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Abstract

In this note we consider generalized diffusion equations in which the diffusivity coefficient is

not necessarily constant in time, but instead it solves a nonlinear fractional differential equation

involving fractional Riemann-Liouville time-derivative. Our main contribution is to highlight the

link between these generalised equations and fractional Brownian motion (fBm). In particular,

we investigate the governing equation of fBm and show that its diffusion coefficient must satisfy

an additive evolutive fractional equation. We derive in a similar way the governing equation of

the iterated fractional Brownian motion.
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1. Introduction

Fractional Brownian motion (fBm in short) is an extension of classical Brownian motion

(Bm), whose formulation dates back to seminal work of Mandelbrot and Van Ness in 1968 [11].

Subsequently, fBm and relative stochastic calculus were studied extensively, motivated by appli-

cations in numerous research areas and technological fields, see e.g. [2, 4, 5].

In the last 25 years Fractional Calculus (FC) has been object of intensive research efforts with

results spanning from Economics, Mathematics, Physics, Biology and Chemistry, see e.g. [9].

Although fBm and FC are independent areas of Mathematics, they are strongly linked. One

fundamental example of this interplay is the well known representation for fBm as fractional

integral, which is one of the main tools to define stochastic integration with respect to fBm, see

e.g. the recent book [2].

In this note we are particularly interested in recent links that have been discovered in mathe-

matical physics and that involve equations with time-dependent diffusivity coefficients [7]. Fol-

lowing this idea, here we draw a new link between fractional Brownian motions and fractional

differential equations. The starting point in our analysis is a generalized heat equation with vary-

ing diffusivity. The idea of time-varying diffusivity is not new and has been successfully applied,
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for instance, in the study of mobility of biological systems [10, 13] and in the diffusion of pol-

lutants in the atmospheric planetary boundary layer [12]. Our contribution here is to describe

the time-dependence of the diffusion coefficient by an additive nonlinear fractional equation.

The coupling of these (generalised heat and nonlinear fractional) equations leads to a system of

governing equations for fractional Brownian motion. A similar approach is developed in order

to obtain the governing equations of the iterated fractional Brownian motion.

The paper is structured as follows: In Section 2 we introduce fBm and some of the basic

properties and equations related to it, while in Section 3 we illustrate the results obtained when

the diffusivity term is the solution of a nonlinear fractional differential equation. In Section 4 we

briefly conclude.

2. Preliminaries

It is well-known that the probability density function of Brownian motion coincides with

the fundamental solution to the heat equation. In what follows we recall the details of this

fact for a slightly more general process, namely for a rescaled Bm Y (which features a more

general diffusion coefficient). The process Y := {Y(t), t ≥ 0} is defined for all t ≥ 0 by Y(t) :=√
2CB(t), where C is a positive constant and {B(t), t ≥ 0} is a standard Bm. The coefficient

√
2C is

called diffusion coefficient because it is very much linked to the diffusivity of the related partial

differential equation, as we will see below. When C = 1
2

we recover the standard Brownian

motion case. If we denote by p(t, x) the density of the rescaled Brownian motion Y(t), then p

satisfies the heat equation

∂p

∂t
= C
∂2 p

∂x2
,

and its explicit expression is

p(t, x) =
1

√
4πCt

exp

{

− |x|
2

4Ct

}

.

For this process the mean-square displacement is linear in time, in particular one gets E[Y(t)2] =

2Ct.

In this communication we are interested in a generalisation of the rescaled Brownian mo-

tion, namely fractional Brownian motion. A fBm BH := {BH(t), t ≥ 0} is a family stochas-

tic processes indexed by the Hurst index H ∈ (0, 1). For each H the process BH is defined

to be a continuous and centered Gaussian process with covariance function E[BH(t)BH(s)] =
1
2

(

t2H + s2H − |t − s|2H
)

for all t, s ≥ 0. In the special case when H = 1
2

one recovers the classical

Brownian motion B, with covariance E[B(t)B(s)] = 1
2

(t + s − |t − s|) = min{t, s}. FBm is not a

martingale nor a Markov process (unless H = 1
2
) but it has the following interesting properties

which do not hold for Bm:

• (long-range dependence) If H > 1
2

then the increments of fBm are positively correlated,

if H < 1
2

increments are negatively correlated (and if H = 1
2

increments are independent).

This produces effects of memory and persistence if H > 1
2

and of intermittency and anti-

persistence if H < 1
2
.

