equates to a normalization of bone following an adaptive gain in bone mass from the
increased in force from excessive weight gain [91, 92]. Bone loss results from a reduction of
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BMD in both the cortical and trabecular compartments and appears to develop centrally and
peripherally. After 24 months following gastric-bypass surgery, 5-10% bone loss is seen at
the hip and spine largely due to a reduction in trabecular vBMD, with the greatest decline
observed from 12—-24 months [93]. Micro-architectural changes at the distal tibia identified
by HRpQCT include a reduction in trabecular number, an increase in trabecular separation
with greater inhomogeneity within the trabecular envelope and cortical thinning [94].
Although a reduction in radial vBMD has been reported following gastric bypass surgery
[95], microarchitectural changes predominate in the tibia, suggesting that a reduction in
mechanical load is responsible for bone loss [94]. Moreover, bone loss at both peripheral
and central skeletal locations persists beyond the period of weight loss implying that
additional mechanisms may be responsible for bone loss following bariatric surgery that
include nutritional deficiencies, and alterations in adipokines and gut-derived appetite-
regulatory hormones [92]. Interestingly, the clinical impact of skeletal change following
bariatric surgery manifests later with an increase in fracture risk observed 3-years post-
operatively [96-98]. Vitamin D deficiency, hyperparathyroidism and calcium malabsorption
following malabsorptive procedures such as RYGB is of concern [99] particularly in a
background of vitamin D deficiency in obese patients pre-operatively [100]. However, across
clinical practice guidelines there remains lack of agreement as to the post-operative
supplementation of vitamin D with recommended doses ranging from 3000 IU daily to
50,000 IU 1-3 times weekly [101]. There are very few studies in adolescents assessing the
impact of profound weight loss on bone secondary to bariatric surgery. Rapid and marked
weight loss is related to a reduction in fat mass, as lean mass increases post-operatively
[102]. Importantly, adolescence and early adulthood are periods during which approximately
25% of total body bone mass is accrued. Thus a reduction in bone mass following bariatric
surgery could have profound short- and long-term effects on the developing skeleton.
Following RYGB, adolescents show a decline in whole-body BMC and BMD over a 2-year
period with weight partially accounting for this effect. The mean reduction in BMD z-score
over a 2-year period in two separate patient cohorts was 1.5 but age-adjusted Z-scores for
BMD and BMC remained within normal limits, thus suggesting that bone loss normalizes
with weight loss [102, 103]. Further work, however, is required to determine whether bone
loss continues beyond a 2-year period in adolescents leading to low bone mass, lower peak
bone mass in early adulthood, increased fracture risk in the short and long term, and to
understand the impact of microarchitectural changes in adolescents following bariatric
procedures.

mechanisms linking adiposity and bone during childhood

Multiple factors influence the accumulation of bone mineral during childhood and
adolescence, including heredity, gender, diet, physical activity, and the endocrine
environment. There is general agreement in the literature that exercise augments bone mass
[104, 105] either by a direct osteogenic action and/or augmenting muscle mass. Gains in
bone mass and relative bone strength are determined by the type of exercise, the timing in
relation to pubertal onset (with the greatest gains elicited if exercise is commenced prior to
puberty) and the intensity of the exercise [106, 107]. These changes are likely to result in
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skeletal adaptation which will be dependent on gender, pubertal stage, and degree of
adiposity.

The impact of childhood obesity on the endocrine environment

In children and adults with high level of visceral adiposity, physiological secretion of growth
hormone (GH) secretion is impaired which in turn may impact on bone mass accrual and
skeletal integrity [108—110] as GH promotes myogenesis and osteoblastogenesis and
regulates the hepatic generation of insulin-like growth factor 1 (IGF-1) which promotes
chondrogenesis at the growth plate and osteoblast proliferation and activity. IGF-1 also acts
indirectly to promote renal tubular reabsorption of phosphate and on the synthesis of
calcitriol [111]. Impaired GH secretion may be compounded by highly caloric low protein
diets in obese children that impacts on the synthesis of IGF-1 [112, 113].

