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OPEN SAITO THEORY FOR A AND D SINGULARITIES

ALEXEY BASALAEV AND ALEXANDR BURYAK

Abstract. A well-known construction of B. Dubrovin and K. Saito endows the parameter
space of a universal unfolding of a simple singularity with a Frobenius manifold structure. In
our paper we present a generalization of this construction for the singularities of types A and D,
that gives a solution of the open WDVV equations. For the A-singularity the resulting solution
describes the intersection numbers on the moduli space of r-spin disks, introduced recently in a
work of the second author, E. Clader and R. Tessler. In the second part of the paper we describe
the space of homogeneous polynomial solutions of the open WDVV equations associated to the
Frobenius manifolds of finite irreducible Coxeter groups.
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1. Introduction

Frobenius manifolds, introduced by B. Dubrovin in the early 90s, gave a geometric approach
to study solutions of the WDVV equations

∂3F

∂tα∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tδ
=

∂3F

∂tδ∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tα
, 1 ≤ α, β, γ, δ ≤ N,(1.1)

where F = F (t1, . . . , tN) is an analytic function defined on some open subset M ⊂ CN , η =
(ηαβ) is an N × N symmetric non-degenerate matrix with complex coefficients, (ηαβ) := η−1

and we use the convention of sum over repeated Greek indices. The WDVV equations appear
in many areas of mathematics, including singularity theory and curve counting theories in
algebraic geometry. In Gromov–Witten theory the WDVV equations describe the structure of
primary Gromov–Witten invariants in genus 0 and naturally come from a certain relation in
the cohomology of the moduli space of stable curves.

Suppose that a function F satisfies the WDVV equations together with the additional as-
sumption

∂3F

∂t1∂tα∂tβ
= ηαβ.(1.2)

The function F defines a commutative product ◦ on each tangent space TpM by

∂

∂tα
◦ ∂

∂tβ
:=

∂3F

∂tα∂tβ∂tγ
ηγδ

∂

∂tδ
, 1 ≤ α, β ≤ N.

Date: November 30, 2019.
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One can immediately see that the WDVV equations are equivalent to the associativity of this
product and property (1.2) means that the vector field ∂

∂t1
is the unit. One can go in the

opposite direction and consider a manifold with a commutative, associative algebra structure
and a symmetric, non-degenerate bilinear form on each tangent space. Under certain conditions
such a manifold in special local coordinates, called the flat coordinates, can be described by
a solution F of the WDVV equations, satisfying property (1.2). The conditions, needed for
the existence of a function F , were systematically studied by B. Dubrovin [Dub96, Dub99],
who called manifolds, satisfying these conditions, Frobenius manifolds. The function F is then
called a Frobenius manifold potential. The bilinear form is traditionally called a metric.

In his fundamental works [Sai82, Sai83] K. Saito constructed a flat metric on the parameter
space of a universal unfolding of any simple singularity. B. Dubrovin [Dub98] then proved that
together with a certain commutative, associative algebra structure on each tangent space this
metric defines a Frobenius manifold structure on the parameter space of the universal unfold-
ing. These Frobenius manifolds are often called the Saito Frobenius manifolds. Remarkably,
the same Frobenius manifolds appear in the study of the geometry of the moduli spaces of alge-
braic curves with certain additional structures, the so-called Fan–Jarvis–Ruan–Witten (FJRW)
theory [FJR13]. This is one of the manifestations of mirror symmetry.

In the same way, as the WDVV equations appeared in Gromov–Witten theory, another
system of non-linear PDEs, called the open WDVV equations, appeared more recently in open
Gromov–Witten theory [HS12, Theorem 2.7] (see also [PST14, BCT18, BCT19]). Let F =
F (t1, . . . , tN) be a solution of the WDVV equations (1.1), satisfying condition (1.2). The open
WDVV equations associated to F are the following PDEs for a function F o = F o(t1, . . . , tN , s),
depending on an additional variable s:

∂3F

∂tα∂tβ∂tµ
ηµν

∂2F o

∂tν∂tγ
+

∂2F o

∂tα∂tβ
∂2F o

∂s∂tγ
=

∂3F

∂tγ∂tβ∂tµ
ηµν

∂2F o

∂tν∂tα
+

∂2F o

∂tγ∂tβ
∂2F o

∂s∂tα
, 1 ≤ α, β, γ ≤ N,

(1.3)

∂3F

∂tα∂tβ∂tµ
ηµν

∂2F o

∂tν∂s
+

∂2F o

∂tα∂tβ
∂2F o

∂s2
=

∂2F o

∂s∂tβ
∂2F o

∂s∂tα
, 1 ≤ α, β ≤ N.

(1.4)

Solutions of equations (1.3), (1.4), relevant in open Gromov-Witten theory and also in the
works [PST14, BCT18, BCT19], satisfy the additional condition

∂2F o

∂t1∂tα
= 0,

∂2F o

∂t1∂s
= 1.(1.5)

The solutions of the open WDVV equations from the works [BCT18, BCT19] are associated
to the Saito Frobenius manifold of the A-singularity and they were constructed using ideas of
FJRW theory. So it is natural to ask whether the Dubrovin–Saito construction of the Frobenius
manifolds corresponding to simple singularities admits a generalization, that produces solutions
of the open WDVV equations. In our paper we present such a generalization for the singularities
of types A and D. For the A-singularity our construction gives a polynomial solution that
coincides with the one from [BCT18, BCT19]. For the D-singularity our solution has a simple
pole along the variable s.

Additionally, in both A- and D-cases our solution of the open WDVV equations has the
following remarkable feature. The Saito Frobenius manifold of a simple singularity has two
natural coordinate systems. The first one is given by the parameters of a universal unfolding
of a simple singularity. The second coordinate system is given by the flat coordinates of the
metric. We show that for the singularities A and D the transition functions between these two
coordinate systems coincide with the coefficients of powers of the variable s in the expansion
of our solution of the open WDVV equations.



OPEN SAITO THEORY FOR A AND D SINGULARITIES 3

The Saito Frobenius manifolds of simple singularities together with their certain submanifolds
form a class of Frobenius manifolds, that is, via a construction of B. Dubrovin [Dub98], in a
natural bijection with the class of finite irreducible Coxeter groups (see also [Zub94]). This
class of Frobenius manifolds plays a fundamental role in the theory of Frobenius manifolds,
because of the following result of C. Hertling, conjectured by B. Dubrovin [Dub98]. Recall that
a Frobenius manifold potential F is called homogeneous, if there exists a vector field E of the
form

E =
N∑

α=1

(qαt
α + rα)︸ ︷︷ ︸
=:Eα

∂

∂tα
, qα, r

α ∈ C, q1 = 1,(1.6)

such that

E(F ) = Eα ∂F

∂tα
= (3 − δ)F +

1

2
Aαβt

αtβ + Bαt
α + C, for some δ, Aαβ, Bα, C ∈ C.

The number δ is called the conformal dimension and the vector field E is called the Euler vector

field. C. Hertling proved that any generically semisimple Frobenius manifold (see Section 2.1
for definition), whose potential is polynomial, F ∈ C[t1, . . . , tN ], and homogeneous with the
Euler vector field of the form E = qαt

α ∂
∂tα

, where qα > 0, can be expressed as the product of the
Frobenius manifolds corresponding to finite irreducible Coxeter groups [Hert02, Theorem 5.25].

In the second part of the paper we study the space of polynomial solutions of the open
WDVV equations associated to the Frobenius manifolds of finite irreducible Coxeter groups.
Note that all solutions of the open WDVV equations, considered in the works [HS12, PST14,
BCT18, BCT19], are associated to a homogeneous Frobenius potential F and, moreover, the
function F o satisfies the homogeneity condition

Eα∂F
o

∂tα
+

1 − δ

2
s
∂F o

∂s
=

3 − δ

2
F o + Dαt

α + D̃s + E, for some Dα, D̃, E ∈ C.(1.7)

We see that the degree of the variable s is determined by the conformal dimension of the
Frobenius manifold. We will call a solution of the open WDVV equations homogeneous, if it
satisfies condition (1.7).

In our paper we describe the space of homogeneous polynomial solutions of the open WDVV
equations associated to the Frobenius manifolds of all finite irreducible Coxeter groups. In
particular, we show that this space is non-empty only for the Coxeter groups AN , BN and I2(k).

Remark 1.1. Note that the Frobenius manifolds of finite irreducible Coxeter groups are gener-

ically semisimple and in [BB19, Section 6.2] we proved that for a homogeneous Frobenius man-

ifold potential a homogeneous solution of the open WDVV equations always exists in a neigh-

bourhood of a semisimple point.

Our approach to study solutions of the open WDVV equations is based on the following
crucial observation of P. Rossi. Let F = F (t1, . . . , tN) be a Frobenius manifold potential and
F o = F o(t1, . . . , tN , s) be a solution of the open WDVV equations satisfying (1.5). Then the
(N +1)-tuple of functions

(
η1µ ∂F

∂tµ
, . . . , ηNµ ∂F

∂tµ
, F o

)
forms a vector potential of a flat F-manifold.