This memory feature allows fBm to be applied in many fields, for example telecommuni-

cation networks, weather derivatives in finance or filtering, see e.g. [4].
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• (power law mean-square displacement) The variance (also known as mean-square dis-

placement in Physics) at time t is E[(BH(t))2] = t2H . Equivalently the standard deviation is

tH . This means that, as the Hurst parameter changes, fBm can exhibit a power-law mean-

square displacement behaviour, hence nonlinear in t. In particular we can see powers of t

both bigger and smaller than 1, confirming the qualitatively different behaviour of fBm for

H > 1
2

and H < 1
2
.

This feature is useful when studying phenomena whose mean-square displacement does

not behave linearly in t. One example is the study of atmospheric dispersion of pollutant

in an anomalous diffusive, due to the presence of turbulence, see [8], where it is observed

that data exhibits a non-linear mean-square displacement of the form const · tα.

The partial differential equation (PDE) related to fractional Brownian motion is known and it is

a generalised heat equation with a time-dependent diffusion coefficient. As above we consider

the rescaled process YH(t) :=
√

2CBH(t) to be slightly more general. If we denote by qH(t, x) the

density of the rescaled fBm YH with Hurst parameter H, then qH satisfies

∂qH

∂t
= 2HCt2H−1 ∂

2qH

∂x2
, (1)

and its explicit expression is

qH(t, x) =
1

√
4πCt2H

exp

{

− |x|
2

4Ct2H

}

.

For this process (like for standard fBm which corresponds to the case C = 1
2
) the mean-square

displacement is not linear in time, unless H = 1
2

which corresponds to a rescaled Brownian

motion. In particular one gets a power law mean-square displacement of the form E[YH(t)2] =

2Ct2H .

3. The main result

3.1. Fractional Brownian motion ruled by a nonlinear fractional differential equation

Let us now generalise equation (1) and consider the diffusion equation with a general time-

varying diffusivity D(t) in place of 2HCt2H−1, that is

∂ρ

∂t
= D(t)

∂2ρ

∂x2
. (2)

Our aim is to reconstruct the dynamics (1) for qH(t, x) that corresponds to fBm by means of this

equation, in particular characterising it in terms of ρ(t, x) given by (2) together with a dynamics

for the coefficient D(·). It turns out (as we show below) that for 0 < H < 1
2

the correct assumption

is that the time-dependence of dynamical diffusivity coefficient D(·) is ruled by the following

nonlinear fractional differential equation

d1−2H D(t)

dt1−2H
= kD2(t), (3)

with

k =
Γ(2H)

2HCΓ(4H − 1)
, H ,

1

4
. (4)
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Here Γ(·) denotes the Gamma function. Equation (3) involves a time-fractional derivative in the

sense of Riemann-Liouville, i.e.

d1−2H D(t)

dt1−2H
=

1

Γ(2H)

d

dt

∫ t

0

D(s)ds

(t − s)1−2H
,

for 0 < H < 1
2
. Observing that

d1−2Htβ

dt1−2H
=
Γ(β + 1)

Γ(β + 2H)
tβ−1+2H ,

the solution of (3) is given by

D(t) = 2HCt2H−1.

We note that the real order of the time-fractional nonlinear ordinary differential equation (3) is

of course related to the Hurst index, in particular we take a fractional derivative of order 1 − 2H

(which is positive for 0 < H < 1
2
).

We summarise these observations in the proposition below. Note that for C = 1
2

we recover

standard fBm.

Proposition 1. The governing equation of the rescaled fractional Brownian motion YH for H ∈
(0, 1

2
) \ { 1

4
} is given by (2), where the diffusion coefficient D(·) satisfies the fractional differential

equation (3).

Proposition 1 above provides a description for generalised fractional Brownian motions in

terms of a decomposition of the PDE that governs the probability density function of the pro-

cess. In particular, we show that the diffusivity coefficient in the PDE must satisfy a dynamical

condition given by a nonlinear fractional equation. This connection between fractional Brown-

ian motions and fractional equations is new and can give new insights. The diffusivity coefficient

is ruled by a nonlinear fractional differential equation in the case of negatively correlated in-

crements 0 < H < 1
2

(excluding the value H = 1
4

that leads to the divergence of the Gamma

function in (4)). Below we will see in Proposition 3 that a similar connection holds in the case

of positively correlated increments 1
2
< H < 1 by means of fractional integral equations.

Remark 2. We now comment on the extreme case H = 0 (and C = 1
2
), which has been excluded

here so far. We first observe that

k =
2HΓ(2H)

4H2CΓ(4H − 1)
=
Γ(2H + 1) · (4H − 1)

HC · Γ(4H + 1)

and therefore, for H → 0, we have that k → −∞ and equation (3) would lose its meaning.