Androgens stimulate the differentiation and proliferation of osteoblasts via androgen
receptors [114, 115], decrease osteoblast and osteocyte apoptosis, and indirectly and directly
modify osteoclastogenesis in favor of a reduction in bone resorption [116]. Indirectly,
androgens upregulate Transforming Growth FggtFfGF) and Insulin-like Growth

Factors (IGFs) promoting bone formation [117] and downregulate Interleukin 6 (IL-6); thus,
inhibiting osteoclastogenesis [118]. Higher levels of adrenal androgens are seen in obese
prepubertal children [119] and thus may in part account for the higher body size adjusted
bone mass that some have observed in this age group [55]. The subsequent onset of puberty
is usually closely preceded by an increase in adrenal androgens and pubertal growth
acceleration is reliant on the synergistic action of GH and androgens. Androgens can be
aromatized via the cytochrome P450 aromatase enzyme complexfrésttadiol. As fat

depots contain aromatase, childhood obesity may result in the increased aromatization of
testosterone and other androgens to estrogens [116]. During pubertal progression, levels of
testosterone and DHEAS appear to be higher in obese females [119]. Thus, although these
relationships are complex, adrenal androgens may have a more potent effect on pubertal
skeletal development in obese females, potentially contributing to sex differences in cortical
bone mass [55, 71].

Increased insulin production in obese children and adults may exert an anabolic effect on
bone. In response to physiological doses of insulin, cultured osteoblasts show increased
proliferation, collagen synthesis, alkaline phosphatase production, and glucose uptake [120]
and hyperinsulinaemia following insulin administration stimulates osteoblast activity and
increases mineral apposition rates in rats [121]. However, despite high bone mass in adults
with type 2 diabetes, bone quality is impaired and fracture risk is high suggesting that in the
hyperinsulinaemic state, bone quality is impaired [122, 123]. To date, there are no studies in
children to determine whether changes in skeletal * integrity’ secondary to hyperinsulinaemia
occur as a result of chronic exposure to high blood glucose and insulin resistance.

Childhood obesity, adipokines, and skeletal development

In addition to the impact of childhood obesity on hormones that direct physiological
function during growth and development, adipokines (hormones produced by fat) also
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influence skeletal development. Leptin is elevated in obese children and adultg B

and/n vivo studies suggest that leptin acts directly via osteoblast receptors on human

marrow stromal cells to promote osteoblast proliferation and differentiation [124], whilst
inhibiting adipocyte differentiation and osteoclatsogenesis through generation of
osteoprotegerin [124, 125]. In contrast vivo studies in tail-suspended rats demonstrate

that lower doses of leptin appear to be osteoprotective, but at higher doses bone loss is
increased by bone resorption and reduced bone formation [126]. Although complex, this

may explain why at levels of leptin associated with obesity in children, leptin appears to be
associated with a reduction in bone mass and trabecular thickness and an increase in cortical
porosity [127-129] whereas in cohorts of predominantly normal weight children, these
associations are not demonstrated [130-132]. The dose-dependent relationship between
leptin and bone thus mimics the curvilinear relationship observed between visceral adiposity
and cortical bone [71] and therefore may in part provide a mechanistic explanation for this
finding. Children with congenital leptin deficiency are profoundly overweight yet they

appear to have normal age and sex-related whole body BMD despite being hypogonadal and
having hyperparathyroidism [133, 134], which is further supported by a recent report of two
children with mutations in the leptin receptor demonstrated a high bone mass phenotype
[135]. Thus, findings in human mutations suggest leptin deficiency may be protective to the
developing skeleton. These findings also support findings from mouse models demonstrating
an anti-osteogenic indirect action of leptin on bone via hypothalamic pathways [136-138].
Conversely, despite adiponectin being produced by adipocytes it is lower in obesity.
Adiponectin deficiency in mice leads to a reduction in BMC and bone strength of the femur
and lumbar vertebrae [139] but in studies of both children and adults have shown that an
inverse relationship between adiponectin and total body and regional bone mass exists [140—
142]. Resistin can stimulate the proliferation of osteoblasts but has a more potent effect on
osteoclastogenesis by increasing the number of osteoclasts and activatingktBe NF-

promoter [143]. Visfatin is as a novel adipokine preferentially expressed in visceral adipose
tissue and can promote osteoblast proliferation and bone mineralization, but inhibits
osteoclast differentiation. Vaspin, Chimerin, and Omentin-1 also directly or indirectly affect
bone cell faten vitro [144].

