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OPEN SAITO THEORY FOR A AND D SINGULARITIES
ALEXEY BASALAEV AND ALEXANDR BURYAK

ABSTRACT. A well-known construction of B. Dubrovin and K. Saito endows the parameter
space of a universal unfolding of a simple singularity with a Frobenius manifold structure. In
our paper we present a generalization of this construction for the singularities of types A and D,
that gives a solution of the open WDVV equations. For the A-singularity the resulting solution
describes the intersection numbers on the moduli space of r-spin disks, introduced recently in a
work of the second author, E. Clader and R. Tessler. In the second part of the paper we describe
the space of homogeneous polynomial solutions of the open WDVV equations associated to the
Frobenius manifolds of finite irreducible Coxeter groups.
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1. INTRODUCTION

Frobenius manifolds, introduced by B. Dubrovin in the early 90s, gave a geometric approach
to study solutions of the WDVV equations

PF PE PF PF

%% _ nv
(1.1) oteotbor o oror  orottot ororot

where F' = F(t',...,t") is an analytic function defined on some open subset M C CV, n =
(Nag) is an N x N symmetric non-degenerate matrix with complex coefficients, (n®%) := n~!
and we use the convention of sum over repeated Greek indices. The WDVV equations appear
in many areas of mathematics, including singularity theory and curve counting theories in
algebraic geometry. In Gromov—Witten theory the WDVV equations describe the structure of
primary Gromov—Witten invariants in genus 0 and naturally come from a certain relation in
the cohomology of the moduli space of stable curves.

]‘Sa7/87,y75SN’

Suppose that a function F' satisfies the WDVV equations together with the additional as-
sumption
PF B
o oteots P
The function F' defines a commutative product o on each tangent space 1T, M by
0 0 PF 6
S0 = )
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(1.2)

1<a,B<N.
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One can immediately see that the WDVV equations are equivalent to the associativity of this
product and property (1.2) means that the vector field é% is the unit. Omne can go in the
opposite direction and consider a manifold with a commutative, associative algebra structure
and a symmetric, non-degenerate bilinear form on each tangent space. Under certain conditions
such a manifold in special local coordinates, called the flat coordinates, can be described by
a solution F' of the WDVV equations, satisfying property (1.2). The conditions, needed for
the existence of a function F', were systematically studied by B. Dubrovin [Dub96, Dub99],
who called manifolds, satisfying these conditions, Frobenius manifolds. The function F is then
called a Frobenius manifold potential. The bilinear form is traditionally called a metric.

In his fundamental works [Sai82, Sai83] K. Saito constructed a flat metric on the parameter
space of a universal unfolding of any simple singularity. B. Dubrovin [Dub98] then proved that
together with a certain commutative, associative algebra structure on each tangent space this
metric defines a Frobenius manifold structure on the parameter space of the universal unfold-
ing. These Frobenius manifolds are often called the Saito Frobenius manifolds. Remarkably,
the same Frobenius manifolds appear in the study of the geometry of the moduli spaces of alge-
braic curves with certain additional structures, the so-called Fan—Jarvis-Ruan—Witten (FJRW)
theory [FJR13]. This is one of the manifestations of mirror symmetry.

In the same way, as the WDVV equations appeared in Gromov-Witten theory, another
system of non-linear PDEs, called the open WDV'V equations, appeared more recently in open
Gromov-Witten theory [HS12, Theorem 2.7] (see also [PST14, BCT18, BCT19]). Let F =
F(t, ..., tY) be a solution of the WDVV equations (1.1), satisfying condition (1.2). The open
WDVYV equations associated to I are the following PDEs for a function F° = Fo(t!,... ¢V s),
depending on an additional variable s:

(1.3)
PF |, PF°  9F° PF°  PF . 9PF° | 9F° 9PF°
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Solutions of equations (1.3), (1.4), relevant in open Gromov-Witten theory and also in the
works [PST14, BCT18, BCT19], satisfy the additional condition

2 170 2 o

(1.5) o =0, oF” —1

otlote Ot'os

The solutions of the open WDVV equations from the works [BCT18, BCT19] are associated

to the Saito Frobenius manifold of the A-singularity and they were constructed using ideas of

FJRW theory. So it is natural to ask whether the Dubrovin—Saito construction of the Frobenius

manifolds corresponding to simple singularities admits a generalization, that produces solutions

of the open WDVV equations. In our paper we present such a generalization for the singularities

of types A and D. For the A-singularity our construction gives a polynomial solution that

coincides with the one from [BCT18, BCT19]. For the D-singularity our solution has a simple
pole along the variable s.

Additionally, in both A- and D-cases our solution of the open WDVV equations has the
following remarkable feature. The Saito Frobenius manifold of a simple singularity has two
natural coordinate systems. The first one is given by the parameters of a universal unfolding
of a simple singularity. The second coordinate system is given by the flat coordinates of the
metric. We show that for the singularities A and D the transition functions between these two
coordinate systems coincide with the coefficients of powers of the variable s in the expansion
of our solution of the open WDVV equations.
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The Saito Frobenius manifolds of simple singularities together with their certain submanifolds
form a class of Frobenius manifolds, that is, via a construction of B. Dubrovin [Dub98], in a
natural bijection with the class of finite irreducible Coxeter groups (see also [Zub94]). This
class of Frobenius manifolds plays a fundamental role in the theory of Frobenius manifolds,
because of the following result of C. Hertling, conjectured by B. Dubrovin [Dub98]. Recall that
a Frobenius manifold potential F' is called homogeneous, if there exists a vector field E of the
form

N
(16) Z qata + r éja, qa,roz S Ca q1 = 1a
e
7E0t
such that
6F a B a
E(F)=FE*— gy =B-=90)F+ 2Aa5t t” 4+ Bat® 4+ C,  for some §, Ang, Ba, C € C.

The number ¢ is called the conformal dimension and the vector field E is called the Fuler vector
field. C. Hertling proved that any generically semisimple Frobenius manifold (see Section 2.1
for definition), whose potential is polynomial F e C[t',...,t"], and homogeneous with the
Euler vector field of the form E = g,t* ata , where ¢, > 0, can be expressed as the product of the
Frobenius manifolds corresponding to finite irreducible Coxeter groups [Hert02, Theorem 5.25].

In the second part of the paper we study the space of polynomial solutions of the open
WDVYV equations associated to the Frobenius manifolds of finite irreducible Coxeter groups.
Note that all solutions of the open WDVV equations, considered in the works [HS12, PST14,
BCT18, BCT19], are associated to a homogeneous Frobenius potential F' and, moreover, the
function F° satisfies the homogeneity condition

or° 1—-9§ 0F° 3-9§ ~ ~
(1.7) E® 5 + 5 = 5 F°+ D,t*+ Ds+ E, for some D,,D,FE € C.
We see that the degree of the variable s is determined by the conformal dimension of the
Frobenius manifold. We will call a solution of the open WDVV equations homogeneous, if it
satisfies condition (1.7).

In our paper we describe the space of homogeneous polynomial solutions of the open WDVV
equations associated to the Frobenius manifolds of all finite irreducible Coxeter groups. In
particular, we show that this space is non-empty only for the Coxeter groups Ay, By and I5(k).

Remark 1.1. Note that the Frobenius manifolds of finite irreducible Cozeter groups are gener-
ically semisimple and in [BB19, Section 6.2] we proved that for a homogeneous Frobenius man-
ifold potential a homogeneous solution of the open WDV'V equations always exists in a neigh-
bourhood of a semisimple point.