This allows us to use the theory of flat F-manifolds to study solutions of the open WDVV
equations.

Remark 1.2. As it was noticed by the anonymous referee of our paper, there is a similarity be-

tween the open WDVV equations and the Monge–Ampére equations. The referee also suggested

to view the system of equations (1.3), (1.4) for the function F o as a “nonlinear Lax pair” for

the system of equations (1.1) for the function F . We think that these interesting observations

can become a starting point for future research.
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2. Flat F-manifolds and Frobenius manifolds

In this section we recall the definitions and the main properties of flat F-manifolds and
Frobenius manifolds. We also explain how solutions of the open WDVV equations correspond
to flat F-manifolds of special type.

2.1. Flat F-manifolds. The notion of a flat F-manifold was introduced in [Man05].

Definition 2.1. A flat F-manifold (M,∇, ◦) is the datum of a complex analytic manifold M ,

an analytic connection ∇ in the tangent bundle TM , an algebra structure (TpM, ◦) with unit e
on each tangent space analytically depending on the point p ∈ M such that the one-parameter

family of connections ∇ + z◦ is flat and torsionless for any z ∈ C, and ∇e = 0.

For a flat F-manifold (M,∇, ◦) consider flat coordinates tα, 1 ≤ α ≤ N , N = dimM , for
the connection ∇ such that e = ∂

∂t1
. Then locally there exist analytic functions F α(t1, . . . , tN),

1 ≤ α ≤ N , such that the second derivatives

cαβγ =
∂2F α

∂tβ∂tγ
(2.1)

give the structure constants for the multiplication ◦,

∂

∂tβ
◦ ∂

∂tγ
= cαβγ

∂

∂tα
.

From the associativity of the multiplication and the fact that the vector field ∂
∂t1

is the unit it
follows that

∂2F α

∂t1∂tβ
= δαβ , 1 ≤ α, β ≤ N,(2.2)

∂2F α

∂tβ∂tµ
∂2F µ

∂tγ∂tδ
=

∂2F α

∂tγ∂tµ
∂2F µ

∂tβ∂tδ
, 1 ≤ α, β, γ, δ ≤ N.(2.3)

The N -tuple of functions (F 1, . . . , FN) is called the vector potential of our flat F-manifold.
Conversely, if M is an open subset of CN and F 1, . . . , FN ∈ O(M) are functions satis-

fying equations (2.2) and (2.3), then these functions define a flat F-manifold (M,∇, ◦) with
the connection ∇, given by ∇ ∂

∂tα

∂
∂tβ

= 0, and the multiplication ◦, given by the structure

constants (2.1).

Remark 2.2. Let M ⊂ CN be an open subset in the Zariski topology. The tangent spaces TpM
can be endowed with an algebra structure, algebraically depending on the point p ∈ M , using

the following construction. Denote by Oalg the sheaf of algebraic functions on M . Let R be an

Oalg(M)-algebra, which is free as an Oalg(M)-module with a basis φ1, . . . , φN ∈ R. Denote by

v1, . . . , vN the standard coordinates on CN and by T alg
M the algebraic tangent sheaf of M . Define

an isomorphism of Oalg(M)-modules Ψ: T alg
M (M) → R by Ψ( ∂

∂vi
) := φi. Thus, the sheaf T alg

M

becomes a sheaf of Oalg-algebras that endows the tangent spaces TpM with an algebra structure

algebraically depending on the point p ∈ M .

Remark 2.3. Consider an analytic manifold M with an algebra structure (TpM, ◦) on each

tangent space analytically depending on the point p ∈ M . We see that a connection ∇, endowing

our manifold M with a flat F-manifold structure, can be completely described by a choice of
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coordinates t1, . . . , tN on M such that the structure constants cαβγ of multiplication in these

coordinates satisfy the integrability condition

∂cαβγ
∂tσ

=
∂cαβσ
∂tγ

together with the condition cα1,β = δαβ . In this paper we will construct flat F -manifolds exactly

by presenting flat coordinates as above.

A flat F-manifold (M,∇, ◦) is called conformal, if it is equipped with a vector field E, called
the Euler vector field, such that ∇∇E = 0, [e, E] = e and LE(◦) = ◦. This means that in the
flat coordinates the Euler vector field E has the form

E = (qαβ t
β + rα)

︸ ︷︷ ︸
=:Eα

∂

∂tα
, qαβ , r

α ∈ C, qα1 = δα1 ,

and the vector potential (F 1, . . . , FN) satisfies the condition

Eµ∂F
α

∂tµ
= qαβF

β + F α + Aα
βt

β + Bα, for some Aα
β , B

α ∈ C.(2.4)

A point p ∈ M of an N -dimensional flat F-manifold (M,∇, ◦) is called semisimple if TpM
has a basis of idempotents π1, . . . , πN satisfying πk ◦ πl = δk,lπk. Moreover, locally around such
a point one can choose coordinates ui such that ∂

∂uk ◦ ∂
∂ul = δk,l

∂
∂uk . These coordinates are called

the canonical coordinates. In particular, this means that the semisimplicity is an open property.
The flat F-manifold (M,∇, ◦) is called semisimple, if a generic point of M is semisimple.

2.2. Frobenius manifolds. For a complex analytic manifold M we denote by TM the analytic
tangent sheaf of M .

Definition 2.4. A flat F-manifold (M,∇, ◦) is called a Frobenius manifold if the tangent

spaces TpM are equipped with a symmetric non-degenerate bilinear form η analytically depend-

ing on the point p ∈ M such that ∇η = 0 and for any X, Y, Z ∈ TM the following condition is

satisfied:

η(X ◦ Y, Z) = η(X, Y ◦ Z).

The connection ∇ is then the Levi-Civita connection associated to the form η. A Frobenius

manifold will be denoted by the triple (M, η, ◦). The form η is traditionally called a metric.

Let (M, η, ◦) be a Frobenius manifold and consider the flat coordinates t1, . . . , tN of the
metric η and the vector potential (F 1, . . . , FN). Then locally there exists an analytic function F

such that F α = ηαβ ∂F
∂tβ

and ∂3F
∂t1∂tα∂tβ

= ηαβ, where (ηαβ) is the matrix of the form η in the
coordinates t1, . . . , tN . The function F satisfies the WDVV equations (1.1) and is called the
Frobenius manifold potential.

A Frobenius manifold (M, η, ◦) is called conformal if the corresponding flat F-manifold is
conformal and the metric η satisfies the condition

LEη = (2 − δ)η, for some δ ∈ C,

where LE denotes the Lie derivative. The number δ is then called the conformal dimension of
the Frobenius manifold. The Frobenius manifold potential F satisfies then the condition

E(F ) = (3 − δ)F +
1

2
Aαβt

αtβ + Bαt
α + C, for some Aαβ, Bα, C ∈ C.

In the theory of Frobenius manifolds it is typically assumed that one can choose flat coordinates
such that the matrix

(
∂Eα

∂tβ

)
is diagonal and so the Euler vector field has form (1.6).

The papers [Dub96, Dub99] contain a systematic study of the theory of Frobenius manifolds.
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2.3. Extensions of flat F-manifolds and the open WDVV equations. Consider a flat F-
manifold structure, given by a vector potential (F 1, . . . , FN+1) on an open subset M × U ∈ CN+1,
where M and U are open subsets of CN and C, respectively. Suppose that the functions
F 1, . . . , FN don’t depend on the variable tN+1, varying in U . Then the functions F 1, . . . , FN

satisfy equations (2.3) and, thus, define a flat F-manifold structure on M . In this case we call
the flat F-manifold structure on M × U an extension of the flat F-manifold structure on M .

Consider the flat F-manifold associated to a Frobenius manifold, given by a potential F (t1, . . . , tN) ∈
O(M) and a metric η, F α = ηαµ ∂F

∂tµ
, 1 ≤ α ≤ N . It is easy to check that a function

F o(t1, . . . , tN , s) ∈ O(M×U) satisfies equations (1.3), (1.4) and (1.5) if and only if the (N +1)-
tuple (F 1, . . . , FN , F o) is a vector potential of a flat F-manifold. Here we identify s = tN+1.
This defines a correspondence between solutions of the open WDVV equations, satisfying prop-
erty (1.5), and flat F-manifolds, extending the Frobenius manifold given. This observation
belongs to Paolo Rossi.

3. Saito Frobenius manifolds

In this section we recall the Dubrovin–Saito construction of a Frobenius manifold structure
on the parameter space of a universal unfolding of a simple singularity.

Let us first recall the list of polynomials defining simple singularities:

fAN
(x, y) =

xN+1

N + 1
+ y2, N ≥ 1,

fDN
(x, y) =

xN−1

N − 1
+ xy2, N ≥ 4,

fE6
(x, y) =x4 + y3,

fE7
(x, y) =x3y + y3,

fE8
(x, y) =x5 + y3.

