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Abstract – This study aims to develop a practical, robust 

and reliable human-machine interface using gesture 

recognition based on surface electromyography (sEMG) 

signals from the forearm. This technology is developed to 

be employed medically in stroke rehabilitation or 

prosthetic control. So far, studies have been conducted 

that improved the accuracy of such systems, but little has 

been done to avoid using wet (gelled) electrodes and hence 

improve their reliability and robustness for long-term use. 

Through this study, a comfortable and wearable bio- 

signal acquisition device is designed and developed that 

uses dry EMG electrodes. 3D printed electrodes are 

compared with ready-made dry ones to choose the better 

option, and an interface is established that allows control 

of any mechatronic system such as a prosthetic arm. 

 

Index Terms—EMG interface, 3D-printed electrodes, 

neuromuscular interface, wearable. 

 

I. INTRODUCTION 

For a muscle to contract, the brain sends a signal to that 
specific muscle through motor neurons. The change in 
electrochemical gradient (polarisation) at the muscle due to 
that stimulation signal is a change in voltage which can be 
picked up by electromyography (EMG) [1]. This change is 
proportional to how many muscles are contracting and by how 
much each one is.  

Sensing EMG signals and analysing them to identify and 
differentiate between limb gesture has been a field of huge 
interest to many researchers for the past few decades [2] [3] 
[4] [5]. This is due to the various engineering and medical 
applications of systems which allow accurate gesture 
recognition [6] [7]. According to the World Health 
Organisation, there are 15 million strokes occurring each year. 
Around half of survivors are left reliant on others for 
performing regular tasks, [8], due to muscle weakness or even 
paralysis. Neuromuscular interface using EMG signals is the 
light at the end of the tunnel for stroke victims. This interface 
can be used to control robotic prosthetics for them [9], or 
exoskeletons for amputees [3] [10], giving these people back 
the ability to continue with their lives normally. 

 A series of steps must be taken to successfully interpret 
EMG signals and translate them into hand/arm gestures. These 
are, in turn, signal extraction, filtering, feature extraction and 
classification [11]. Filtering is not essential but, if used 
correctly, has been proven to improve the signal’s feature 
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space [12]. As mentioned in the literature review, there are 
numerous features one can extract from EMG signals to 
analyse, just as there are numerous classifiers one can use to 
categorise the data. Past studies have compared the usefulness 
of certain features [13] [12], and it has been difficult to 
conclude that one specific feature is the best to go with. 
Choosing the features to extract involves a trade-off between 
classification accuracy and system practicality [14]. The same 
goes for choosing a classifier to use, but with the trade-off 
being between the number of gestures wanting to be identified, 
computation time and the number of input channels [15].  

Signal extraction itself should not be overlooked, since 
choosing the right electrode and using it correctly is paramount 
to having a reliable neuromuscular interface. Most studies so 
far have used wet (gelled) adhesive electrodes. These are very 
conductive, ensure excellent skin contact and are cheap [10]. 
However, they may be considered impractical since the 
conductivity drops as the gel dries with time and since they 
take time to set up [7]. The alternative is to use dry electrodes, 
which are reusable and need no gel. Although the poor skin 
contact increases their resistance and may cause signal 
distortions [16], they are very useful for wearable applications. 
Compared to gelled ones, they are significantly more 
comfortable and durable [17].  

 This study aims to produce an interface combining 

certain system criteria which, based on reviewing 

past literature, have not been combined effectively 

before. The unique features of this study include: a 

real-time (online) response, Being dry and 

wearable; Able to identify five gestures; Being 

accurate and responsive; Being inexpensive. The 

rest of the paper is organized as follows: … 

 

II. Related Work 

Capturing and analysing EMG signals has been the 
attention of numerous researchers for over two decades. Some 
focused on varying the features extracted from signals [1] 
while others focused on choosing the best classifier [15]. 
Artificial Intelligence was used by Kale [18] to improve 
accuracy by creating a neural network. Looney et al. [4] 
created an elaborate system with robustness in mind – one that 
used phase synchrony features and produces an interface that 
does not depend on electrode placement. Furthermore, an 
elaborate study was done by Tavakoli et al. [19] that utilised a 
Support Vector Machine to classify 4 gestures using a single 
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EMG channel. Their system was extremely responsive and 
required very short calibration times. 