Our approach to study solutions of the open WDVV equations is based on the following
crucial observation of P. Rossi. Let F' = F(t',... t") be a Frobenius manifold potential and
Fo = Fo(tt,... tV,s) be a solution of the open WDVV equations satisfying (1.5). Then the
(N +1)-tuple of functions (771“37};, e gﬁ: , FO) forms a vector potential of a flat F-manifold.
This allows us to use the theory of flat F-manifolds to study solutions of the open WDVV

equations.

Remark 1.2. As it was noticed by the anonymous referee of our paper, there is a similarity be-
tween the open WDV'V equations and the Monge—Ampére equations. The referee also suggested
to view the system of equations (1.3), (1.4) for the function F° as a “nonlinear Laz pair” for
the system of equations (1.1) for the function F'. We think that these interesting observations
can become a starting point for future research.
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2. FLAT F-MANIFOLDS AND FROBENIUS MANIFOLDS

In this section we recall the definitions and the main properties of flat F-manifolds and
Frobenius manifolds. We also explain how solutions of the open WDVV equations correspond
to flat F-manifolds of special type.

2.1. Flat F-manifolds. The notion of a flat F-manifold was introduced in [Man05].

Definition 2.1. A flat F-manifold (M,V,0) is the datum of a complex analytic manifold M,
an analytic connection V in the tangent bundle TM, an algebra structure (T,M, o) with unit e
on each tangent space analytically depending on the point p € M such that the one-parameter
family of connections V + zo is flat and torsionless for any z € C, and Ve = 0.

For a flat F-manifold (M, V,o) consider flat coordinates t*, 1 < a < N, N = dim M, for
the connection V such that e = %. Then locally there exist analytic functions F(t!, ... tV),
1 < a < N, such that the second derivatives

o O?F°
give the structure constants for the multiplication o,
0 0 0

a8 "o~ P
From the associativity of the multiplication and the fact that the vector field % is the unit it
follows that
O?F° N
(2.2) i — 08 1<a,f<N,
OPF* OPFr 9PF 9PFH
OtPOtH OOt DOt DAL’

The N-tuple of functions (F,..., FY) is called the vector potential of our flat F-manifold.
Conversely, if M is an open subset of C¥ and F*',... , FY € O(M) are functions satis-

fying equations (2.2) and (2.3), then these functions define a flat F-manifold (M, V, o) with

the connection V, given by V_» =% = 0, and the multiplication o, given by the structure

constants (2.1).

(2.3)

1 Sauﬁaf}/uéSN'

Remark 2.2. Let M C CV be an open subset in the Zariski topology. The tangent spaces T,M
can be endowed with an algebra structure, algebraically depending on the point p € M, using
the following construction. Denote by O™8 the sheaf of algebraic functions on M. Let R be an
O&(M)-algebra, which is free as an O¥8(M)-module with a basis ¢1,...,én € R. Denote by
v1,...,0xN the standard coordinates on CN and by T]S}lg the algebraic tangent sheaf of M. Define
an isomorphism of O¥8(M)-modules U : THE(M) — R by \I!(a%i) .= ¢;. Thus, the sheaf T®
becomes a sheaf of OM¢-algebras that endows the tangent spaces T,M with an algebra structure
algebraically depending on the point p € M.

Remark 2.3. Consider an analytic manifold M with an algebra structure (T,M,o) on each
tangent space analytically depending on the point p € M. We see that a connection V, endowing
our manifold M with a flat F-manifold structure, can be completely described by a choice of
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coordinates t', ..., " on M such that the structure constants 3, of multiplication in these
coordinates satisfy the integrability condition

dcg, B 0cg,

ote ot

together with the condition cf 3 = 0F. In this paper we will construct flat F-manifolds exactly
by presenting flat coordinates as above.

A flat F-manifold (M, V, o) is called conformal, if it is equipped with a vector field E, called
the Fuler vector field, such that VVE = 0, [e, E] = e and Lg(o) = o. This means that in the
flat coordinates the Euler vector field E has the form

o « 8 o o (07 «
E=(q3t° +7*) 7=, q5.7*€C, qf =0f,

Tat '
and the vector potential (F!,..., FV) satisfies the condition
(2.4) e OFP 4 Fe 4 A%P + B, f A% B*eC
) S 43 5 , for some Aj, .
A point p € M of an N-dimensional flat F-manifold (M, V, o) is called semisimple if T,,M
has a basis of idempotents 7, ..., my satisfying 7, o m; = ;7. Moreover, locally around such
a point one can choose coordinates ' such that % o % = 6k,l%. These coordinates are called

the canonical coordinates. In particular, this means that the semisimplicity is an open property.
The flat F-manifold (M, V, o) is called semisimple, if a generic point of M is semisimple.

2.2. Frobenius manifolds. For a complex analytic manifold M we denote by Tj; the analytic
tangent sheaf of M.

Definition 2.4. A flat F-manifold (M,V,0) is called a Frobenius manifold if the tangent
spaces T,M are equipped with a symmetric non-degenerate bilinear form n analytically depend-
ing on the point p € M such that Vn = 0 and for any X,Y,Z € Ty the following condition is
satisfied:

n(XoY,Z)=n(X,Y oZ).

The connection V is then the Levi-Civita connection associated to the form n. A Frobenius
manifold will be denoted by the triple (M,n,0). The form n is traditionally called a metric.

Let (M,n,o) be a Frobenius manifold and consider the flat coordinates t!,... ¢ of the

metric 7 and the vector potential (£, ..., F'V). Then locally there exists an analytic function F'
such that F* = nof STI; and aﬂgi—fatﬁ = 7)o, Where (7),3) is the matrix of the form 7 in the

coordinates t!,...,tN. The function F satisfies the WDVV equations (1.1) and is called the
Frobenius manifold potential.

A Frobenius manifold (M,n,o) is called conformal if the corresponding flat F-manifold is
conformal and the metric 7 satisfies the condition

Lgn=(2—9)n, forsomed e C,

where L5 denotes the Lie derivative. The number ¢ is then called the conformal dimension of
the Frobenius manifold. The Frobenius manifold potential F' satisfies then the condition

1
E(F)=(3-0)F + §Aa5t"‘t5 + Bot* 4+ C,  for some Aug, B,,C € C.

In the theory of Frobenius manifolds it is typically assumed that one can choose flat coordinates
such that the matrix (%%) is diagonal and so the Euler vector field has form (1.6).
The papers [Dub96, Dub99] contain a systematic study of the theory of Frobenius manifolds.



6 ALEXEY BASALAEV AND ALEXANDR BURYAK

2.3. Extensions of flat F-manifolds and the open WDVYV equations. Consider a flat F-
manifold structure, given by a vector potential (F*, ..., F¥*1) on an open subset M x U € CN*1,
where M and U are open subsets of CV and C, respectively. Suppose that the functions
Fl ..., F"N don’t depend on the variable tV*!, varying in U. Then the functions F*,..., FN
satisfy equations (2.3) and, thus, define a flat F-manifold structure on M. In this case we call
the flat F-manifold structure on M x U an extension of the flat F-manifold structure on M.