Alterations in gut peptides

Peptide YY (PYY) is an anorexigenic peptide secreted primarily by endocrine L cells of the
distal gut. Levels of PYY increase after food intake and PYY promotes satiety by binding to
Y2 receptors of neuropeptide Y (NPY) within the hypothalamus and by inhibiting NPY
secretion. PYY-deficient mice (Pyy(-/-)) have osteopenia with a reduction in trabecular
bone mass and a deficit in bone strength. PYY levels are lower in obese adults and the
elevation of PYY seen after a meal in lean subjects is blunted in obesity [145, 146].
However, clinical studies have mainly focused on patients with anorexia nervosa and
amenorrhoeic athletes. PYY is elevated in these patient groups and is paradoxically
associated with a low bone mass [147]. Ghrelin, a gut-derived GH secretogogue that
promotes osteoblast proliferation via the growth hormone secretogogue receptor 1a (GHS-
R1a) is involved in energy homeostasis and is reduced in obesity. In healthy adolescent girls,
ghrelin positively predicts total body and regional BMC [148], but is a negative predictor of

Calcif Tissue IntAuthor manuscript; available in PMC 2018 May 01.



1duosnuep Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuen Joyiny

Farr and Dimitri

Page 11

BMC in obese post-menarcheal adolescent females [149]. However, ghrelin’ s influence on
bone mass may be isoform dependent, whereby acylated ghrelin may negatively impact on
bone mass in lean children whereas desacyl ghrelin positively predicts bone mass in obese
children [150].

Future directions

One of the clear challenges in determining the impact of fat and adiposity on the developing
skeleton is the ability to accurately determine 3-dimensional changes over time in bone
structure and to apply appropriate models to determine bone strength and assess fracture
risk. The advent of HRpQCT has allowed more accurate determination of cortical and
trabecular bone compartments that include measurements of trabecular separation, width,
and heterogeneity as well as cortical porosity and proxy measures of bone strength.
However, HRpQCT measurements are confined to the distal tibia and radius and thus may
not represent changes in other regions of the axial and appendicular skeleton. Further,
HRpQCT poses additional challenges in children as the site measured changes as children
grow, making comparative studies between different age groups challenging. Developments
in MR (magnetic resonance) skeletal imaging may provide alternative solutions in the future.
The recent use of MR ultrashort TE (UTE) has enabled the quantification of cortical bone
parameters [151, 152], including cortical bone water concentration [153] and cortical bone
porosity [154]. Additionally, analysis of textural features of MRI sequences using statistical
modelling provides information about the trabecular compartment which correlates closely
with HRpQCT parameters but requires further refinement and development beyond
peripheral skeletal sites [155].

The timing, rate and extent of changes in body composition appear to impact on skeletal
structure and geometric development. Future prospective studies of both weight-bearing and
non-weight-bearing skeletal sites are necessary to examine the site-specific differences in the
effects of fat on bone in males and females and whether the relationships between
subcutaneous and visceral adiposity and bone mechanics and microarchitectural parameters
influence fracture risk at specific skeletal sites. Similarly, whilst lean mass is clearly
associated with gains in bone mass and favorable changes in cortical and trabecular bone,
the mechanism(s) underpinning this change is not clear. Further work is required to
determine the role of myokines in skeletal development [156], the interaction of myokines
and adipokines, the relative composition of muscle in relation to skeletal phenotype and
change, and whether additional factors are responsible for a concomitant increase in muscle
and skeletal development.