The mentioned studies contribute massively to the field of 
neuromuscular interface; however, they have all used wet, 
gelled electrodes. As mentioned before, this kind is not 
practical for long term use in wearable devices. Li et al. [16] 
in 2011 started to explore the potential of dry electrodes by 
comparing their effectiveness to wet (gelled) ones using an 
LDA classifier with four time-domain features. Although their 
accuracy comparison was not based on real-time analysis, they 
found that using dry electrodes reduced the classification 
accuracy by only 0.3%. This study may be considered the 
opening doors of employing dry electrodes in prosthetic 
control. The accuracy recorded, however, is calculated based 
on processing EMG signals offline (not real-time) after they 
were recorded and hence are subject to change in online 
control. Also, no wearable was designed in that 
study. Tavakoli continued after his aforementioned study and 
worked on a wearable armband with an addition to the system 
[17] – a specific gesture which locks/unlocks the system so 
that gestures are only captured when needed. A support vector 
machine (SVM) was used as a classifier to identify four 
gestures through 2 EMG channels. The electrodes used were 
too bulky however, making up a wearable that is very large 
and uncomfortable.  

Ergeneci et al. [7] successfully came up with an 
Embedded, Eight Channel, Noise Cancelling, Wireless, 
Wearable sEMG Data Acquisition System With Adaptive 
Muscle Contraction Detection. They carefully studied all the 
systems in the market, found out what each lacked and created 
one of their own with an impressive signal-to-noise ratio, 
accuracy and responsiveness. They utilised two embedded 
digital methods – adaptive contraction detection and online 
adaptive power line noise (PLN) cancellation. This system 
only detected muscle contractions though, not hand gestures. 
Also, 8 EMG channels were used, which can be reduced to 
reduce the computation time required. A new approach was 
taken by Wolternik et al. [20]; using 3D printed dry electrodes. 
Their performance was compared to that of regular gelled 
electrodes but never used for actual gesture recognition. This 
study aims to produce an inexpensive system that uses small 
dry passive electrodes in a comfortable wearable device to 
control a robotic arm using gestures of the arm or 
hand. Control will be online and accurate.  

III. THE CHOICE OF ELECTRODES 

As described above in the literature review, most studies to 
date have utilised gelled, adhesive electrodes for surface EMG 
signal capture. This is simply due to their ease-of-use, superior 
conductivity and cheapness. In deciding between wet and dry 
electrode usage, a trade-off arises between practicality and 
signal conductivity. The option to use wet electrodes in this 
study was dismissed for several reasons, including the fact that 
they are difficult to remove and that they can cause skin 
irritation. The main reason, however, was because of them 
being disposable/single-use. 

A further choice had to be made between active and 
passive dry electrodes. While active ones may contain a useful 
ultra-low built-in noise amplifier [24], they require a power 
supply which would complicate the wearable’s wiring and 

reduce its battery life. It was hence decided to go with passive 
electrodes as they could be conveniently fixed onto the 
wearable. Useful noise filters such as the aforementioned one 
could be implemented programmatically. 

Being narrowed down to dry and passive ones, the electrode 

options that were finally considered were: 

a) Custom-designed 3D printed electrodes using 

conductive PLA. 

b) Flat, metal electrodes that are ready-made and can 

fit into standard snap-on electrode cables (Figure 

1). 

 

 
FIGURE 1 - THE SNAP-ON FLAT ELECTRODES 

A. 3D Printing Electrodes 

A 3D electrode model was created from scratch on CAD 
software. Various aspects had to be taken into account when 
designing, such as how exact the dimensions of the extrusion 
should be to attach perfectly with the standard snap-on 
electrode cable shown in Figure 2. Also, according to Ertan et 
al.’s findings [7], the diameter of the electrode had to be 
decided on wisely, as being too large would lead to higher 
crosstalk and signal noise. Since the conductive PLA is not 
flexible, the electrodes were best to have curved, filleted 
corners and be as small as possible for maximum user comfort. 
Holes were also added to the design to allow stitching them 
onto a fabric wearable. 