Consider the flat F-manifold associated to a Frobenius manifold, given by a potential F'(t!,... tV)
O(M) and a metric n, F¢ = na“gﬁ, 1 < a < N. It is easy to check that a function

Fe(tt, ... tN,s) € O(M x U) satisfies equations (1.3), (1.4) and (1.5) if and only if the (N +1)-
tuple (F1,..., FN F°) is a vector potential of a flat F-manifold. Here we identify s = ¢V,
This defines a correspondence between solutions of the open WDV'V equations, satisfying prop-
erty (1.5), and flat F-manifolds, extending the Frobenius manifold given. This observation
belongs to Paolo Rossi.

3. SAITO FROBENIUS MANIFOLDS

In this section we recall the Dubrovin—Saito construction of a Frobenius manifold structure
on the parameter space of a universal unfolding of a simple singularity.
Let us first recall the list of polynomials defining simple singularities:

x.N+1 )
fay(z,y) = + %, N >1,
N+1
.TN_I )
foy(@.y) == T oy, N >4,
fes(z,y) =2* +¢°,
fe(x,y) =2y + o,

The associated local algebra is defined by

0 0
Aw = Clag] [ ().

where W is one of the types Ay, Dy or Eyn. Because z = y = 0 is an isolated critical
point of fy/, the local algebra Ay turns out to be a finite-dimensional vector space. Denote
dim Ay =: N. A universal unfolding of the singularity of fi is a function Ay : C2 x CNV — C
of the form

N
AVV(x)yavla"')vN):fW+Zvi¢i7 ¢Z€C[I,y],
=1

such that the classes of polynomials ¢4, ..., ¢x form a basis of the local algebra Ay,. Explicitly,
universal unfoldings of the ADE singularities are given by

N+ 1 +Z"Uk$ s

N- N-1
ADN:N 1—|—:1:y +Zvazk1—|—v1\;y,
k=1

Ag, = 2" + 4 + 01 + vox + v3y + V42 + VsTY + V27,
Ag, = 23y + y* 4+ v + vox + v3y + v4x? + vsaY + Ve + Vot
Ap, = x° + y3 + V1 + Vo + v3y + v4:1:2 + vsxy + v6x3 + v7x2y + vga:3y.
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Consider the quotient ring
./Zl\W = C[l’, Y, U, ... ,’UN]/ (awa, ayAw) .

As a Cluvy, ..., vy]-module, the space A\W has dimension N with a basis given by the classes
[61],...,[¢n] € Aw of the polynomials ¢1,...,¢y. Identifying the Clvy,. .., vy]-modules
’7@15 (CN) and Ay via the isomorphism Wy defined by
0
U — | = , 1<k<N,

w(p) =lod. 1=ks
by Remark 2.2, we endow the tangent spaces T,C" with a multiplication. The structure
constants of it are polynomials in the coordinates vy, ..., vy.

A flat metric can be introduced as follows. It is easy to see that there exist unique positive
rational numbers ¢, gy, ¢1, . .., gy such that

My o Ay
= Ay

There is a unique index 1 < [ < N such that the number ¢; is minimal. For the singularities Ay
and E'y we have [ = N and in the Dy-case we have [ = N — 1. Denote by (cv)ﬁj the structure
constants of multiplication on CV in the coordinates vy, ...,vy. Define a bilinear form 7y

on CV by
o 0
w (5 ) = s

This bilinear form together with the multiplication, introduced above, define a Frobenius mani-
fold structure on C¥, often called the Saito Frobenius manifold. It is semisimple and conformal
with an Euler vector field Ey, given by

al 0
Eyw = UV ——.
w ;(Ik k@vk

The conformal dimension is 6 =1 — ¢;.

Remark 3.1. The coordinates vy, ...,vy are not flat whenever N > 3.
There exist unique global flat coordinates t*(vy, ..., vy) on CV such that
t'(v1, ..., o) = v; + O(v?).
They satisfy the quasi-homogeneity condition
(3.1) Ew(t'(vi,...,on)) = qit'(vy, ..., oN),

and, hence, the Euler vector field in the flat coordinates ¢ is given by

N A a
i=1

The Frobenius manifold structure in the flat coordinates t' is described by a polynomial poten-

tial Fy,(tt, ..., t) € C[t, ..., t"], which we fix by requiring that it doesn’t contain monomials
of degree less than 3. Then the polynomial Fy, satisfies the condition
(3:2) Ew(Fw) = (3 —0)Fw.

Explicit formulas for the flat coordinates of the Saito Frobenius manifolds of simple singu-
larities are given in [NY98]. For the Ay-case the formula is

Zai—l o
1 v

t'y(vl,...,vN): E ]V—FT H (N—i—l—’y—k(N—Fl))ll:[[OZ", 1<y <N.
at,e,an>0 7 o v
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For the Dp-case the formula is
(3.3)

1 Eai—l Zai_Z vaal
v — _z _ 1)) 2 _
oy, ..on) = Y ( 2) I @v—1+2k® mHa@-!’ 1<y<N-1,
0{1,‘..,0(]\],120 k=0
> (N—i)a;=N—y
tN(vy, ..., o8) = vn.
Note that in this case the coordinates t!,...,t¥~! depend only on vy, ..., vn_1.

4. EXTENDED r-SPIN THEORY AND THE OPEN WDVYV EQUATIONS FOR THE
A-SINGULARITY

Here we explain how the Saito Frobenius manifold of the A-singularity together with a certain
solution of the open WDVV equations appear in the intersection theory on the moduli spaces
of algebraic curves.

Let r = N + 1. For integers 0 < ay, ..., a, <1 — 1, using the geometry of algebraic curves
with an r-spin structure, one can construct a cohomology class

N o — (T — 2
Wi (ar, ... o) € H* (Mo, Q), d= 2 r< ),
called Witten’s class, on the moduli space My, of stable curves of genus 0 with n marked points
(see e.g. [PPZ19]). Here we assume that the class W(, (a1, .., ay) is equal to zero, if d is not
an integer or d < 0. The class W&n(al, ..., ) vanishes, if one of the «;’s is equal to r — 1.
Consider the generating series

Frpm(t', .. 0771 = Z% Z ( [ W (aa,. . 7%)) Htaiﬂ.

n>3  0<ar,..,0n <r—2
The functions Fa, and F, ¢, are related by [JKVO01al
Fa (o ) = (=) 3 Fgpin (=)t .. (=r)tY).
This is one of the simplest cases of mirror symmetry. Denote

O Fy

<TO‘1"'TO‘R>AN::m 1§O{1,...,O{n<N.

)
t*=0

We have (see e.g. [LVX17, page 4])

(4'1) <T£¥17_a27_a3>AN = 5a1+a2+a3,N+27 <Ta17a27_0437a4>AN == min(ai -LN+1- ai)'

These formulas will be used later.