The associated local algebra is defined by

AW := C[x, y]

/(
∂fW
∂x

,
∂fW
∂y

)
,

where W is one of the types AN , DN or EN . Because x = y = 0 is an isolated critical
point of fW , the local algebra AW turns out to be a finite-dimensional vector space. Denote
dimAW =: N . A universal unfolding of the singularity of fW is a function ΛW : C2 × CN → C

of the form

ΛW (x, y, v1, . . . , vN) = fW +
N∑

i=1

viφi, φi ∈ C[x, y],

such that the classes of polynomials φ1, . . . , φN form a basis of the local algebra AW . Explicitly,
universal unfoldings of the ADE singularities are given by

ΛAN
=

xN+1

N + 1
+ y2 +

N∑

k=1

vkx
k−1,

ΛDN
=

xN−1

N − 1
+ xy2 +

N−1∑

k=1

vkx
k−1 + vNy,

ΛE6
= x4 + y3 + v1 + v2x + v3y + v4x

2 + v5xy + v6x
2y,

ΛE7
= x3y + y3 + v1 + v2x + v3y + v4x

2 + v5xy + v6x
3 + v7x

4,

ΛE8
= x5 + y3 + v1 + v2x + v3y + v4x

2 + v5xy + v6x
3 + v7x

2y + v8x
3y.
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Consider the quotient ring

ÂW := C[x, y, v1, . . . , vN ]/ (∂xΛW , ∂yΛW ) .

As a C[v1, . . . , vN ]-module, the space ÂW has dimension N with a basis given by the classes

[φ1], . . . , [φN ] ∈ ÂW of the polynomials φ1, . . . , φN . Identifying the C[v1, . . . , vN ]-modules

T alg
CN (CN) and ÂW via the isomorphism ΨW defined by

ΨW

(
∂

∂vk

)
:= [φk] , 1 ≤ k ≤ N,

by Remark 2.2, we endow the tangent spaces TpC
N with a multiplication. The structure

constants of it are polynomials in the coordinates v1, . . . , vN .
A flat metric can be introduced as follows. It is easy to see that there exist unique positive

rational numbers qx, qy, q1, . . . , qN such that

qxx
∂ΛW

∂x
+ qyy

∂ΛW

∂y
+

N∑

k=1

qkvk
∂ΛW

∂vk
= ΛW .

There is a unique index 1 ≤ l ≤ N such that the number ql is minimal. For the singularities AN

and EN we have l = N and in the DN -case we have l = N − 1. Denote by (cv)
k
i,j the structure

constants of multiplication on CN in the coordinates v1, . . . , vN . Define a bilinear form ηW
on CN by

ηW

(
∂

∂vi
,
∂

∂vj

)
:= (cv)

l
i,j.

This bilinear form together with the multiplication, introduced above, define a Frobenius mani-
fold structure on CN , often called the Saito Frobenius manifold. It is semisimple and conformal
with an Euler vector field EW given by

EW =
N∑

k=1

qkvk
∂

∂vk
.

The conformal dimension is δ = 1 − ql.

Remark 3.1. The coordinates v1, . . . , vN are not flat whenever N ≥ 3.

There exist unique global flat coordinates ti(v1, . . . , vN) on CN such that

ti(v1, . . . , vN) = vi + O(v2∗).

They satisfy the quasi-homogeneity condition

EW (ti(v1, . . . , vN)) = qit
i(v1, . . . , vN),(3.1)

and, hence, the Euler vector field in the flat coordinates ti is given by

EW =
N∑

i=1

qit
i ∂

∂ti
.

The Frobenius manifold structure in the flat coordinates ti is described by a polynomial poten-
tial FW (t1, . . . , tN) ∈ C[t1, . . . , tN ], which we fix by requiring that it doesn’t contain monomials
of degree less than 3. Then the polynomial FW satisfies the condition

EW (FW ) = (3 − δ)FW .(3.2)

Explicit formulas for the flat coordinates of the Saito Frobenius manifolds of simple singu-
larities are given in [NY98]. For the AN -case the formula is

tγ(v1, . . . , vN) =
∑

α1,...,αN≥0∑
(N+2−i)αi=N+2−γ

1

N + 1 − γ

∑
αi−1∏

k=0

(N + 1 − γ − k(N + 1))

∏
vαi

i∏
αi!

, 1 ≤ γ ≤ N.
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For the DN -case the formula is

tγ(v1, . . . , vN) =
∑

α1,...,αN−1≥0∑
(N−i)αi=N−γ

(
−1

2

)∑
αi−1

∑
αi−2∏

k=0

(2γ − 1 + 2k(N − 1))

∏
vαi

i∏
αi!

, 1 ≤ γ ≤ N − 1,

(3.3)

tN(v1, . . . , vN) = vN .

Note that in this case the coordinates t1, . . . , tN−1 depend only on v1, . . . , vN−1.

4. Extended r-spin theory and the open WDVV equations for the

A-singularity

Here we explain how the Saito Frobenius manifold of the A-singularity together with a certain
solution of the open WDVV equations appear in the intersection theory on the moduli spaces
of algebraic curves.

Let r = N + 1. For integers 0 ≤ α1, . . . , αn ≤ r − 1, using the geometry of algebraic curves
with an r-spin structure, one can construct a cohomology class

W r
0,n(α1, . . . , αn) ∈ H2d(M0,n,Q), d =

∑
αi − (r − 2)

r
,

called Witten’s class, on the moduli space M0,n of stable curves of genus 0 with n marked points
(see e.g. [PPZ19]). Here we assume that the class W r

0,n(α1, . . . , αn) is equal to zero, if d is not
an integer or d < 0. The class W r

0,n(α1, . . . , αn) vanishes, if one of the αi’s is equal to r − 1.
Consider the generating series

Fr-spin(t1, . . . , tr−1) :=
∑

n≥3

1

n!

∑

0≤α1,...,αn≤r−2

(∫

M0,n

W r
0,n(α1, . . . , αn)

)
n∏

i=1

tαi+1.

The functions FAN
and Fr-spin are related by [JKV01a]

FAN
(t1, . . . , tN) = (−r)−3Fr-spin((−r)t1, . . . , (−r)tN).

This is one of the simplest cases of mirror symmetry. Denote

〈τα1
. . . ταn

〉AN
:=

∂nFAN

∂tα1 . . . ∂tαn

∣∣∣∣
t∗=0

, 1 ≤ α1, . . . , αn ≤ N.

We have (see e.g. [LVX17, page 4])

〈τα1
τα2

τα3
〉AN

= δα1+α2+α3,N+2, 〈τα1
τα2

τα3
τα4

〉AN
= −min(αi − 1, N + 1 − αi).(4.1)

These formulas will be used later.
In [JKV01b] the authors noticed that the construction of Witten’s class W r

0,n(α1, . . . , αn) can
be extended to the case when α1 = −1 and 0 ≤ α2, . . . , αn ≤ r − 1. In [BCT19] the authors
considered the generating series

F ext
r-spin(t1, . . . , tr) :=

∑

n≥2

1

n!

∑

0≤α1,...,αn≤r−1

(∫

M0,n+1

W r
0,n+1(−1, α1, . . . , αn)

)
n∏

i=1

tαi+1

and proved that it satisfies the open WDVV equations, associated to the potential Fr-spin,
together with property (1.5). Here one should identify tr = s. It occurs that after a simple
transformation the function F ext

r-spin also gives the generating series of intersection numbers on
the moduli space of r-spin disks, introduced in [BCT18, Theorem 1.3].

Introduce a function F o
AN

(t1, . . . , tN , s) by

F o
AN

(t1, . . . , tN , s) := (−r)−2F ext
r-spin((−r)t1, . . . , (−r)tN , (−r)s).
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Clearly, it satisfies the open WDVV equations, associated to FAN
, together with condition (1.5).

In [BCT18, Proposition 5.1] the authors found an explicit formula for the coefficients of F ext
r-spin

that gives

〈
τα1

. . . ταn
σk
〉o
AN

=

{
(n + k − 2)!, if

∑n

i=1(N + 2 − αi) + k = N + 2,

0, otherwise,

where we use the notation

〈
τα1

. . . ταn
σk
〉o
AN

:=
∂n+kF o

AN

∂tα1 . . . ∂tαn∂sk

∣∣∣∣
t∗=s=0

.

The first examples read1:

FA2
=

t21t2
2

− t42
24

,

F o
A2

=
s4

12
+

t2s
2

2
+ t1s +

t22
2

;

FA3
=

t21t3
2

+
t1t

2
2

2
− t22t

2
3

4
+

t53
60

,

F o
A3

=
s5

20
+

t3s
3

3
+

t2s
2

2
+

(
t1 +

t23
2

)
s + t2t3;

FA4
=

t21t4
2

+ t1t2t3 +
t32
6
− t22t

2
4

4
− t2t

2
3t4
2

− t43
12

+
t23t

3
4

6
− t64

120
,

F o
A4

=
s6

30
+

t4s
4

4
+

t3s
3

3
+

(
t24
2

+
t2
2

)
s2 + (t1 + t3t4)s +

t34
6

+
t23
2

+ t2t4.