 
FIGURE 2 - THE STANDARD ELECTRODE CABLE 

 

Figure 3 shows the final design on SOLIDWORKS, and 

Figure 4 shows one of the finalised electrodes printed in 

conductive PLA. 
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FIGURE 3 - THE 3D ELECTRODE MODEL ON SOLIDWORKS 

 

 
FIGURE 4 - ONE OF THE FINAL 3D PRINTED ELECTRODES 

 

 
FIGURE 5 - THE TWO DRY ELECTRODES (SNAP-ON AND 3D PRINTED) NEXT 

TO A STANDARD, GELLED ELECTRODE 

 
Once 3D printed, these electrodes were compared with the 

simple, snap-on flat ones to decide which would help create a 
more robust, reliable system. This was done by stitching 2 of 
the former type to an armband (Figure 6), and 2 of the latter to 
an identical armband (Figure 7). Each armband was worn in 
turn by the same person (setup shown in Figure 8) performing 
the same hand/forearm gestures with each multiple times. It 
was concluded that they both had very similar conductivities. 
Since neither types were more informative than the other, the 
3D printed ones were chosen to continue with as they are 
cheaper to produce, much more readily available and easily 
customisable in terms of size and shape. 

 

 
FIGURE 6 - SNAP-ON ELECTRODES SEWED ONTO THE ARMBAND 

 

 
FIGURE 7 - 3D PRINTED ELECTRODES SEWED ONTO AN IDENTICAL ARMBAND 

 

 
FIGURE 8 - THE SETUP FOR COMPARING THE ELECTRODES 

IV. DESIGNING THE WEARABLE USED TO CAPTURE EMG 

SIGNALS 

 
For a robust, reliable and practical system, the wearable 

had to be sturdy and long-lasting, while being designed with 
user comfort in mind. An elastic forearm sleeve was used as 
the base component of the wearable (Figure 9) to allow for 
various forearm sizes. Five 3D printed electrodes were sewed 
onto the sleeve from the inside, with the electrode cables 
attached to them beforehand, as shown in Figure 10 and 11. 
The locations of the electrodes were based on the findings of 
Rubio et al. [1] on the most informative electromyography 
locations on the forearm. It was necessary to use a sleeve with 
a thumb opening, as that would prevent it from rotating when 
being worn a long time and hence keep the electrodes more or 
less in fixed positions over the forearm. The final setup is 
shown in Figure 12. 

 

 

 
FIGURE 9 - THE SLEEVE TO BE USED AS THE WEARABLE. IT WAS FOLDED 

AND STITCHED TO MAKE IT TIGHTER ON THE FOREARM AND HENCE ENSURE 

BETTER ELECTRODE-SKIN CONTACT 
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FIGURE 10 - THE SLEEVE INSIDE-OUT. THIS SHOWS HOW THE ELECTRODES 

WERE STICTHED ONTO THE SLEEVE 
 

 
FIGURE 11 - SHOWING HOW THE ELECTRODE CABLES WERE FORCED 

THROUGH THE WEARABLE TO ATTACH THEM TO THE SHIMMER SENSOR ON 

THE OUTSIDE 

 

 
FIGURE 12 - THE FINAL WEARABLE WORN BY THE TEST SUBJECT 

 

V. FEATURE EXTRACTION AND CLASSIFICATION 

A.  Implementing a Wireless Communication Protocol 

This study aims to produce an interface that is robust and 
practical. One of the ways to achieve the latter aim 
successfully was to make the wearable device being developed 
wireless. Hence, a wireless communication protocol had to be 
established to send the information captured by the electrodes 
to a computer for saving and signal processing. To do that, a 
Shimmer Sensor (shown in figure 12 above) is used. The 
device can be connected to two EMG channels and encloses a 
Bluetooth module that allows it to pair with a computer and 
send data in real-time.A MATLAB script was created that 

creates a connection with an active shimmer, sets it to EMG 
sensing mode, streams live data from its two EMG channels, 
and saves this data into a CSV file for offline use. Displaying 
the live data was necessary to ensure the connection is fine 
while recording. 