In [JKVO1b] the authors noticed that the construction of Witten’s class W, (au, ..., o) can
be extended to the case when a; = —1 and 0 < ay,...,a, < r — 1. In [BCT19] the authors
considered the generating series

n

ex r 1 T o
Fr—s;})in(tlﬂ"wt ) = E ,ﬁ E : (/./\/l W07n+1(—1,041,...,04n>> | | t i+
0,n+1

n>2 " 0<aq,...,an<r—1 i=1

and proved that it satisfies the open WDVV equations, associated to the potential F gpin,
together with property (1.5). Here one should identify ¢" = s. It occurs that after a simple
transformation the function F7%; also gives the generating series of intersection numbers on
the moduli space of 7-spin disks, introduced in [BCT18, Theorem 1.3].
Introduce a function F§ (t!,... NV s) by
F3, (th . Y s) o= (=) 2R (=)t (=) (—7)s).

r-spin
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Clearly, it satisfies the open WDVV equations, associated to Fa,, together with condition (1.5).
In [BCT18, Proposition 5.1 the authors found an explicit formula for the coefficients of FX

r-spin
that gives
J\© m+k—=2)1, if>" (N+2—a;)+k=N+2,
(Tar - - Tan0*)% = -
N 0, otherwise,
where we use the notation
n+k o
N i |
' Ax T Pt otendsk s
The first examples read?:
Bty 1
F a2 2
ST I Y
st tos? t2
F4 — +t
Ay — 12 + 5 + 118+ = 2
Py = tits  tty  #Ht3  1
2 2 2 4 60’
s> 383 t9s? 12
Fl =4+ ——+—+t+2)s+tats;
45 =90 T T3 T (1 2)5 23
2ty ts t3: 0 totity oty A3 S
Fa =22 fpgtoty 2 — 2428 8 784 4
a= "y Hhibtst g = 2 12 6 120
& tyst tys? 7t t
F§ =+ 2 4 2 (A4 2 ) 82 4 () + st 2 2 4oty
AT Ty T3 +<2+2>S Tt tgla)s £ 5+ 5 + bl
In [Burl8] the author proved that the coefficients of the function F§ — are related to the
expression of the coordinates vj, in the terms of the flat coordinates t',...,t" on the Saito
Frobenius manifold of the singularity Ay by
OF3. gN+1

N
(4.2) P + 3 sttt
k=1

5. GENERALIZED DUBROVIN—SAITO CONSTRUCTION FOR THE SINGULARITIES A AND D

In this section, for the singularites of types A and D we present a generalization of the
Dubrovin—Saito construction that produces a flat F-manifold that extends the Saito Frobenius
manifold and, therefore, gives a solution of the open WDVV equations. In the Ap-case this
solution coincides with the function F§ . In both A- and D-cases, the coefficients of powers
of the variable s in this solution coincide with the transition functions between two coordinate
systems on the Saito Frobenius manifold.

5.1. Ay-case. Consider the space ]\/[eXt := CN*! with coordinates vy, ..., vn41. Consider the
quotient ring

~
ext

Gy = Clz,y,w, vy, . .. ,UN+1]/ (w—0,Aay, 0Ny, T — VN W).

As a Clvy,...,vn11]-module, the space A\fj‘; is free of dimension N + 1, and the elements
(1], [],...,[zV 1], [w] form a basis. To show that any other element [zy/w"] can be expressed
in terms of them, first note that, obviously, [y] = 0 and [wz] = UN+1[w]. We also see that

(5.1) [w?] = [w (xNJrZ(k:— 1)kak2>] = <UN+1 +Z —1) vkaH) [w].

e follow the convention of B. Dubrovin and use variables with lower indices for the flat coordinates in
particular examples.
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Using the relation [zV] = [w] — 20 ,(k — 1)vg[#*7?], we can express any element [z?] with
p > N in terms of the elements [1], [z], ..., [V, [w].

Identifying the Clvy, ..., vxy1]-modules T]\Zlegxt (MZX) and Ae’“ via the isomorphism W4 de-
fined by

0 0
ext = k—1 < < ext =
pex <_(9vk> 571, 1<k<N, O (%m) [w],

by Remark 2.2, we endow the tangent spaces T,M§ e"t with a multiplication and, clearly, the
structure constants of it are polynomials in the coordmates Vly ooy UNIT-

Consider the flat coordinates t* = t*(vy,...,vy), 1 < a < N, the potential Fa, (¢!, ..., t")
of the Frobenius manifold of the singularity Ay and the function F§ , described in Section 4.
Theorem 5.1.

1. The coordinates t*(vi,...,vn), ..., tN(v1,...,vn) and tNT1 = vy together with the multi-
plicative structure on MFX, constructed above, define a flat F-manifold structure on MF.

2. The vector potential of this flat F-manifold is given by (77114‘;V 885? e ,nﬁﬁ%, FZN> , where

we identify s =tV

Proof. We denote by ( eXt)O‘ the structure constants of multiplication in the coordinates ¢!, ..., ¢tV *!

and by (c;X)3, the structure constants of multiplication in the coordinates vy, ..., vyy1.

In order to prove the theorem, we have to check the following equations:

PF,
ext N
(52) ,B'Y 2 77ANa#,‘atﬁat7 1§OZSN, 1§ﬁ77§N+17

82F
ext\N+1 _ An

Since the subspace Clvy, ..., vn11] ([w]) is an ideal in the ring AeXt and the quotient by this

1<o,B<N+1

ideal coincides with the ring A4 ~» we have

( ext)a (Cv)lt;lw lf 1 S a, b7 c S N,
c = ’
v he 0, if 1 < a < N and one of the indices b, ¢ is equal to N + 1.

This implies equation (5.2) and it remains to prove (5.3).
Suppose 1 < o < N and f = N + 1. Since [zw] = vy41[w], we have (¢
1 < k < N, and, therefore,

ext\N+1
” )k N+l UN+1 for

N 2
(VL = avk cextyN+1 Z Ay, R e (4.2) O"F3,
a,N+1 — ata Cy k N41 ota N+1 - ataatN+1 :
k=1
Suppose o« = = N + 1. Then we compute
2
xt\ N-+1 _/ ext\N41 eq.(5.1) k—2 €d.(4.2) 0°F3
(c° )N+1,N+1 = (c; )N+1,N+1 = UN+1+Z Dogoy s = a(tNHN)z'

Finally, if 1 < «, 8 < N, then from the associativity of the algebra eXt we get

N
ext\N+1/ ext\N+1 _ ext\N+1 ext\N+1 M ext\N+1
(c )a,g (c )N+1,N+1 = (¢ )a,N+1(C ),B,N+1_ E :Caﬁ(c )M,N-',-l'
p=1
i 1 e ] ; ext\N+1 82FO
Since the function F§  satisfies (1.4) and, as we have just proved, (¢™*)'{,; = sEaneT for
9%F§
: ext\N+1 _ AN
1 <7 < N+ 1, we obtain (¢™"),;" = 5mat- O
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5.2. Dy-case. Consider the space M,%X]E := CV x C* with coordinates vy, ...,vy,1. Consider
the quotient ring
A‘j:’,‘]tv = Clx,y,w,v1, ..., 08, UN11, vg,lﬂ]/ (w — UN+10:Apy, OyAp, , 2w — vjzvﬂw) )
As a Clvy,...,oN, N1, vj_vﬂrl]—module, the space ,Zl\‘j:’,‘]tv is free of dimension N + 1 with a basis
(1], [z], ..., [z 2], [y], [w]. To show that any other element [x'y/w"] can be expressed in terms
of them, first note that
2
UN v UN
(5.4) oy] = ——"[1),  [we] = TR w], [wy) = ———[w],
2 2 UN+1
where the last equation follows from the first two. Similarly to the Ay-case, we have
2 v, vk -« VN
(5.5) [w?] = 2N2+U%4+§:@—m%2k [w].
k=2
Using that [w — vy410.Ap,| = 0, we obtain
1 N-1
(5.6) lv*] = [w] = [ = D (k= Due[2*7).
UN+1 e
Multiplying this equation by [z], we get the relation
N-1
5.7 N-1 = % U_N _ k—1 k—1
(5.7 ¥ = P+ ] = 3= Dol
that allows to express any element [z?] with p > N —1 in terms of the elements [1], [z], ..., [V 7],
[yl [w].
Identifying the Clvy, ..., vy, Un41, Uy ]-modules T]\Zlegxt (Mp!) and eXt via the isomorphism W'
defined by

0 0 0
ext (7 ) ._ k-1 < k< o ext — ext —
v () = tsesvon w0 )mn w (G )=l

we endow the tangent spaces Tng’i@ with a multiplication and, clearly, the structure constants

of it belong to the ring Cluvy, ..., vn, Un41, v;,ﬁrl].
Consider the flat coordinates t* = t*(vy, ..., vy), 1 < a < N, and the potential Fp,, (¢!, ..., V)
of the Frobenius manifold of the singularity Dy. Let t¥*! := vy,; and define a function

Fp (', ... ") by

N-1 v ,UZk 1 U2N 1 2
Fo  .— Z kUN11 X N+1 1 UN
Dr < 2k-1(2k — 1) 2V"2(2N —1)(2N —2)  2uny
Theorem 5.2.