Conclusions

There remains little resolution or agreement about the impact of obesity and adiposity on
skeletal development and the mechanisms underpinning these changes. Limitations in
imaging modalities, short duration of follow-up in longitudinal studies, and differences

among cohorts, may all contribute to confounding results. Nonetheless, a linear relationship
between increasing adiposity and skeletal development seems unlikely. Fat mass may confer
advantages to the developing cortical and trabecular bone compartments, provided that gains
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in fat mass are not excessive. However, when fat mass accumulation reaches excessive
levels, unfavorable metabolic changes may impede skeletal development. Mechanisms
underpinning these changes may relate to changes in the hormonal milieu, with adipokines
potentially playing a central role, but again findings have been confounded. In an era where
bariatric surgery is rapidly becoming a mainstay for treatment for morbid obesity in post-
pubertal adolescents, understanding the effect of excessive fat mass on the developing
skeleton and the subsequent risk of fracture is vital as the rapid weight loss may result in
profound skeletal alterations in both the short- and long-term. Changes in the relationship

between fat and bone also appear to be age and sex dependent. Clearly, more work is needed

to better understand the controversial impact of fat and obesity on skeletal development and
fracture risk during childhood.
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Table 1
Summary of some of the key studies examining the relationships of fat and obesity with bone parameters and fractures in children and adolescefits
»
Study Geographical Age, y; Sex Cases Controls 1° Skeletal Outcome / Purpose Summary of Key Findings 3
Area Fracture Assessment o
Goulding et al. Dunedin, New 3-15; F 100 DFF 100 non- DXA / Medical records  To determine associations of Girls with a DFF have lower bone -_%
1998; Zealand fracture bone density and adiposity with  density and higher adiposity vs their -
REF [8] recent history of DFF non-fracure peers
Goulding et al. 2000 Dunedin, New 10+£2.9;F 82 DFF 80 non- DXA / Medical records  To examine predictors of incident Girls with lower bone density and a
[REF 9] Zealand fracture fractures (over 4 years) during higher BMI were at increased risk of
childhood sustaining incident fractures
Skaggs et al. 2001; California, USA  4-15; F 50 DFF 50 non- CT / Medical records To examine bone macro- Girls with a DFF had smaller radial
[REF 10] fracture structural parameters in girls with bone size and higher adiposity vs the
arecent DFF non-fracture peers
Goulding et al. Dunedin, New  3-19; M 100 DFF 100 non- DXA / Medical records  To test whether boys with a DFF Boys with a DFF have lower aBMD
2001; Zealand fracture differ from non-fracture boys in ~ and higher adiposity vs their non-
[REF 11] bone density or adiposity fracture peers
Davidson et al. Dunedin, New  4-17; M 25 obese (BMI 25 NW DXA / Medical records  To compare risk of DFF in obese Obese boys were at significantly
2003; Zealand >95th) (BMI <85th) boys vs NW boys greater risk of DFF vs their NW peers|
[REF 12]
Goulding et al. Dunedin, New 5-19; F &M 90 children with None DXA / Medical records  To establish risks factor for Children with repeat DFFs have lower
2005; Zealand >2 DFFs repeat DFFs in children radial aBMD and higher adiposity
[REF 13]
Taylor et al. 2006;  Washington DC, 12 +2.8; 227 SO (BMI 128 NW DXA / Medical records  To examine the fracture risk in SO children had a greater prevalence
[REF 14] USA F&M >95th) SO children vs their NW peers of fractures vs their NW peers
Janicka et al. 2007; California, USA  13-21, 300 healthy adolescents and ~ CT / None Cross-sectional study of TBFM  TBFM was either not associated or
[REF 62] F&M young adults and vBMD/ bone structure at negatively associated with vBMD and
cortical and trabecular sites cortical bone structure
Pollock et al. 2007;  Athens, 18-19; F 115 late adolescents pQCT / None Cross-sectional study of After adjusting for covariates, includin
[REF 63] Georgia, USA stratified based on associations between % body fat muscle size, % body fat was