In [Bur18] the author proved that the coefficients of the function F o
AN

are related to the

expression of the coordinates vk in the terms of the flat coordinates t1, . . . , tN on the Saito
Frobenius manifold of the singularity AN by

∂F o
AN

∂s
=

sN+1

N + 1
+

N∑

k=1

sk−1vk(t1, . . . , tN).(4.2)

5. Generalized Dubrovin–Saito construction for the singularities A and D

In this section, for the singularites of types A and D we present a generalization of the
Dubrovin–Saito construction that produces a flat F-manifold that extends the Saito Frobenius
manifold and, therefore, gives a solution of the open WDVV equations. In the AN -case this
solution coincides with the function F o

AN
. In both A- and D-cases, the coefficients of powers

of the variable s in this solution coincide with the transition functions between two coordinate
systems on the Saito Frobenius manifold.

5.1. AN -case. Consider the space M ext
AN

:= CN+1 with coordinates v1, . . . , vN+1. Consider the
quotient ring

Âext
AN

:= C[x, y, w, v1, . . . , vN+1]
/

(w − ∂xΛAN
, ∂yΛAN

, wx− vN+1w) .

As a C[v1, . . . , vN+1]-module, the space Âext
AN

is free of dimension N + 1, and the elements

[1], [x], . . . , [xN−1], [w] form a basis. To show that any other element [xiyjwk] can be expressed
in terms of them, first note that, obviously, [y] = 0 and [wx] = vN+1[w]. We also see that

[w2] =

[
w

(
xN +

N∑

k=2

(k − 1)vkx
k−2

)]
=

(
vNN+1 +

N∑

k=2

(k − 1)vkv
k−2
N+1

)
[w].(5.1)

1We follow the convention of B. Dubrovin and use variables with lower indices for the flat coordinates in
particular examples.
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Using the relation [xN ] = [w] −∑N

k=2(k − 1)vk[xk−2], we can express any element [xp] with
p ≥ N in terms of the elements [1], [x], . . . , [xN−1], [w].

Identifying the C[v1, . . . , vN+1]-modules T alg
Mext

AN

(M ext
AN

) and Âext
AN

via the isomorphism Ψext
AN

de-

fined by

Ψext
W

(
∂

∂vk

)
:= [xk−1], 1 ≤ k ≤ N, Ψext

W

(
∂

∂vN+1

)
:= [w],

by Remark 2.2, we endow the tangent spaces TpM
ext
AN

with a multiplication and, clearly, the
structure constants of it are polynomials in the coordinates v1, . . . , vN+1.

Consider the flat coordinates tα = tα(v1, . . . , vN), 1 ≤ α ≤ N , the potential FAN
(t1, . . . , tN)

of the Frobenius manifold of the singularity AN and the function F o
AN

, described in Section 4.
Theorem 5.1.

1. The coordinates t1(v1, . . . , vN), . . . , tN(v1, . . . , vN) and tN+1 := vN+1 together with the multi-

plicative structure on M ext
AN

, constructed above, define a flat F-manifold structure on M ext
AN

.

2. The vector potential of this flat F-manifold is given by
(
η1αAN

∂FAN

∂tα
, . . . , ηNα

AN

∂FAN

∂tα
, F o

AN

)
, where

we identify s = tN+1.

Proof. We denote by (cext)αβγ the structure constants of multiplication in the coordinates t1, . . . , tN+1

and by (cextv )αβγ the structure constants of multiplication in the coordinates v1, . . . , vN+1.
In order to prove the theorem, we have to check the following equations:

(cext)αβγ =
N∑

µ=1

ηαµAN

∂3FAN

∂tµ∂tβ∂tγ
, 1 ≤ α ≤ N, 1 ≤ β, γ ≤ N + 1,(5.2)

(cext)N+1
αβ =

∂2F o
AN

∂tα∂tβ
, 1 ≤ α, β ≤ N + 1.(5.3)

Since the subspace C[v1, . . . , vN+1] 〈[w]〉 is an ideal in the ring Âext
AN

and the quotient by this

ideal coincides with the ring ÂAN
, we have

(cextv )ab,c =

{
(cv)

a
b,c, if 1 ≤ a, b, c ≤ N,

0, if 1 ≤ a ≤ N and one of the indices b, c is equal to N + 1.

This implies equation (5.2) and it remains to prove (5.3).
Suppose 1 ≤ α ≤ N and β = N + 1. Since [xw] = vN+1[w], we have (cextv )N+1

k,N+1 = vk−1
N+1 for

1 ≤ k ≤ N , and, therefore,

(cext)N+1
α,N+1 =

N∑

k=1

∂vk
∂tα

(cextv )N+1
k,N+1 =

N∑

k=1

∂vk
∂tα

vk−1
N+1

eq.(4.2)
=

∂2F o
AN

∂tα∂tN+1
.

Suppose α = β = N + 1. Then we compute

(cext)N+1
N+1,N+1 = (cextv )N+1

N+1,N+1

eq.(5.1)
= vNN+1 +

N∑

k=2

(k − 1)vkv
k−2
N+1

eq.(4.2)
=

∂2F o
AN

∂(tN+1)2
.

Finally, if 1 ≤ α, β ≤ N , then from the associativity of the algebra Âext
AN

we get

(cext)N+1
αβ (cext)N+1

N+1,N+1 = (cext)N+1
α,N+1(c

ext)N+1
β,N+1 −

N∑

µ=1

cµαβ(cext)N+1
µ,N+1.

Since the function F o
AN

satisfies (1.4) and, as we have just proved, (cext)N+1
γ,N+1 =

∂2F o
AN

∂tγ∂tN+1 for

1 ≤ γ ≤ N + 1, we obtain (cext)N+1
αβ =

∂2F o
AN

∂tα∂tβ
. �
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5.2. DN -case. Consider the space M ext
DN

:= CN × C∗ with coordinates v1, . . . , vN+1. Consider
the quotient ring

Âext
DN

:= C[x, y, w, v1, . . . , vN , vN+1, v
−1
N+1]

/(
w − vN+1∂xΛDN

, ∂yΛDN
, 2wx− v2N+1w

)
.

As a C[v1, . . . , vN , vN+1, v
−1
N+1]-module, the space Âext

DN
is free of dimension N + 1 with a basis

[1], [x], . . . , [xN−2], [y], [w]. To show that any other element [xiyjwk] can be expressed in terms
of them, first note that

[xy] = −vN
2

[1], [wx] =
v2N+1

2
[w], [wy] = − vN

v2N+1

[w],(5.4)

where the last equation follows from the first two. Similarly to the AN -case, we have

[w2] =

(
v2N−3
N+1

2N−2
+

v2N
v3N+1

+
N−1∑

k=2

(k − 1)vk
v2k−3
N+1

2k−2

)
[w].(5.5)

Using that [w − vN+1∂xΛDN
] = 0, we obtain

[y2] =
1

vN+1

[w] − [xN−2] −
N−1∑

k=2

(k − 1)vk[xk−2].(5.6)

Multiplying this equation by [x], we get the relation

[xN−1] =
vN+1

2
[w] +

vN
2

[y] −
N−1∑

k=1

(k − 1)vk[xk−1],(5.7)

that allows to express any element [xp] with p ≥ N−1 in terms of the elements [1], [x], . . . , [xN−2],
[y], [w].

Identifying the C[v1, . . . , vN , vN+1, v
−1
N+1]-modules T alg

Mext
DN

(M ext
DN

) and Âext
DN

via the isomorphism Ψext
DN

defined by

Ψext
W

(
∂

∂vk

)
:= [xk−1], 1 ≤ k ≤ N − 1, Ψext

W

(
∂

∂vN

)
:= [y], Ψext

W

(
∂

∂vN+1

)
:= [w],

we endow the tangent spaces TpM
ext
DN

with a multiplication and, clearly, the structure constants

of it belong to the ring C[v1, . . . , vN , vN+1, v
−1
N+1].

Consider the flat coordinates tα = tα(v1, . . . , vN), 1 ≤ α ≤ N , and the potential FDN
(t1, . . . , tN)

of the Frobenius manifold of the singularity DN . Let tN+1 := vN+1 and define a function
F o
DN

(t1, . . . , tN+1) by

F o
DN

:=

(
N−1∑

k=1

vkv
2k−1
N+1

2k−1(2k − 1)
+

v2N−1
N+1

2N−2(2N − 1)(2N − 2)
+

v2N
2vN+1

)∣∣∣∣∣
vi=vi(t∗)

.

Theorem 5.2.

1. The coordinates t1(v1, . . . , vN), . . . , tN(v1, . . . , vN) and tN+1 = vN+1 together with the multi-

plicative structure on M ext
DN

, constructed above, define a flat F-manifold structure on M ext
DN

.

2. The vector potential of this flat F-manifold is given by
(
η1αDN

∂FDN

∂tα
, . . . , ηNα

DN

∂FDN

∂tα
, F o

DN

)
.