B. Collecting and Processing Test Data 

It was decided that a Support Vector Machine (SVM) 
would be used as a classifier to recognise five different 
hand/forearm gestures. The SVM had to be initially trained 
with sample data for each gesture. This was done by wearing 
the sleeve after sewing the electrodes onto it, then recording 
the raw data recorded in a 60-second window. During that 
time, a pre-defined sequence of the five gestures was 
performed by the user twice. Initially, all the test data was 
collected by one test user. Readings were collected from two 
EMG channels by the Shimmer Sensor and sent wirelessly to 
a PC over Bluetooth, with the sampling frequency set to 
500Hz, producing 30,000 sample readings per channel per 
recording. The signal was amplified and driven through a low-
pass filter to minimise the effect of noise.MATLAB was used 
to collect the streamed data, save it and then process it 
afterwards. 

1) Feature Extraction 
Inspired by the simplistic yet effective methodology in the 

work of Osorio et al. [17], an average function was used to 
extract the signal features that were fed into the classifier. 
There were two stages, however, before that occurred. 
Initially, the software had to be able to recognise weather or 
not a gesture is being performed at any point in time. This is 
to prevent signal readings being classified when an arm is 
simply held still for example. This was done by first looping 
through every reading of each channel (ri) and obtaining the 
difference (di) between it and its preceding reading: 

 

ͳǣ       ݀ ݈݄݁݊݊ܽܥ
ଵ

ൌ ݎ
ଵ െ ିଵݎ

ଵ  (1) 

ǣ       ݀ʹ ݈݄݁݊݊ܽܥ
ଶ

ൌ ݎ
ଶ െ ିଵݎ

ଶ  (2) 
 

By observing the plots during data livestreams, it was 
noticed that there were occasional random occurrences of 
single readings that are obviously incorrect, causing large 
misleading peaks/drops in the signal shape. To reduce the 
effect of these anomalies (regardless of their scale), the 
average of the previous k differences was obtained to give Di. 

 

ܦ       ͳǣ ݈݄݁݊݊ܽܥ
ଵ ൌ σ  ݀

ଵ
ୀଵ   (3) 

ܦ       ǣʹ ݈݄݁݊݊ܽܥ
ଶ ൌ σ  ݀

ଶ
ୀଵ   (4) 

 
Feature extraction was triggered whenever Di

1 or Di
2 cross 

a pre-set threshold, Th1 or Th2 respectively. These thresholds 
were determined by experimentation. A timeframe had to be 
defined in which a ‘gesture’ can be defined. After some trials, 
this was found best to be 1000ms (i.e. 500 readings at a 
sampling frequency of 500Hz). Once feature extraction is 
triggered, the next 500 readings being looped through are 
saved as a gesture vector. 

This resulted in each gesture vector being 500 readings 
long. To successfully achieve a responsive, reliable interface, 
the system had to be quick in classifying, and having 500 
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features to classify would certainly slow it down. Considering 
the aim of producing a responsive interface, dimension 
reduction had to be implemented to reduce the number of 
features being extracted from 500 and hence speed up the 
classification process. This was done by averaging every M 
readings in each gesture vector. This reduced the number of 

readings (ri) describing each gesture from 500 to 
ହ

ெ
 . With M 

set to 25, each gesture was defined by 20 values ሺ
ହ

ଶହ
ሻ. 

 

2) Classification 
The choice of a Support Vector Machine classifier was 

based on extensive research on previously used classifiers in 
various studies. Linear Discriminant Analysis was considered 
after reviewing studies such as [14] and [16] for its exceptional 
accuracy, but was dismissed due to its extreme sensitivity to 
electrode placement [22]. Training a Convolutional Neural 
Network was also considered due to their excellent feature 
learning capabilities [22]. However, training one to reach that 
level of excellence required huge amounts of very specific 
training data. SVMs were found to be the most optimum for a 
robust, long-lasting system as they are relatively more resilient 
to electrode shifting than others. Also, they do not require huge 
amounts of training data and have very high classification 
speeds, which help in creating a responsive system. 