1. The coordinates t*(vy,...,un), ..., tN(vi,...,on) and tNTY = vy together with the multi-
plicative structure on ngg, constructed above, define a flat F-manifold structure on Me"t.

V; =V; (t*)

2. The vector potential of this flat F-manifold is given by (nDN agiN - ,ngfv‘ 8;[;1\’ , Fp >
Proof. We denote by (¢**)3, the structure constants of multiplication in the coordinates t', ..., #"¥*!
and by (¢ eXt)oﬁ‘7 the structure constants of multiplication in the coordinates vy, ..., vn11.

In order to prove the theorem, we have to check the following equations:

PP*Fp
ext N
(5.8) g, = E nDN@tﬂatﬁ(?tW 1<a<N, 1<8,vy<N+1,

a%%

ext\N+1 __
(59) (C )a,B _8t08tﬁ’

1<a,B<N+1




12 ALEXEY BASALAEV AND ALEXANDR BURYAK

Since the subspace Cluy, ..., vy, Uny1, Vs, ((w]) is an ideal in the ring eXt and the quotient

by this ideal coincides with the ring .»Zl\DN, we have

( ext)a (Cv)lc:w lf 1 S a, b7 c S N,
c = ’
v he 0, if 1 <a < N and one of the indices b, ¢ is equal to N + 1.

This implies equation (5.8) and it remains to prove (5.9).
We have two substantially different cases: the case a € {N,N + 1} or § € {N,N + 1} and
the case a, f € {1,2,...,N — 1}.

Case « € {N,N +1} or B € {N,N +1}. If a, 8 € {N, N + 1}, then (=)t = (¢=)NH1 and

B a,B
02F9, PFp N1 O°FD ’
Siors = Goaoe . The equation (¢;*), 5" = 3. o immediately follows from formulas (5.4), (5.5)
and (5.6).
fl<a<N-1and =N +1, then
N-1 N-1 2%—2 0
(NEL %(Cext)N-{-l a (54) Z Oug Vi _ 9 oFp, _ OPFp
a,N+1 — ote v k,N+1 ot to 9k—1 ote aUN+1 OteOtN+1°

Ifl1<a<N-—1andf =N, then

N-1 o o
(Cext)N+1 _ %( eXt>N+1 €q. (5 4) 0= 0 aFDN _ 62FDN

oN L gpe RN C Ot Quy oot
Case o, 5 € {1,2,.. — 1}. We have to check that
, N-1 2%k—1
( ext)N+1 _ 82‘FWDN Z ava avb ext N+1 82 UN+1
of T gteoth ote 8t5 Jas £ OtootP 26-1(2k — 1)

1<a,b<N—-1

that is equivalent to the equation

N-1 2%k—1
ov, O*t7 v
5.10 ext\N+1 _ _ N+1 1< b< N — 1.
(5.10) (€2 ) — 017 0, 0uy 2k-1(2k — 1)’ = @Y=
Let us compute the structure constants (cff‘t)i\f;l. Introduce polynomials wy € Qvy, ..., vy_1],
k >0, by
Y
Wy = Z st sy ! (Z%)', where s; := (1 —d)v; for 1 <i < N — 1.

N-1 Haz‘

at,...,an-12>0

PAN—i)a=k
The first few functions wy are
2 3
wo=1, w; =5Sy_1, We=5Ny_2+Sy_1, Ws=SN_3+ 2SN_25N_1+ Sn_1-

The functions wy, satisfy the recursion relation

(5.11) Wyl = Z SN—iWkt1-i, Kk >0,

where we adopt the convention w; := 0 for j < 0.

Lemma 5.3. For1 <a,b < N — 1 we have

a+b—N—1 2(a+b)—2N—1-2k

N 1 N+1
512 SRR PRE ek
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Proof. Equation (5.12) is equivalent to the following formula:

pN-1 2p-aN-1-2k
2) UN+1
(5.13) Coef [z~ E by N 2<p<2N -2,

where Coeff,j[27~?] denotes the coefficient of [w] in the expression for [zP~?] in terms of the
basis elements [1], [z],...,[zV 2], [y],[w]. For p < N formula (5.13) is obvious because both
sides of it are equal to zero.

Suppose p > N + 1. Multiplying both sides of equation (5.7) by [P~ ~1], we get the relation

2p—2N-1  N-1

v
Coefpy[17 7] = N2J;+N + Z s Coef [P TN 72,
k=1

that allows to compute the coefficients Coef [z ~?] recursively. Then, using also relation (5.11),
formula (5.13) can be easily proved by induction. O

Using the lemma, we see that equation (5.10) can be equivalently written as

a+b— 2(a+b)—2N—1-2k N-1 2k—1
S L, N P
Datb-N—k 1 Dugduy 25 1(2k — 1)
k=0 k=1
<:>N lw U?\fﬂl - _ - Ovy, Ot Uiz\fﬂl
p aHOmNTE ol £ Ot Ova0v, 281 (2k — 1)

So we have to prove that

vy Ot 2% — 1 o2t = 2k—1 ot
5.14 — = — atb_N_k < = — — Wb N—k—-
( ) ot Ov, 0y, 2 Watb-N—k 0v,0vy ; 2 Watb-N kavk
Recall that t7(vq,...,vn_1) is a quasi-homogeneous polynomial of degree N — ~, if we put

degv, = N —a. This implies that both sides of the last equation in (5.14) are zero if a+b < N.
Let us assume now that a +b > N + 1. The last equation in (5.14) is equivalent to

a—1

0%t ot Nlok 10 a1
0v,0vy, Z SN 28% 0 _Z 9 6’_vk wa+befk_ZsN7iwafi+befk .
=1 k=1

i=1

Note that for ¢ > a we have a —i 4+ b — N — k < 0 and, therefore, by (5.11), the expression
in the brackets is equal to zero unless k = a + b — N. So we come to the following equivalent
identity:

a—1

"y P 2a+b-—N)—1 I  1<aby<N-1,
Ov,0vy, N vy s0vy 2 Mgtrp_nN’ a+b>N+1.

(5.15)

Note that both sides of (5.15) are quasi-homogeneous polynomials of degree a +b—~y — N.