Proof. We denote by (cext)αβγ the structure constants of multiplication in the coordinates t1, . . . , tN+1

and by (cextv )αβγ the structure constants of multiplication in the coordinates v1, . . . , vN+1.
In order to prove the theorem, we have to check the following equations:

(cext)αβγ =
N∑

µ=1

ηαµDN

∂3FDN

∂tµ∂tβ∂tγ
, 1 ≤ α ≤ N, 1 ≤ β, γ ≤ N + 1,(5.8)

(cext)N+1
αβ =

∂2F o
DN

∂tα∂tβ
, 1 ≤ α, β ≤ N + 1.(5.9)
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Since the subspace C[v1, . . . , vN , vN+1, v
−1
N+1] 〈[w]〉 is an ideal in the ring Âext

DN
and the quotient

by this ideal coincides with the ring ÂDN
, we have

(cextv )ab,c =

{
(cv)

a
b,c, if 1 ≤ a, b, c ≤ N,

0, if 1 ≤ a ≤ N and one of the indices b, c is equal to N + 1.

This implies equation (5.8) and it remains to prove (5.9).
We have two substantially different cases: the case α ∈ {N,N + 1} or β ∈ {N,N + 1} and

the case α, β ∈ {1, 2, . . . , N − 1}.

Case α ∈ {N,N + 1} or β ∈ {N,N + 1}. If α, β ∈ {N,N + 1}, then (cext)N+1
α,β = (cextv )N+1

α,β and
∂2F o

DN

∂tα∂tβ
=

∂2F o
DN

∂vα∂vβ
. The equation (cextv )N+1

α,β =
∂2F o

DN

∂vα∂vβ
immediately follows from formulas (5.4), (5.5)

and (5.6).
If 1 ≤ α ≤ N − 1 and β = N + 1, then

(cext)N+1
α,N+1 =

N−1∑

k=1

∂vk
∂tα

(cextv )N+1
k,N+1

eq.(5.4)
=

N−1∑

k=1

∂vk
∂tα

v2k−2
N+1

2k−1
=

∂

∂tα
∂F o

DN

∂vN+1

=
∂2F o

DN

∂tα∂tN+1
.

If 1 ≤ α ≤ N − 1 and β = N , then

(cext)N+1
α,N =

N−1∑

k=1

∂vk
∂tα

(cextv )N+1
k,N

eq.(5.4)
= 0 =

∂

∂tα
∂F o

DN

∂vN
=

∂2F o
DN

∂tα∂tN
.

Case α, β ∈ {1, 2, . . . , N − 1}. We have to check that

(cext)N+1
αβ =

∂2F o
DN

∂tα∂tβ
⇔

∑

1≤a,b≤N−1

∂va
∂tα

∂vb
∂tβ

(cextv )N+1
a,b =

N−1∑

k=1

∂2vk
∂tα∂tβ

v2k−1
N+1

2k−1(2k − 1)
,

that is equivalent to the equation

(cextv )N+1
a,b = −

N−1∑

k=1

∂vk
∂tγ

∂2tγ

∂va∂vb

v2k−1
N+1

2k−1(2k − 1)
, 1 ≤ a, b ≤ N − 1.(5.10)

Let us compute the structure constants (cextv )N+1
a,b . Introduce polynomials ωk ∈ Q[v1, . . . , vN−1],

k ≥ 0, by

ωk :=
∑

α1,...,αN−1≥0∑
(N−i)αi=k

sα1

1 · · · sαN−1

N−1

(
∑

αi)!∏
αi!

, where si := (1 − i)vi for 1 ≤ i ≤ N − 1.

The first few functions ωk are

ω0 = 1, ω1 = sN−1, ω2 = sN−2 + s2N−1, ω3 = sN−3 + 2sN−2sN−1 + s3N−1.

The functions ωk satisfy the recursion relation

ωk+1 =
N−1∑

i=1

sN−iωk+1−i, k ≥ 0,(5.11)

where we adopt the convention ωj := 0 for j < 0.

Lemma 5.3. For 1 ≤ a, b ≤ N − 1 we have

cN+1
a,b =

a+b−N−1∑

k=0

ωk

v
2(a+b)−2N−1−2k
N+1

2a+b−N−k
.(5.12)
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Proof. Equation (5.12) is equivalent to the following formula:

(5.13) Coef [w][x
p−2] =

p−N−1∑

k=0

ωk

v2p−2N−1−2k
N+1

2p−N−k
, 2 ≤ p ≤ 2N − 2,

where Coef [w][x
p−2] denotes the coefficient of [w] in the expression for [xp−2] in terms of the

basis elements [1], [x], . . . , [xN−2], [y], [w]. For p ≤ N formula (5.13) is obvious because both
sides of it are equal to zero.

Suppose p ≥ N + 1. Multiplying both sides of equation (5.7) by [xp−N−1], we get the relation

Coef [w][x
p−2] =

v2p−2N−1
N+1

2p−N
+

N−1∑

k=1

skCoef [w][x
p+k−N−2],

that allows to compute the coefficients Coef [w][x
p−2] recursively. Then, using also relation (5.11),

formula (5.13) can be easily proved by induction. �

Using the lemma, we see that equation (5.10) can be equivalently written as

a+b−N−1∑

k=0

ωk

v
2(a+b)−2N−1−2k
N+1

2a+b−N−k
= −

N−1∑

k=1

∂vk
∂tγ

∂2tγ

∂va∂vb

v2k−1
N+1

2k−1(2k − 1)
⇔

⇔
N−1∑

k=1

ωa+b−N−k

v2k−1
N+1

2k
= −

N−1∑

k=1

∂vk
∂tγ

∂2tγ

∂va∂vb

v2k−1
N+1

2k−1(2k − 1)
.

So we have to prove that

∂vk
∂tγ

∂2tγ

∂va∂vb
= −2k − 1

2
ωa+b−N−k ⇔

∂2tγ

∂va∂vb
= −

N−1∑

k=1

2k − 1

2
ωa+b−N−k

∂tγ

∂vk
.(5.14)

Recall that tγ(v1, . . . , vN−1) is a quasi-homogeneous polynomial of degree N − γ, if we put
deg va = N−a. This implies that both sides of the last equation in (5.14) are zero if a+ b ≤ N .
Let us assume now that a + b ≥ N + 1. The last equation in (5.14) is equivalent to

∂2tγ

∂va∂vb
−

a−1∑

i=1

sN−i

∂2tγ

∂va−i∂vb
= −

N−1∑

k=1

2k − 1

2

∂tγ

∂vk

(
ωa+b−N−k −

a−1∑

i=1

sN−iωa−i+b−N−k

)
.

Note that for i ≥ a we have a − i + b − N − k < 0 and, therefore, by (5.11), the expression
in the brackets is equal to zero unless k = a + b − N . So we come to the following equivalent
identity:

∂2tγ

∂va∂vb
−

a−1∑

i=1

sN−i

∂2tγ

∂va−i∂vb
= −2(a + b−N) − 1

2

∂tγ

∂va+b−N

,
1 ≤ a, b, γ ≤ N − 1,

a + b ≥ N + 1.
(5.15)

Note that both sides of (5.15) are quasi-homogeneous polynomials of degree a + b− γ −N .

Differentiating both sides by ∂
∑

αi

∂v
α1
1

...∂v
αN−1

N−1

, putting vj = 0 and using formula (3.3), wee see that

equation (5.15) is equivalent to the following family of identities:

− 1

2
A
(

2γ − 1 + 2(N − 1)
∑

αi

)
+ A

a−1∑

i=1

(N − i− 1)αN−i = −A
2(a + b−N) − 1

2
⇔

⇔A

(
−γ − (N − 1)

∑
αi +

a−1∑

i=1

(N − i− 1)αN−i + a + b−N

)
= 0,

(5.16)
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that should be true for any tuple α1, . . . , αN−1 ≥ 0 such that

N−1∑

i=1

(N − i)αi = a + b− γ −N,(5.17)

and where A =
(
−1

2

)∑αi
∏∑

αi−1
k=0 (2γ − 1 + 2k(N − 1)). Condition (5.17) implies that αi = 0,

if i ≤ N−a. Therefore, the summation
∑a−1

i=1 in (5.16) can be replaced by the summation
∑N−1

i=1

and, using (5.17), we immediately see that the expression in the brackets in (5.16) vanishes.
This completes the proof of the theorem. �

Taking into account the discussion about the relation between solutions of the open WDVV
equations and flat F-manifolds from Section 2.3, we get the following result.
Corollary 5.4.

1. The function F o
DN

satisfies the open WDVV equations together with condition (1.5) and the

quasi-homogeneity property

N∑

α=1

qαt
α
∂F o

DN

∂tα
+

1 − δ

2
s
∂F o

DN

∂s
=

3 − δ

2
F o
DN

.

2. We have

vk(t1, . . . , tN) =

{
2k−1(2k − 1)Coefs2k−1F o

DN
, if 1 ≤ k ≤ N − 1,√

2Coefs−1F o
DN

, if k = N.