This is in line with the fact that the classical definition of fBm via covariance is meaningless in

the extreme case of H = 0, because it leads to a Gaussian process with constant covariation

E[BH(t)BH(s)] = 1.

Next we want to obtain the governing equation of fractional Brownian motion in the case of

positively correlated increments, namely for 1
2
< H < 1. To this aim we observe that now the

quantity 1 − 2H is negative and so it is natural to expect that the differential equation governing

the diffusion coefficient D will involve a Riemann-Liouville integral of positive order 2H − 1.

This integral is defined by

J2H−1
t D(t) =

1

Γ(2H − 1)

∫ t

0

D(s)ds

(t − s)2−2H
.
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Analogously as the fractional derivative case, we have that the diffusivity coefficient D(·) must

satisfy the following nonlinear integral equation

J2H−1
t D(t) = kD2(t), (5)

with k as in (4). Recalling that, for β > −1

J2H−1
t tβ =

Γ(β + 1)

Γ(β + 2H − 1)
tβ+2H−1,

one obtains that the solution is given by D(t) = 2HCt2H−1. Summarising the result we have the

proposition below.

Proposition 3. The governing equation of the rescaled fractional Brownian motion YH for H ∈
( 1

2
, 1) is given by (2), where the diffusion coefficient D(·) satisfies the fractional integral equation

(5).

We note that even in the case H > 1
2

it is possible to write a nonlinear fractional differential

equation instead of the integral equation (5). Indeed by using the fact that dα

dtα
Jαt f (t) = f (t) one

obtains from (5) with α = 2H − 1 the nonlinear differential equation

D(t) =
d2H−1

dt2H−1
kD2(t), (6)

for which the solution is again D(t) = 2HCt2H−1. Equation (6) however, is more complicated than

(5) (and also than its counterpart (2) in the case H < 1
2
) because in (6) the fractional (differential)

operator acts on the square of the unknown, while in (5) the fractional (integral) operator acts on

the unknown itself.

Remark 4. Again we can look at the extreme case H = 1 (and C = 1
2
). In this case it is known

that fBm B1 with the given covariance E[B1(t)B1(s)] = 1
2

(

t2 + s2 − |t − s|2
)

can be constructed

by B1(t) = tξ where ξ is a standard Gaussian random variable. If we look at our representation

in terms of D(·) we see that D must satisfy a classical integral equation (no fractional integral)

of the form
∫ t

0
D(s)ds = kD2(t). The Gamma functions appearing in the constant k are finite and

the solution D(t) is linear in t.

3.2. Iterated Fractional Brownian motion ruled by nonlinear partial differential equation

In the recent mathematical literature many papers have been devoted to the interplay between

iterated processes and the governing partial differential equations, starting from the introduction

of the iterated Brownian motions (we refer for example to [3] and references therein). In [1]

and [6], interesting connections have been pointed out between various types of compositions

involving fractional Brownian motions and partial differential equations. In particular, it was

shown that the distribution

ρ(t, x) = 2

∫ ∞

0

exp{− x2

2s2H1
}

√
2πs2H1

exp{− s2

2t2H1
}

√
2πt2H2

ds

of the iterated fractional Brownian motion B
H1

1
(|BH2

2
(t)|) is a solution of the first order partial

differential equation

∂ρ

∂t
= −H1H2

∂

∂x

(

x

t
ρ

)

, x ∈ R, t > 0, H1,H2 ∈ (0, 1).
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In analogy with the previous discussion, we can recast this equation as a system of coupled

equations, with a space-time varying diffusion coefficient governed by an additive nonlinear

PDE. In particular the density ρ is a solution to the following first order PDE

∂ρ

∂t
= −H1H2

∂

∂x
(D(t, x)ρ)

where the diffusion coefficient satisfies

∂D(t, x)

∂t
+

1

2

∂2D(t, x)

∂x2
= 0.

Note that in this case we do not require fractional operators for the equation governing D and the

PDE satisfied by the density ρ is of the first order.

4. Conclusions

In this short note we recalled the definition of fractional Brownian motion and illustrated

some of its properties that led to the vast success of fBm in applications. Our main observation

is the link between fBm and a class of coupled PDEs featuring time-dependent diffusion coeffi-

cients and fractional derivatives/integrals. A similar system of PDE can be written for iterated

fBms. This representation may offer a new point of view for the study of fBm and its applica-

tions. Moreover one could look into extensions of this representation to more general self-similar

processes or processes exhibiting long-range dependence.
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