Differentiating both sides by %, putting v; = 0 and using formula (3.3), wee see that
1

equation (5.15) is equivalent to the followmg family of identities:

_%A<27—1+2(N ZO‘Z)"{'AZ _Z—laNZ:—A2(a+b;N)_1@

(5.16)

@A(—v— —-1) ZO‘H'Z —i—lDay_;+a+b— >:O,
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that should be true for any tuple aq,...,ay_1 > 0 such that

N-1

(5.17) > (N—i)as=a+b—7—N,

=1

and where A = (—%)zai 291 (95 — 1+ 2k(N —1)). Condition (5.17) implies that a; = 0,
if i < N—a. Therefore, the summatlon S9! in (5.16) can be replaced by the summation 211\511
and, using (5.17), we immediately see that the expression in the brackets in (5.16) vanishes.
This completes the proof of the theorem. O

Taking into account the discussion about the relation between solutions of the open WDVV
equations and flat F-manifolds from Section 2.3, we get the following result.
Corollary 5.4.
1. The function Fp,  satisfies the open WDVV equations together with condition (1.5) and the
quasi-homogeneity property

N
OFy  1-§ OFS 3-§
ata N N: FO .
;q gre T 2 5o 9 D

2. We have
2812k —1)Coef orn Fy , if 1 <k <N —1,

) =
Uk ) { /2Coef, 1 F3,, ifk=N

Example 5.5. Here are the Frobenius manifold potentials for the singularities Dy and Dy
together with the constructed solutions of the open WDV'V equations:

2ty tit2  tit? totst? 1 23 32 t
FD4:13+12—14—234——t§t3+23—34 3’
2 2 2 4 12 24 24 3360
s t3s® 2ty 3 tots 12
FO - _“ 3 a9 t _4
i~ 168 T 20 +(8 * 6)3 +(12+ > " 1)”25
Fp, — ity bt tt} N By bt} sttt G2 3] 3ty tot3t]  tatitE
2 2 6 6 4 4 8 24 16 8 8
tit;  tits 633 4

48 64 ' 160 ' 32256’

N T 2t 2 tsty 1o o tst? toty 12 t2
J A AILE AN (L7 NI T WO (7 SRC: L SR 2 IO S (L7 S L S 12 S B i
Ds 576+56+(16+20)8+(12+4+6 Stlpt Tty tath) sty

Note that Fp, and Fp_ have simple poles along s = 0. In particular, the dependence on s in
both cases is not polynomial.

6. POLYNOMIAL SOLUTIONS OF THE OPEN WDVYV EQUATIONS FOR FINITE IRREDUCIBLE
COXETER GROUPS

In this section we first recall a description of the Frobenius manifolds corresponding to finite
irreducible Coxeter groups, and then describe the space of homogeneous polynomial solutions
of the associated open WDV'V equations.

6.1. Frobenius manifolds of finite irreducible Coxeter groups. Finite Coxeter groups
are finite groups of linear transformations of a real N-dimensional vector space V', generated
by reflections. The complete list of finite irreducible Coxeter groups is given by (the dimension
of the space V' equals the subscript in the name of the group)

(61) ANaN 2 1 -DN7N Z 47 E67 E77 E87
(62) BNyN Z 27 F47 H37 H47 [2(k)7k Z 3a
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with the exceptional isomorphisms Ay = I5(3) and By = I5(4). By a construction of B. Dubrovin
[Dub98], for such a group W the complexified space of orbits My, := (V @ C)/W = CV carries
a Frobenius manifold structure. For the Coxeter groups Ay, Dy and Ey the corresponding
Frobenius manifolds coincide with the Saito Frobenius manifolds of simple singularities. By a
result of J.-B. Zuber [Zub94], the Frobenius manifold potentials corresponding to the remaining
irreducible Coxeter groups can be explicitly described by

(6.3) Fpy(th, .. ) =Fu,,  (t1,0,£%,0,... 771 0,tY),
Frut',t?) =Fa,_,(t',0,...,0,t?),
Fr, (t', 12,83 1) =Fg, (t4,0,12,1%,0,1%),
Fo, (t' %63, 1*) =Fg, (t*,0,1%,0,0,1*,0,tY),
Fi, (1,2 6%) =Fp, (t4,0,1%,0, 83, v/—112).

All the Frobenius manifolds corresponding to finite irreducible Coxeter groups are semisimple.

6.2. Euler vector field. We see that for any finite irreducible Coxeter group W, acting on
an N-dimensional real vector space V', the associated Frobenius manifold is described by the
polynomial potential Fyy (¢!, ..., ") satisfying the quasi-homogeneity condition

N
I3
Z aW (3—08)Fw, qa>0.

The numbers ¢y, . . ., v have the following interpretation. Consider the symmetric algebra S(V®
C). The subring S(V ® C)V of W-invariant polynomials is generated by N algebraically inde-
pendent homogeneous polynomials, whose degrees di,...,dy > 2 are uniquely determined by
the Coxeter group. The maximal degree h is called the Coxeter number of W. Then we have

d 9
L P
Qo =7y

h
Note that then in the homogeneity condition (1.7) for solutions of the open WDVV equations
the degree of the extra variable s becomes

1-0

1
2k
6.3. Homogeneous polynomial solutions of the open WDV'V equations. In this section
we describe the space of homogeneous polynomial solutions of the open WDVV equations
associated to the Frobenius manifolds of finite irreducible Coxeter groups. It occurs that for
the Coxeter groups different from Ay, By and I5(k) there are no such solutions. We prove
it in Section 6.3.1. For the groups Ay, By and I5(k) all solutions can be obtained from the
function Fj , as is explained in Section 6.3.2.

Consider an irreducible Coxeter group W, the potential Fy, and a homogeneous polynomial
solution F° of the open WDVV equations, satisfying (1.5). Note that equations (1.3)-(1.5)
involve only the second partial derivatives of F'” and that adding constant and linear terms in
the variables ¢, ...t and s to F° just changes the constants D,, D and E in condition (1.7).
If we remove constant and linear terms in the variables ¢!,...,#" and s from the function F°,
then it will satisfy the condition

Y OF° 1-§ OF° 3-
Z qol +

_ ro,
ote 2 " 0s 2

(6.4)

a=1
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6.3.1. Irreducible Cozeter groups different from Ay, By and I5(k).

Theorem 6.1. Let W be a finite irreducible Cozeter group different from Ay, By and I5(k).
Consider the corresponding Frobenius manifold potential Fy,. Then there are no homogeneous
polynomial solutions F° of the associated open WDVV equations satisfying property (1.5).

Proof. As we already explained above, we can assume that F° doesn’t contain constant and
linear terms in the variables t*,... #" and s and satisfies condition (6.4).