Example 5.5. Here are the Frobenius manifold potentials for the singularities D4 and D5

together with the constructed solutions of the open WDVV equations:

FD4
=

t21t3
2

+
t1t

2
2

2
− t1t

2
4

2
− t2t3t

2
4

4
− 1

12
t32t3 +

t22t
3
3

24
− t33t

2
4

24
+

t73
3360

,

F o
D4

=
s7

168
+

t3s
5

20
+

(
t23
8

+
t2
6

)
s3 +

(
t33
12

+
t2t3
2

+ t1

)
s +

t24
2s

,

FD5
=

t21t4
2

+ t1t2t3 −
t1t

2
5

2
+

t32
6
− t2t

3
3

6
− t22t3t4

4
− t2t4t

2
5

4
− t23t

2
5

8
+

t22t
3
4

24
+

t43t4
16

+
t2t

2
3t

2
4

8
− t3t

2
4t

2
5

8

− t33t
3
4

48
− t44t

2
5

64
+

t23t
5
4

160
+

t94
32256

,

F o
D5

=
s9

576
+

t4s
7

56
+

(
t24
16

+
t3
20

)
s5 +

(
t34
12

+
t3t4
4

+
t2
6

)
s3 +

(
t44
32

+
t3t

2
4

4
+

t2t4
2

+
t23
4

+ t1

)
s +

t25
2s

.

Note that F o
D4

and F o
D5

have simple poles along s = 0. In particular, the dependence on s in

both cases is not polynomial.

6. Polynomial solutions of the open WDVV equations for finite irreducible

Coxeter groups

In this section we first recall a description of the Frobenius manifolds corresponding to finite
irreducible Coxeter groups, and then describe the space of homogeneous polynomial solutions
of the associated open WDVV equations.

6.1. Frobenius manifolds of finite irreducible Coxeter groups. Finite Coxeter groups

are finite groups of linear transformations of a real N -dimensional vector space V , generated
by reflections. The complete list of finite irreducible Coxeter groups is given by (the dimension
of the space V equals the subscript in the name of the group)

AN , N ≥ 1 DN , N ≥ 4, E6, E7, E8,(6.1)

BN , N ≥ 2, F4, H3, H4, I2(k), k ≥ 3,(6.2)
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with the exceptional isomorphisms A2
∼= I2(3) and B2

∼= I2(4). By a construction of B. Dubrovin
[Dub98], for such a group W the complexified space of orbits MW := (V ⊗C)/W ∼= CN carries
a Frobenius manifold structure. For the Coxeter groups AN , DN and EN the corresponding
Frobenius manifolds coincide with the Saito Frobenius manifolds of simple singularities. By a
result of J.-B. Zuber [Zub94], the Frobenius manifold potentials corresponding to the remaining
irreducible Coxeter groups can be explicitly described by

FBN
(t1, . . . , tN) =FA2N−1

(t1, 0, t2, 0, . . . , tN−1, 0, tN),(6.3)

FI2(k)(t
1, t2) =FAk−1

(t1, 0, . . . , 0, t2),

FF4
(t1, t2, t3, t4) =FE6

(t1, 0, t2, t3, 0, t4),

FH4
(t1, t2, t3, t4) =FE8

(t1, 0, t2, 0, 0, t3, 0, t4),

FH3
(t1, t2, t3) =FD6

(t1, 0, t2, 0, t3,
√
−1t2).

All the Frobenius manifolds corresponding to finite irreducible Coxeter groups are semisimple.

6.2. Euler vector field. We see that for any finite irreducible Coxeter group W , acting on
an N -dimensional real vector space V , the associated Frobenius manifold is described by the
polynomial potential FW (t1, . . . , tN) satisfying the quasi-homogeneity condition

N∑

α=1

qαt
α∂FW

∂tα
= (3 − δ)FW , qα > 0.

The numbers q1, . . . , qN have the following interpretation. Consider the symmetric algebra S(V⊗
C). The subring S(V ⊗C)W of W -invariant polynomials is generated by N algebraically inde-
pendent homogeneous polynomials, whose degrees d1, . . . , dN ≥ 2 are uniquely determined by
the Coxeter group. The maximal degree h is called the Coxeter number of W . Then we have

qα =
dα
h
, δ = 1 − 2

h
.

Note that then in the homogeneity condition (1.7) for solutions of the open WDVV equations
the degree of the extra variable s becomes

1 − δ

2
=

1

h
.

6.3. Homogeneous polynomial solutions of the open WDVV equations. In this section
we describe the space of homogeneous polynomial solutions of the open WDVV equations
associated to the Frobenius manifolds of finite irreducible Coxeter groups. It occurs that for
the Coxeter groups different from AN , BN and I2(k) there are no such solutions. We prove
it in Section 6.3.1. For the groups AN , BN and I2(k) all solutions can be obtained from the
function F o

AN
, as is explained in Section 6.3.2.

Consider an irreducible Coxeter group W , the potential FW and a homogeneous polynomial
solution F o of the open WDVV equations, satisfying (1.5). Note that equations (1.3)-(1.5)
involve only the second partial derivatives of F o and that adding constant and linear terms in

the variables t1, . . . , tN and s to F o just changes the constants Dα, D̃ and E in condition (1.7).
If we remove constant and linear terms in the variables t1, . . . , tN and s from the function F o,
then it will satisfy the condition

N∑

α=1

qαt
α∂F

o

∂tα
+

1 − δ

2
s
∂F o

∂s
=

3 − δ

2
F o.(6.4)
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6.3.1. Irreducible Coxeter groups different from AN , BN and I2(k).

Theorem 6.1. Let W be a finite irreducible Coxeter group different from AN , BN and I2(k).
Consider the corresponding Frobenius manifold potential FW . Then there are no homogeneous

polynomial solutions F o of the associated open WDVV equations satisfying property (1.5).

Proof. As we already explained above, we can assume that F o doesn’t contain constant and
linear terms in the variables t1, . . . , tN and s and satisfies condition (6.4).

Let W be one of the groups DN , E6, E7 or E8. Let us rewrite equations (1.4) in the
coordinates v1, . . . , vN and s:

(cv)
µ
αβ

∂2F o

∂vµ∂s
+

∂2F o

∂vα∂vβ

∂2F o

∂s2
+

∂tα̃

∂vα

∂tβ̃

∂vβ

∂2vµ

∂tα̃∂tβ̃
∂F o

∂vµ

∂2F o

∂s2
=

∂2F o

∂vα∂s

∂2F o

∂vβ∂s
, 1 ≤ α, β ≤ N,

where (cv)
µ
αβ denotes the structure constants of multiplication in the coordinates vµ. Clearly,

∂F o

∂vµ

∣∣∣
v∗=s=0

= 0. Since δ ≥ 0, we have 3−δ
2

> 2 · 1−δ
2

. This implies that ∂2F o

∂s2

∣∣∣
v∗=s=0

= 0.

Therefore,

∂

∂vγ

(
(cv)

µ
αβ

∂2F o

∂vµ∂s

)∣∣∣∣
v∗=s=0

+
∂

∂vγ

(
∂2F o

∂vα∂vβ

∂2F o

∂s2

)∣∣∣∣
v∗=s=0

=
∂

∂vγ

(
∂2F o

∂vα∂s

∂2F o

∂vβ∂s

)∣∣∣∣
v∗=s=0

,

for any indices 1 ≤ α, β, γ ≤ N . We will prove that this equation can’t be true by finding
indices 2 ≤ α, β, γ ≤ N such that

(cv)
µ
αβ

∣∣
v∗=0

= 0,
∂(cv)

µ
αβ

∂vγ
= Aδµ,1, A ∈ C∗,(6.5)

∂2F o

∂vα∂vβ
= 0,

∂

∂vγ

(
∂2F o

∂vα∂s

∂2F o

∂vβ∂s

)
= 0.(6.6)

Case W = DN , N ≥ 4. We have δ = N−2
N−1

, 1−δ
2

= 1
2(N−1)

and qk =

{
N−k
N−1

, if 1 ≤ k ≤ N − 1,
N

2(N−1)
, if k = N.

Let us choose α = 2 and β = γ = N . From
∂ΛDN

∂y
= 2xy + vN we see that ∂

∂v2
◦ ∂

∂vN
= −1

2
vN

∂
∂v1

,

that implies the properties in line (6.5). We have

q2 + qN =
N − 2

N − 1
+

N

2(N − 1)
=

3N − 4

2(N − 1)
>

2N − 1

2(N − 1)
=

3 − δ

2
⇒ ∂2F o

∂v2∂vN
=

∂3F o

∂v2∂vN∂s
= 0,

2qN +
1 − δ

2
=

2N

2(N − 1)
+

1

2(N − 1)
=

2N + 1

2(N − 1)
>

3 − δ

2
⇒ ∂3F o

∂v2N∂s
= 0,

that gives the properties in line (6.6). So the theorem is proved for the case W = DN .

Case W = E6. We have δ = 5
6
, 1−δ

2
= 1

12
and (q1, . . . , q6) =

(
1, 3

4
, 2
3
, 1
2
, 5
12
, 1
6

)
. Let us choose

α = β = γ = 3. From
∂ΛE6

∂y
= 3y2 + v3 + v5x + v6x

2 we see that ∂
∂v3

◦ ∂
∂v3

= −1
3
v3

∂
∂v1

− 1
3
v5

∂
∂v2

−
1
3
v6

∂
∂v4

, that implies the properties in line (6.5). We have 2q3 = 4
3
> 13

12
= 3−δ

2
, implying

∂2F o

∂v2
3

= ∂3F o

∂v2
3
∂s

= 0, that gives the properties in line (6.6) and proves the theorem for W = E6.