Since SVM is a binary classifier, a One-Vs-All system was 
implemented by creating five SVM models – one trained for 
each gesture wanting to be classified. The training data for the 
first model for example was simply all of the gestures vectors 
recorded for the first gesture inputted as group 1 and all other 
gesture vectors inputted as group 0. 

The interface was then tested in real-time using the 
Shimmer’s live data streaming and MATLAB’s live data 
analysis. Whenever a gesture beginning was detected, the 
software collected the next R readings, performed the feature 
extraction protocol mentioned above, then fed the features into 
the five SVM classifiers, classifying the gesture performed as 
the one corresponding to the only SVM that gave a positive 
classification. If more than one gave a positive classification 
(or none), the percentage certainties were compared and that 
was used to classify. 

VI. RESULTS 

The five gestures the SVMs were trained for include 
Pronation, Supination, Wrist Flexion, Wrist Extension, and 
Fist Clenched. As mentioned, five SVM models were created 
using 20 features to describe each gesture. These models are 
shown below. 

 

 
FIGURE 13 - SVM HYPERPLANE FOR GESTURE 1 

 
FIGURE 14 - SVM HYPERPLANE FOR GESTURE 2 

 
FIGURE 15 - SVM HYPERPLANE FOR GESTURE 3 
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FIGURE 16 - SVM HYPERPLANE FOR GESTURE 4 

  
FIGURE 17 - SVM HYPERPLANE FOR GESTURE 5 

 
These images show the hyperplane for each gesture 

modelled by MATLAB based on training data. The SVM 
classifies by plotting any new gesture vector inputted onto the 
model. The side of the hyperplane the plot ends on determines 
the classification result. These models were used by MATLAB 
to classify previously unseen gestures in real-time. Since SVM 
is a binary classifier, five checks have to be done whenever the 
feature extraction threshold is crossed (One-Vs-All). The 
accuracy results obtained were as follows: 

 
TABLE 1 - SHOWING CLASSIFICATION ACCURACY  OF EACH GESTURE 

Feature Number 
Classification 

Accuracy 

1 85% 

2 90% 

3 85% 

4 75% 

5 80% 

 

Average 

Classification 

Accuracy 

83% 

VII. DISCUSSION AND CONCLUSIONS 

 
EMG interface is a pillar in the world of rehabilitation that 

brings back hope for incapable stroke victims. There has been 
extensive work in improving upper limb EMG interface 
systems in the past decade to make them more accurate and 
able to capture more gestures. Neuromuscular interface 
systems aimed for stroke patients should be created with the 
users in mind, and hence considering the practicality and 
robustness of them is as important as considering their 
accuracy. This study aimed to demonstrate the feasibility of a 
robust and practical EMG interface system that is simple yet 
accurate, and consists of components readily available. The 
sleeve produced is able to slide onto anyone’s forearm and is 
fully reusable, as opposed to previously developed systems 
that are either too bulky/uncomfortable or are based on using 
adhesive, gelled electrodes that are single-use.  

Furthermore, this study successfully demonstrated, for the 
first time, that it is possible to have a functional informative 
EMG system able to classify five gestures using custom-made 
3D-printed electrodes printed in conductive PLA material. 
Such electrodes are very cheap to produce and the fact that 
they are modelled on software allows full customisation in 
terms of shape and size. Both the above points stress on how 
this study aimed to produce a wearable that is actually usable, 
not one to be used in a ‘perfect world’ that is just for 
experimental purposes. Average readings of recorded data 
were the features extracted from the filtered EMG data and 
used to train five SVM classifiers in a One-Vs-All system. 
Testing the classifier yielded an online classification accuracy 
of 83% on average. 

Taking the findings of this study further is essential. Future 

work includes attempting to extract different features from 

the signal, such as Root Mean Square [23] [6] or Wavelet 

Packet Transform [24] in hopes of them being more 

informative. Also, the trained SVM being used may be more 

accurate if more training data was fed into it from more 

people. Inspired by the work of Benussi et al [17], a 

lock/unlock gesture can be defined, where gesture 

recognition is activated only after that specific gesture is 

performed. The effect of customizing the shape/size of the 

3D electrode model on the system’s robustness and accuracy 

can be explored as well.  
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