Let W be one of the groups Dy, Eg, E; or Eg. Let us rewrite equations (1.4) in the
coordinates vy, ...,vy and s:

oy PO PP OF O ot P, OF°PPF° PR OPF
v B ,0s  Ov,0vg 0 Ovg Oug 9tatB Ov, 02 va0s Qvgds’

1<a,B<N,

where (cv) denotes the structure constants of multiplication in the coordinates v,. Clearly,

T = 0. Since § > 0, we have 3% > 2132 This implies that %" =0
H lve=8=0 el
Therefore,
9 ( (e 92 Fo L0 (PF 9 ([ PF° PF°
- Cy _ - )
8?)7 aﬁavyﬁs Vs =5=0 81)7 avaavﬂ 0s” Vs =5=0 aU’Y 8Ua85 8Uﬁ85 V5 =5=0

for any indices 1 < a, 3,7 < N. We will prove that this equation can’t be true by finding
indices 2 < a, 3,7 < N such that

(e,
6.5 o) =0 — 2 = Ao, AecC
( ) (C )aﬁ V=0 ’ av’y ’ )
O?F° o ([ O*F° O*F°
(6.6) — 0, ( ) — 0.
0v,0vg Ov, \ Ov,0s Ovgds
Nk if1<k<N-1
C’aseI/V:DN,]\724.\?Vehaveéz%,12;‘s:maunqu:{]\7]\}7 %fk:N_ ’
2(N—1)7 W= A.
Let us choose a = 2 and § =~ = N. From B%ZN = 2zxy + vy we see that (%2 8fN = —%UN[%,
that implies the properties in line (6.5). We have
Lo N-2 N BN-4 ON-1 3.5 0 0
BPTINTNTI TN -1 20N—1) _2(N—-1) 2 Owdoy Ouwduyds
poo 170 2N 1 N4l 3-8 @
INT T TN TeaN—1)  2N—1) 2 003,95

that gives the properties in line (6.6). So the theorem is proved for the case W = Dy.

Case W = Eg. We have § = 5 12;5 = % and (q1,...,q5) = (1,%,%,%,%,%) Let us choose

« :5 =~ = 3. From gEG = 3y + v3 + Vs + vex? We see that 57— ai = é 3821 :,1) 56%2—
—v6 a , that implies the properties in line (6.5). We have 2q3 =3z > ig = 3%, implying
a;f; = 332%5 = 0, that gives the properties in line (6.6) and proves the theorem for W = Fj.

3 3

Case W = FE;. We have § = %, 1775 = % and (q1,...,q7) = (1,%,%,8,%,%,%) Choose

a=3,=4and v =2 From 8257 = 3z%y —i— Vg —i— 2047 + v5y + 3vgx? + 4vra® we see that
U7 av , that implies the properties in line (6.5).

0 o _ _1, o0 2, 06 _1, 0 _, 0
Ovs © Ovg 3U28v1 3U48v2 3U5 Ovs Uﬁav
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We have
11 19 3—9 O0*F°
BEU=g>35= 5 = Busd,
-4 3 3 — O3F°
e T R = Fdvads
1—9 25 3—-9 O3F°
Qo+ q+—=—=>— = 0,

2 0v9,0v40s -
that implies the properties in line (6.6). This proves the theorem for W = Ej.

Case W = Es. We have § = 12, 20 = L and (q1,...,¢s) = (1,%,%,2, %, 2, 4 L) Choose

oA
a=f=~=3 From 5= = 3y? + v3 + vsx + v72? 4 vgx® we see that 8%309%3 - —%vga%l —
%05% — %1;78%4 — %3“86%67 that implies the properties in line (6.5). We have 2¢3 = % > % = 3—;‘5,
implying %T? = % = 0, that completes the proof of the theorem for W = Ej.

For the groups Hs, Hy and F; we are going to use the explicit formulas for the corresponding
Frobenius potentials from the paper [Zub94]. Note that these potentials are related to the ones,
given by (6.3), by certain rescallings Fyy (¢!, ..., tN) — Fy(Ath, ..., AntY), \; € C*, but this
doesn’t affect our proof.

For the groups F; and H, the corresponding potentials, computed in [Zub94|, are

5 3T 135 tot3ty Uity U3ty 13t
Fp, = 4 34 2%4 2b3%4 3t4 24+14—|—t1t2t3,
185328 252 60 6 12 6 2
P t3t N t3t)? t343 et tot3t  t3th  t3tsth  totits  t3ty
Y 245764125000 1539000 10800 4950 360 120 20 6 20

3ty 3y
==+ ==+ tytats.
+6+2+123

Note that the equation
0 " 0*F° n 0 [ 0*F° 9*F° o (O?F° 9?°F°
R C - - - —_ -
Oty \ >?0t,0s Oty \ Ota20ty Os? o Oty \ Ota0s 0ta0s
where czﬂ are the structure constants of multiplication in the coordinates t,, can’t be true,

och O2F©°
, i = 0! and Wgtz = 0, that follows from (6.4).

For the group Hj the Frobenius manifold, computed in [Zub94], is

)
tx=5=0

ty=5=0 ty=8=

. _
because CQQLFO =0

1 1 1 1 ti!
Fy, = §t§t3 + bt 4 25 + gtgtg + 3

2 20 3960
The general form of a polynomial function F, (t1,t2, 13, s) satisfying (1.5) and (6.4) is
Ffy, = sty + costaty + cs s tals + 078 ta + oty + c5 sty + cas”ty + ¢35 15 + cas'ts + 15", ¢, € C.

Suppose that it satisfies equation (1.4) with o« = 3, § = 2. A direct computation shows that,
applying the derivative g—; to both sides of it, we get 2 on the left-hand side and 0 on the
2

right-hand side. This contradition proves the theorem for the case of the group Hs. O
6.3.2. Cozxeter groups Ay, By and Iy(k). Define
Fp (.. N, s) =Fg,  (t5,0,82,0,...,¢"71 0,V s), N > 2,
Fay(th,8%,5) :=F3__ (t,0,...,0,t%,s), k> 3.
Let F} = 2t's — Fp 4 and denote F7 g = F .

Note that if a function F°(t!,... ¢V s) satisfies the open WDVV equations, then the function
ATLEo(# .t X\s) also satisfies them for any A # 0. Moreover, if F°|,—q = 0, then the
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substitution (AT'F°(t!, ... ", \s))
equations.

‘/\:0 is well defined and is a solution of the open WDVV

Theorem 6.2. Let W be one of the groups Ax, By or Iy(k). Then all polynomial solutions F°
of the open WDV'V equations satisfying (1.5) and (6.4) are given by the family

(AR (.t Xs), AeCr, if W=Ay, N >2,
ARG (t Xs), ANeC, ifW=A,

ATUFG (N Xs), AeC, if W =By, N>2,
ATUFD g (8112, Xs), NeCH if W= ILk), k is odd,
AR (ik)(tl 2, \s), AeC, if W=IL(k), k is even.

FO

\

Proof. Case W = Ay. We have ¢, = Nﬁilo‘ and 0 = N+1 The case N = 1 is obvious. Suppose

that N > 2 and F* is a solution of the open WDVV equations, satisfying (1.5) and (6.4). For
an n-tuple @ = (aq, ..., ), 1 < a; < N, denote

o o 8n+kFo
(r0t)" = (T 7ea0) = G

t*=s=0
This number is non-zero only if k = k(@) .= N+2—->" (N +2— ;).
Note that
0, ifty>pg+1,
(6.7) =11, ity =B +1,
O(t*), if vy <p,

that follows from (4.1). Setting ¢* = 0 in equation (1.4) with o =2 and 2 < 5 < N, we get
(To0)" = (a — 1)! (<7’2 > )OC_1 , 2<a<N, (To7)° <0’N+2>0 = N! (<7’202>0)N

Differentiating equation (1.4) with a = 2 and § = N by a% and setting t* = s = 0, we get
—1+ (re7n)? (120%)” = 0, where we use formula (4.1) for the numbers (7o, Ta,Tas Tas) 4, - We see
that (120%)° # 0 and
(N2 = N1 ((r0?)*) "™ 2 0.
After the rescaling Fo(t',... tV, s) — XNLFo(tY, ...tV \s) with an appropriate constant
A # 0 we get (130°)° = 1 and, therefore,
(140’ = (0 — 1)1 = <Taa°‘>?4N , 1 <a<N, <O’N+2>O = N!= <UN+2>ZN )

Consider now an n-tuple @ = (aq,...,a,), 1 < o; < N, with n > 2 and k(@) > 0. Differ-

entiating equation (1.4) with @ = oy and = ay by % and setting t* = 0, we get the
recursion

(ract @)’ (7,0 -)° (7,04
(6.8) = ) - ¥

k@) (k(@r) = Dlk(@) -1t 4

(1a, 0@ (15 oF @)
k(@) (k(ay) —2)!