Case W = E7. We have δ = 8
9
, 1−δ

2
= 1

18
and (q1, . . . , q7) =

(
1, 7

9
, 2
3
, 5
9
, 4
9
, 1
3
, 1
9

)
. Choose

α = 3, β = 4 and γ = 2. From
∂ΛE7

∂x
= 3x2y + v2 + 2v4x + v5y + 3v6x

2 + 4v7x
3 we see that

∂
∂v3

◦ ∂
∂v4

= −1
3
v2

∂
∂v1

− 2
3
v4

∂
∂v2

− 1
3
v5

∂
∂v3

− v6
∂

∂v4
− 4

3
v7

∂
∂v6

, that implies the properties in line (6.5).
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We have

q3 + q4 =
11

9
>

19

18
=

3 − δ

2
⇒ ∂2F o

∂v3∂v4
= 0,

q2 + q3 +
1 − δ

2
=

3

2
>

3 − δ

2
⇒ ∂3F o

∂v2∂v3∂s
= 0,

q2 + q4 +
1 − δ

2
=

25

18
>

3 − δ

2
⇒ ∂3F o

∂v2∂v4∂s
= 0,

that implies the properties in line (6.6). This proves the theorem for W = E7.

Case W = E8. We have δ = 14
15

, 1−δ
2

= 1
30

and (q1, . . . , q8) =
(
1, 4

5
, 2
3
, 3
5
, 7
15
, 2
5
, 4
15
, 1
15

)
. Choose

α = β = γ = 3. From
∂ΛE8

∂y
= 3y2 + v3 + v5x + v7x

2 + v8x
3 we see that ∂

∂v3
◦ ∂

∂v3
= −1

3
v3

∂
∂v1

−
1
3
v5

∂
∂v2

− 1
3
v7

∂
∂v4

− 1
3
v8

∂
∂v6

, that implies the properties in line (6.5). We have 2q3 = 4
3
> 31

30
= 3−δ

2
,

implying ∂2F o

∂v2
3

= ∂3F o

∂v2
3
∂s

= 0, that completes the proof of the theorem for W = E8.

For the groups H3, H4 and F4 we are going to use the explicit formulas for the corresponding
Frobenius potentials from the paper [Zub94]. Note that these potentials are related to the ones,
given by (6.3), by certain rescallings FW (t1, . . . , tN) 7→ FW (λ1t

1, . . . , λN t
N), λi ∈ C∗, but this

doesn’t affect our proof.
For the groups F4 and H4 the corresponding potentials, computed in [Zub94], are

FF4
=

t134
185328

+
t23t

7
4

252
+

t22t
5
4

60
+

t2t
2
3t

3
4

6
+

t43t4
12

+
t32t4
6

+
t21t4
2

+ t1t2t3,

FH4
=

t314
245764125000

+
t23t

19
4

1539000
+

t33t
13
4

10800
+

t22t
11
4

4950
+

t2t
2
3t

9
4

360
+

t43t
7
4

120
+

t22t3t
5
4

20
+

t2t
3
3t

3
4

6
+

t53t4
20

+
t32t4
6

+
t21t4
2

+ t1t2t3.

Note that the equation

∂

∂t2

(
cµ2,2

∂2F o

∂tµ∂s

)∣∣∣∣
t∗=s=0

+
∂

∂t2

(
∂2F o

∂t2∂t2

∂2F o

∂s2

)∣∣∣∣
t∗=s=0

=
∂

∂t2

(
∂2F o

∂t2∂s

∂2F o

∂t2∂s

)∣∣∣∣
t∗=s=0

,

where cγαβ are the structure constants of multiplication in the coordinates tµ, can’t be true,

because cµ2,2
∣∣
t∗=0

= 0,
∂c

µ
2,2

∂t2
= δµ,1 and ∂2F o

∂t2∂t2
= 0, that follows from (6.4).

For the group H3 the Frobenius manifold, computed in [Zub94], is

FH3
=

1

2
t21t3 +

1

2
t1t

2
2 +

1

20
t22t

5
3 +

1

6
t32t

2
3 +

t113
3960

.

The general form of a polynomial function F o
H3

(t1, t2, t3, s) satisfying (1.5) and (6.4) is

F o
H3

= st1 + c9st2t
2
3 + c8s

3t2t3 + c7s
5t2 + c6st

5
3 + c5s

3t43 + c4s
5t33 + c3s

7t23 + c2s
9t3 + c1s

11, ck ∈ C.

Suppose that it satisfies equation (1.4) with α = 3, β = 2. A direct computation shows that,

applying the derivative ∂2

∂t2
2

to both sides of it, we get 2 on the left-hand side and 0 on the

right-hand side. This contradition proves the theorem for the case of the group H3. �

6.3.2. Coxeter groups AN , BN and I2(k). Define

F o
BN

(t1, . . . , tN , s) :=F o
A2N−1

(t1, 0, t2, 0, . . . , tN−1, 0, tN , s), N ≥ 2,

F o
I2(k)

(t1, t2, s) :=F o
Ak−1

(t1, 0, . . . , 0, t2, s), k ≥ 3.

Let F o,−
I2(k)

:= 2t1s− F o
I2(k)

and denote F o,+
I2(k)

:= F o
I2(k)

.

Note that if a function F o(t1, . . . , tN , s) satisfies the open WDVV equations, then the function
λ−1F o(t1, . . . , tN , λs) also satisfies them for any λ 6= 0. Moreover, if F o|s=0 = 0, then the
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substitution
(
λ−1F o(t1, . . . , tN , λs)

)∣∣
λ=0

is well defined and is a solution of the open WDVV
equations.

Theorem 6.2. Let W be one of the groups AN , BN or I2(k). Then all polynomial solutions F o

of the open WDVV equations satisfying (1.5) and (6.4) are given by the family

F o =





λ−1F o
AN

(t1, . . . , tN , λs), λ ∈ C∗, if W = AN , N ≥ 2,

λ−1F o
A1

(t1, λs), λ ∈ C, if W = A1,

λ−1F o
BN

(t1, . . . , tN , λs), λ ∈ C, if W = BN , N ≥ 2,

λ−1F o
I2(k)

(t1, t2, λs), λ ∈ C∗, if W = I2(k), k is odd,

λ−1F o,±
I2(k)

(t1, t2, λs), λ ∈ C, if W = I2(k), k is even.

Proof. Case W = AN . We have qα = N+2−α
N+1

and δ = N−1
N+1

. The case N = 1 is obvious. Suppose
that N ≥ 2 and F o is a solution of the open WDVV equations, satisfying (1.5) and (6.4). For
an n-tuple α = (α1, . . . , αn), 1 ≤ αi ≤ N , denote

〈
τασ

k
〉o

=
〈
τα1

. . . ταn
σk
〉o

:=
∂n+kF o

∂tα1 . . . ∂t
αn∂sk

∣∣∣∣
t∗=s=0

.

This number is non-zero only if k = k(α) := N + 2 −∑n

i=1(N + 2 − αi).
Note that

cγ2,β =





0, if γ > β + 1,

1, if γ = β + 1,

O(t∗), if γ ≤ β,

(6.7)

that follows from (4.1). Setting t∗ = 0 in equation (1.4) with α = 2 and 2 ≤ β ≤ N , we get

〈τασα〉o = (α− 1)!
(〈
τ2σ

2
〉o)α−1

, 2 ≤ α ≤ N, 〈τ2τN〉o
〈
σN+2

〉o
= N !

(〈
τ2σ

2
〉o)N

.

Differentiating equation (1.4) with α = 2 and β = N by ∂
∂t2

and setting t∗ = s = 0, we get
−1 + 〈τ2τN〉o 〈τ2σ2〉o = 0, where we use formula (4.1) for the numbers 〈τα1

τα2
τα3

τα4
〉AN

. We see

that 〈τ2σ2〉o 6= 0 and
〈
σN+2

〉o
= N !

(〈
τ2σ

2
〉o)N+1 6= 0.

After the rescaling F o(t1, . . . , tN , s) 7→ λ−1F o(t1, . . . , tN , λs) with an appropriate constant
λ 6= 0 we get 〈τ2σ2〉o = 1 and, therefore,

〈τασα〉o = (α− 1)! = 〈τασα〉oAN
, 1 ≤ α ≤ N,

〈
σN+2

〉o
= N ! =

〈
σN+2

〉o
AN

.

Consider now an n-tuple α = (α1, . . . , αn), 1 ≤ αi ≤ N , with n ≥ 2 and k(α) ≥ 0. Differ-

entiating equation (1.4) with α = α1 and β = α2 by ∂n−2

∂tα3 ...∂tαn
and setting t∗ = 0, we get the

recursion〈
τασ

k(α)
〉o

k(α)!
=

∑

I⊔J={1,...,n}
1∈I, 2∈J

〈
ταI

σk(αI)
〉o 〈

ταJ
σk(αJ )

〉o

(k(αI) − 1)!(k(αJ) − 1)!
−

∑

I⊔J={1,...,n}
1,2∈I, J 6=∅

〈
ταI

σk(αI)
〉o 〈

ταJ
σk(αJ )

〉o

k(αI)!(k(αJ) − 2)!
,(6.8)

where for a subset I = {i1, . . . , i|I|} ⊂ {1, . . . , n}, i1 < . . . < i|I|, we denote αI := (αi1 , . . . , αi|I|).