percentage body fat (normal and vBMD/ bone structural negatively associated with several
<32%; high 232%) parameters at the radius and tibia cortical bone structural parameters
Wetzsteon et al. British 9-11; F&M 445 children; 302 NW (BMI pQCT / None Longitudinal study of relationshipsin overweight children, indices of bon
2008; Columbia, < 75th) and 143 overweight between body composition and  strength adapted to greater lean mas:
[REF 64] Canada (BMI =85th) tibial parameters but did not adapt to excess body fat
Gilsanz e al. 2009; California, USA  15-25; F 100 healthy adolescents and CT / None Cross-sectional study of regional SF was positively associated with
[REF 82] young adults fat deposition on femoral bone whereas negative associations
structure/ strength were observed between VF and bone
Dimitri et al. 2010;  Sheffield, UK Obese = 12.1 52 obese (BMI 51 NW DXA / Medical records  To determine differential effects Children who were obese and had a
[REF 15] +2.9;NW = >99.6th BMI) of obesity on bone size/ mass history of fracture had smaller bones
106 +3.2; M accoring to fracture history as compared to their NW peers
Sayers et al. 2010; Southwest 14 £0.2; 3,914 children and DXA / None Cross-sectional study exploring  As children enter puberty, a positive
[REF 76] England, UK F&M adolescents relationships among sex, puberty, relationship between adiposity and
body composition, and hip indices of hip structure appeared to E
structure attenuate and then reverse, although "8
)
-
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Study Geographical Age, y; Sex Cases Controls 1° Skeletal Outcome / Purpose Summary of Key Findings
Area Fracture Assessment
this may have been confined to girls
Russell et al. 2010; Boston, 12-18; F 15 obese (BMI 15 NW DXA / None Cross-sectional study of Visceral adipose tissue was negativel
[REF 83] Massachusetts, 295th) (BMI 15th- associations between regional fat associated with veterbral bone densit
USA 85th) depots and vetebral bone in obese girls
Wey et al. 2012; South Dakota, 8-18; F&M 370 children and pQCT / None Longitudinal study of body Greater longitudinal gain in fat mass
[REF 68] USA adolescents composition and bone parmeters appeared to negatively impact the
at the radius and tibia cortex of the appendicular skeleton
Kessler et al. 2013; California, USA 2-19; F&M 913,178 children and None / Medical records  To investigate the relationship  Higher adiposity was associated with
[REF 16] adolescents between adiposity (higher BMI)  an increased risk of lower extremity
and lower limb fractures fractures
Fornari et al. 2013; 3 Centers in 5+25; 992 fracture None None / Medical records  To determine whether children Obese children were at higher risk of
[REF 17] California, USA F &M cases (230 LC with a higher BMI are at LC fractures (which are more severe
& 762 SC) increased risk for elbow fractures than SC fractures) vs their NW peers
Laddu et al. 2013;  Tucson, 8-13; F 260 children and pQCT / None Longitudinal study of TBFM or  Higher levels of central adiposity may
[REF 71] Arizona, USA adolescents central adiposity to weight- impair cortical bone development at
bearing bone parameters weight-bearing skeletal sites in girls
Farr et al. 2014; Rochester, 8-15;F &M 105w/ DFF 93 non- HRpQCT / Medical Cross-sectional study of TBFM to Adiposity was not related to radial
[REF 67] Minnesota, USA fracture records bone microarchitecture and bone parameters, but was positevely
strength at the radius and tibia associated with tibial bone parameter
Sabhaney et al. Vancouver & 9.5+4.2; 1078 w/ 1135 non- None / Medical records  To examine the relationship Overweight and obese children were
2014, Toronto, F&M fracture (316 fracture between BMI and risk of upper not at higher risk of limb fractures vs
[REF 18] Canada obese) and lower limb fracture their non-fracture peers

Key: F = Female; M = Male; BMI = body mass index; TBFM = total body fat mass; DFF = Distal forearm fracture; DXA = Dual-energy X-ray absorptiometry; pQCT = peripheral quantitative computed

tomography; HRpQCT = high-resolution pQCT; LC = lateral condyle; SC = supracondylar; SO = severly overweight; NW = normal weight.
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