TUJ={1,...n}
1€l,2e] 1,261, J#0
where for a subset I = {i1,..., 4} C{1,...,n}, i1 <... <1, we denote oy : (%1,-~~,C¥z‘m)-
The correlators () 4, don’t appear in this recursion because for any subset I C {1,...,n} and

an index 1 < pu < N we have

Z(N+2—ozi)+(N+2—u)Si(N+2—ai)+(N+2—u)=

=2N+4—k(@)—pu<2N+4
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and, therefore, (75,7,), = 0. The recursion (6.8) determines all the numbers (Tao*@))°
starting from the numbers (¢V+?)” and (1,0%)°. So we conclude that F° = F§_.

Case W = By. We have ¢, = W and 0 = % The function Fg  satisfies the open WDVV
equations together with equations (1.5) and (6.4), because, as one can easily check using the
quasi-homogeneity of the function Fj3, —, the correlator (7o, ... 7Ta,7u) 4 vanishes, if all
the «;’s are odd and p is even.

Suppose that F° is a solution of the open WDV'V equations, satisfying (1.5) and (6.4). Since
Fp, = Fi,(4), we will consider the By-case together with the cases W = I,(k) later. So we assume
that N > 3. Note that a correlator (7o, . . .Tan0k>o vanishes unless Zi]il(N+1—ai)+§ = N+i1.
Setting t* = 0 in equation (1.4) with o = 2, we get the relations

2N -1

200—1\© (20& - 2)' 3\ 0y a—1
(ra0® )" == ((n0?)’) 7, 2<a<h,
o [e) 2N - 1 ' Jo) N
(raro)” (241 =B (o)) Y.
Differentiating equation (1.4) with « = 2 and § = N — 1 by % and setting t* = s = 0, we
get (T37n_17n) g, + (T27nv0)° = 0. Since, by (4.1), (37n_17n)p5, = —1, we conclude that
(ro7n0)? =1 and
ant1ye _ (2N —1)! 3\0\ N
(o = B D! gy,

Suppose that (r0%)° # 0, then (o?¥*1)” # 0. After the rescaling F°(t!,...,tV,s)
ATPEO(t!, .t Xs) with an appropriate constant A # 0 we get (1,077 1) = (1,07}
and (g2N+1)? = <02N+1>OBN. In the same way, as in the Ay-case, there is a recursion similar
to (6.8), that reconstructs all the correlators <7’a1 . .Tanak>o with n > 2. Therefore, F° = Fg_.

Suppose that (720°%)° = 0, then (¢?V*1)” = 0. Consider the decomposition

TaO

N
Fo=> P(t',... . tN)s* PoeClt, ... "]
k=0

Consider an index [ such that P, # 0 and P-; = 0. Since [ < N, the polynomial P, can’t be a
constant. Suppose [ > 0, then equation (1.4) implies that

oropr, 2 0P,

ot 9tf — 20+ 1" '9tedts’
The space of solutions of the differential equation (f)? = % ff" for a function f = f(x)
is formed by the family f = Ci(z + Cy)~%, C1,Cy € C*, together with the constant solution
f=0C, C eC. Since P, is a non-constant polynomial, we come to a contradition. Therefore,
[=0.

In this case system (1.4) is equivalent to the system
o 0P, 0Fy0F,

Botr ot otP’
For av = 2 we get the relations

P, oP, 9P, 0P,
S Y G =2, 2<A<N -1,

1<a,6<N.

1<a,B<N.

otP+1 ot ot2 oth’
1<y<p
that recursively determine all the derivatives % starting from the derivatives 282 = N

, ot
and % = 1. This completely determines the polynomial F,. We conclude that F° =

(ATFg (. Y A9,
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Case W = I1(k). We have ¢ = 1, ¢o = %, 0 = % and Frg) = (tlth + ak%, ap # 0.
The function Fy, ;, satisfies the open WDVV equations together with equations (1.5) and (6.4),
because (7o, .. Ta,Tu) 4, _, = 0, if oy € {1,k — 1} and p ¢ {1,k — 1} [Zub94, Section 1].

Note that if a function F° satisfies property (1.5), then all the open WDVV equations are
automatically satisfied except equation (1.4) with o = 5 = 2.

Suppose k = 21+ 1,1 > 1. A polynomial F°(t!, 2, s), satisfying (1.5) and (6.4), has the form

. I+1 g2l+2-2i ( 2)i
Fe=ts+ i - -,
s ;5(2z+2—2@)! il

B; € C.

Suppose that the open WDVV equations are satisfied. Equation (1.4) with o = f = 2 is
equivalent to

O*Froin) | O°F° 9*F°  (9°F°\* 0w
(23 T O(12)? Bs? o2s)

(tz)zz 1 I+1 g21+2-2i (t2>i—2 ! 21—2i (tZ)i
T Ty T (ZB’(QHQ 2)! (z—2)> (;ﬁl(m—m) il )

2l+1 21 (tQ)i—l 2
(Zﬁl 2+ 1 — 2i)! (z—l)) =0

The expression on the left-hand side of the last equation has the form S22 (#2)2 =2 P8y, . . ., Bi1),
where

Py = Qo1+1 + BB ’ P = Bl+1ﬁl—.i .
20-1)! (@-Dnw (I — D)L —4)!(20)!
and @); are polynomials in §;_;y1,...,3+1. We see that 5,17 # 0 and the equations P; = 0,
0 < ¢ < [, determine the coefficients [y, ..., in terms of the coefficient ;.. Thus, F° =
AT (2l+1)(z€1,t2, As) for some A # 0.
Suppose k = 2[, | > 2, and a polynomial F° satisfies the open WDVV equations together
with equations (1.5) and (6.4). Then F*° has the form

+Qi(ﬁl7i+la"'7ﬁl+l)7 1 Slgla

2l+1 21 (t2)z

Fo =t ;
S+Zﬁ 2 +1-2i) 4

9 B@E(C?

and equation (1.4) with a = § = 2 is equivalent to

(t2)21—2 l g2l+1-2i g2l—1-2i (t2)i
o ot (ZB’(21+1 2i) )(Zﬁ (20 —1—2i)! 4! )

2
2l 2 (t2>z 1 B
(Zﬁl 21 — 2i)! z—l)) =0

The expression on the left-hand side has the form S22 2(t2)2-271s% P,(f,, ..., £;), where

Qo) 5;2

T@—2)  (I-1)H?’
P, =:i6181—i + Qi(Bi—iz1s-- -, B1)s Vi =

P

20(i — 1) .
1<K
(-1 -y ='=7
and @); are polynomials in £;_;1,..., ;. We see that the equation Py = 0 determines (5, up to

a sign and then the equations P; = 0, 2 <1 <[, determine the coefficients Sy, ..., f;_o in terms

of B_1. Thus, F° = )\_IFIOZ’?;I) (t', %, \s) for some A. O
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