The correlators 〈·〉AN
don’t appear in this recursion because for any subset I ⊂ {1, . . . , n} and

an index 1 ≤ µ ≤ N we have

∑

i∈I

(N + 2 − αi) + (N + 2 − µ) ≤
n∑

i=1

(N + 2 − αi) + (N + 2 − µ) =

= 2N + 4 − k(α) − µ < 2N + 4
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and, therefore, 〈ταI
τµ〉AN

= 0. The recursion (6.8) determines all the numbers
〈
τασ

k(α)
〉o

starting from the numbers
〈
σN+2

〉o
and 〈τασα〉o. So we conclude that F o = F o

AN
.

Case W = BN . We have qα = N+1−α
N

and δ = N−1
N

. The function F o
BN

satisfies the open WDVV
equations together with equations (1.5) and (6.4), because, as one can easily check using the
quasi-homogeneity of the function F o

A2N−1
, the correlator 〈τα1

. . . ταn
τµ〉A2N−1

vanishes, if all

the αi’s are odd and µ is even.
Suppose that F o is a solution of the open WDVV equations, satisfying (1.5) and (6.4). Since

FB2
= FI2(4), we will consider the B2-case together with the cases W = I2(k) later. So we assume

that N ≥ 3. Note that a correlator
〈
τα1

. . . ταn
σk
〉o

vanishes unless
∑N

i=1(N+1−αi)+ k
2

= N+ 1
2
.

Setting t∗ = 0 in equation (1.4) with α = 2, we get the relations

〈
τασ

2α−1
〉o

=
(2α− 2)!

2α−1

(〈
τ2σ

3
〉o)α−1

, 2 ≤ α ≤ N,

〈τ2τNσ〉o
〈
σ2N+1

〉o
=

(2N − 1)!

2N

(〈
τ2σ

3
〉o)N

.

Differentiating equation (1.4) with α = 2 and β = N − 1 by ∂
∂t2

and setting t∗ = s = 0, we
get 〈τ 22 τN−1τN〉BN

+ 〈τ2τNσ〉o = 0. Since, by (4.1), 〈τ 22 τN−1τN〉BN
= −1, we conclude that

〈τ2τNσ〉o = 1 and
〈
σ2N+1

〉o
=

(2N − 1)!

2N

(〈
τ2σ

3
〉o)N

.

Suppose that 〈τ2σ3〉o 6= 0, then
〈
σ2N+1

〉o 6= 0. After the rescaling F o(t1, . . . , tN , s) 7→
λ−1F o(t1, . . . , tN , λs) with an appropriate constant λ 6= 0 we get 〈τασ2α−1〉o = 〈τασ2α−1〉oBN

and
〈
σ2N+1

〉o
=
〈
σ2N+1

〉o
BN

. In the same way, as in the AN -case, there is a recursion similar

to (6.8), that reconstructs all the correlators
〈
τα1

. . . ταn
σk
〉o

with n ≥ 2. Therefore, F o = F o
BN

.

Suppose that 〈τ2σ3〉o = 0, then
〈
σ2N+1

〉o
= 0. Consider the decomposition

F o =
N∑

k=0

Pk(t1, . . . , tN)s2k+1, Pk ∈ C[t1, . . . , tN ].

Consider an index l such that Pl 6= 0 and P>l = 0. Since l < N , the polynomial Pl can’t be a
constant. Suppose l > 0, then equation (1.4) implies that

∂Pl

∂tα
∂Pl

∂tβ
=

2l

2l + 1
Pl

∂2Pl

∂tα∂tβ
, 1 ≤ α, β ≤ N.

The space of solutions of the differential equation (f ′)2 = 2l
2l+1

ff ′′ for a function f = f(x)

is formed by the family f = C1(x + C2)
−2l, C1, C2 ∈ C∗, together with the constant solution

f = C, C ∈ C. Since Pl is a non-constant polynomial, we come to a contradition. Therefore,
l = 0.

In this case system (1.4) is equivalent to the system

cγαβ
∂P0

∂tγ
=

∂P0

∂tα
∂P0

∂tβ
, 1 ≤ α, β ≤ N.

For α = 2 we get the relations

∂P0

∂tβ+1
+
∑

1≤γ≤β

cγ2,β
∂P0

∂tγ
=

∂P0

∂t2
∂P0

∂tβ
, 2 ≤ β ≤ N − 1,

that recursively determine all the derivatives ∂P0

∂tβ
starting from the derivatives ∂P0

∂t2
= tN

and ∂P0

∂t1
= 1. This completely determines the polynomial P0. We conclude that F o =(

λ−1F o
BN

(t1, . . . , tN , λs)
)∣∣

λ=0
.
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Case W = I2(k). We have q1 = 1, q2 = 2
k
, δ = k−2

k
and FI2(k) = (t1)2t2

2
+ αk

(t2)k+1

(k+1)!
, αk 6= 0.

The function F o
I2(k)

satisfies the open WDVV equations together with equations (1.5) and (6.4),

because 〈τα1
. . . ταn

τµ〉Ak−1
= 0, if αi ∈ {1, k − 1} and µ /∈ {1, k − 1} [Zub94, Section 1].

Note that if a function F o satisfies property (1.5), then all the open WDVV equations are
automatically satisfied except equation (1.4) with α = β = 2.

Suppose k = 2l+ 1, l ≥ 1. A polynomial F o(t1, t2, s), satisfying (1.5) and (6.4), has the form

F o = t1s +
l+1∑

i=0

βi

s2l+2−2i

(2l + 2 − 2i)!

(t2)i

i!
, βi ∈ C.

Suppose that the open WDVV equations are satisfied. Equation (1.4) with α = β = 2 is
equivalent to

∂2FI2(2l+1)

∂(t2)3
+

∂2F o

∂(t2)2
∂2F o

∂s2
−
(
∂2F o

∂t2∂s

)2

= 0 ⇔

⇔α2l+1
(t2)2l−1

(2l − 1)!
+

(
l+1∑

i=2

βi

s2l+2−2i

(2l + 2 − 2i)!

(t2)i−2

(i− 2)!

)(
l∑

i=0

βi

s2l−2i

(2l − 2i)!

(t2)i

i!

)

−
(

l∑

i=1

βi

s2l+1−2i

(2l + 1 − 2i)!

(t2)i−1

(i− 1)!

)2

= 0.

The expression on the left-hand side of the last equation has the form
∑2l−1

i=0 (t2)2l−1−is2iPi(β0, . . . , βl+1),
where

P0 =
α2l+1

(2l − 1)!
+

βl+1βl

(l − 1)!l!
, Pi =

βl+1βl−i

(l − 1)!(l − i)!(2i)!
+ Qi(βl−i+1, . . . , βl+1), 1 ≤ i ≤ l,

and Qi are polynomials in βl−i+1, . . . , βl+1. We see that βl+1 6= 0 and the equations Pi = 0,
0 ≤ i ≤ l, determine the coefficients β0, . . . , βl in terms of the coefficient βl+1. Thus, F o =
λ−1F o

I2(2l+1)(t
1, t2, λs) for some λ 6= 0.

Suppose k = 2l, l ≥ 2, and a polynomial F o satisfies the open WDVV equations together
with equations (1.5) and (6.4). Then F o has the form

F o = t1s +
l∑

i=0

βi

s2l+1−2i

(2l + 1 − 2i)!

(t2)i

i!
, βi ∈ C,

and equation (1.4) with α = β = 2 is equivalent to

α2l
(t2)2l−2

(2l − 2)!
+

(
l∑

i=2

βi

s2l+1−2i

(2l + 1 − 2i)!

(t2)i−2

(i− 2)!

)(
l−1∑

i=0

βi

s2l−1−2i

(2l − 1 − 2i)!

(t2)i

i!

)

−
(

l∑

i=1

βi

s2l−2i

(2l − 2i)!

(t2)i−1

(i− 1)!

)2

= 0.

The expression on the left-hand side has the form
∑2l−2

i=0 (t2)2l−2−is2iPi(β0, . . . , βl), where

P0 =
α2l

(2l − 2)!
− β2

l

((l − 1)!)2
,

Pi =γiβlβl−i + Qi(βl−i+1, . . . , βl), γi =
2l(i− 1)

(l − 1)!(2i)!(l − i)!
, 1 ≤ i ≤ l,

and Qi are polynomials in βl−i+1, . . . , βl. We see that the equation P0 = 0 determines βl up to
a sign and then the equations Pi = 0, 2 ≤ i ≤ l, determine the coefficients β0, . . . , βl−2 in terms
of βl−1. Thus, F o = λ−1F o,±

I2(2l)
(t1, t2, λs) for some λ. �
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