

This is a repository copy of *The Unique Clinical Phenotype and Exercise Adaptation of Fontan Patients With Normal Exercise Capacity.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154148/

Version: Accepted Version

Article:

Powell, AW, Chin, C, Alsaied, T et al. (5 more authors) (2020) The Unique Clinical Phenotype and Exercise Adaptation of Fontan Patients With Normal Exercise Capacity. Canadian Journal of Cardiology, 36 (9). pp. 1499-1507. ISSN 0828-282X

https://doi.org/10.1016/j.cjca.2019.11.006

© 2019 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	
2	
3	
4	
5	
6	
7	
8 9	The unique clinical phenotype and exercise adaptation of Fontan patients with normal exercise capacity
10 11 12	Adam W. Powell, MD ^{1,2} , Clifford Chin, MD ^{1,2} , Tarek Alsaied, MD ^{1,2} , Harry B. Rossiter, PhD ^{3,4} , Samuel Wittekind, MD, MSc ^{1,2} , Wayne A. Mays, MS, RCPT ^{1,2} , Adam Lubert, MD ^{1,2} , Gruschen Veldtman, MBChB ^{1,2}
14 15 16 17 18	 ¹Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH ²The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH ³Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA and ⁴Faculty of Biological Sciences, University of Leeds, Leeds, UK
19	Address for Correspondence: Adam Powell, MD
20	3333 Burnett Ave., MLC 2003
21	Cincinnati, OH 45229-3026
22	Telephone: 513-636-4432
23	Fax: 513-636-6952
24	Adam.powell@cchmc.org
25	
26	
27	Word Count: 3000
28	
29	Key words: Fontan; exercise capacity; cardiopulmonary exercise testing; oxygen uptake; oxygen
30	pulse; stroke volume.
31	

32 ABSTRACT: Abstract Word Count: 232

33 **Background**: Exercise limitation is almost universal among Fontan patients. Identifying unique clinical features in the small fraction of Fontan patients with normal exercise capacity (high 34 capacity Fontan, HCF) provides potential to inform clinical strategies for those with low exercise 35 capacity (usual Fontan, UF). Methods: We performed a retrospective chart review of all single 36 37 ventricle patients palliated with a Fontan operation who underwent incremental cardiopulmonary 38 exercise testing at Cincinnati Children's Hospital Medical Center from 2013-2018. Comparison was between patients with peak oxygen uptake (VO₂peak) \leq vs \geq 80% predicted. **Results**: 39 40 Twenty two of 112 patients were classified as HCF (68% female; 18±7 years). During incremental exercise, VO₂peak (86.1±6.1% vs 62±12.2 % predicted; p<0.001) was greater in 41 HCF vs UF despite similar chronotropic impairment, resulting in a greater oxygen pulse in HCF. 42 Pulmonary function, breathing reserve and V_E/VCO₂ slope were not different between groups. 43 HCF were more likely to self-report exercise >4 days/week for at least 30 minutes (77% vs 10%, 44 p<0.001), have normal systolic function (95% vs 74%, p=0.003), have fewer post-operative 45 complications (8% vs 36%, p=0.04) and shorter post-Fontan length of stay (8±2.8 vs 12.4±0.9 46 days, p=0.04). Conclusions: Approximately 1 in 5 Fontan patients who undergo 47 cardiopulmonary exercise testing have normal exercise capacity despite chronotropic 48 impairment. This implies a better preserved stroke volume, perhaps due to greater muscle pump-49 mediated preload. Additionally, a complicated perioperative Fontan course is associated with 50 51 eventual impaired functional capacity.

52

54 Electronic Table of Contents Summary:

Identifying unique features in Fontan patients with normal exercise capacity provides potential to inform clinical strategies for those in whom exercise capacity is limited. Approximately 1 in 5 Fontan patients have normal exercise capacity despite chronotropic impairment. This implies a better preserved stroke volume, perhaps due to greater muscle pump-mediated preload. Pulmonary function and ventilatory responses during exercise did not differ. Additionally, a complicated perioperative Fontan course is associated with eventual impaired functional capacity.

62

63 **INTRODUCTION**:

The Fontan operation provides excellent initial palliation for patients with univentricular 64 circulations. Venous return from the body is surgically redirected into the pulmonary arteries 65 without first passing into the single ventricle. In the process, it relieves cyanosis and reduces 66 volume load of the single ventricle (1). Inherent to the hemodynamic characteristics of the 67 Fontan procedure is a restriction in ventricular preload, especially during exercise, due to the 68 lack of ventricular augmentation of pulmonary blood flow (2). This results in a near universal 69 limitation of aerobic capacity (VO₂peak), with the majority of patients being below 80% 70 predicted VO₂peak (3,4). Low aerobic capacity is an important marker of mortality and clinical 71 72 morbidity in recent studies (5). Nevertheless, a small fraction of Fontan patients have normal aerobic capacity on cardiopulmonary exercise testing ($VO_{2peak} > 80\%$ predicted) (6). Very little 73 is known about this group. Their clinical and physiological characteristics provide potential to 74 75 better understand how more favorable hemodynamic responses may be harnessed in the

therapeutic setting. We undertook this study to: [i] characterize the clinical phenotype of Fontan
patients with normal exercise capacity; [ii] define differences in submaximal and maximal
responses to incremental cardiopulmonary exercise testing between high capacity Fontan (HCF)
and the usual Fontan (UF) population who manifest exercise limitation; and [iii] determine
possible risk factors that can predict future impaired functional capacity, including how
ventricular function affects exercise results in the UF group.

82 **METHODS**:

We performed a retrospective chart review of all single ventricle patients with Fontan 83 84 palliation who underwent a cardiopulmonary exercise test (CPET) at Cincinnati Children's Hospital Medical Center from 2013-2018. HCF patients were defined on the basis of having 85 normal VO₂peak (i.e. ≥80% predicted), and were compared with UF patients with low VO₂peak 86 87 (i.e. <80% predicted) (7). Exclusion criteria included lack of a maximal effort exercise test and incomplete exercise data. Demographic data was obtained from chart review including age, sex, 88 height, weight, medications, age at testing, age at Fontan, physical activity and New York Heart 89 90 Association (NYHA) functional class. Patients were determined to be physically active by selfreport of active engagement in organized sports, regular attendance at fitness classes or moderate 91 to vigorous effort exercise ≥ 4 days a week for 30 minutes or more. Additionally, systemic 92 ventricular systolic function and atrioventricular valve insufficiency was recorded from the 93 echocardiogram report performed within six months of the CPET and was measured by two 94 independent pediatric cardiologists. UF patients were further subdivide into having normal and 95 abnormal ventricular systolic function to further examine the impact of ventricular function on 96 the exercise responses in these more typical Fontan patients. Laboratory results from annual 97 98 screening labs were recorded, including hemoglobin, platelets, aspartate aminotransferase (AST),

alanine aminotransferase (ALT), total serum protein, serum albumin, and gamma-glutamyl
transferase (GGT). When available, Fontan surgical records and discharge summaries were
reviewed and the pre-Fontan oxygen saturation, length of stay, time from Glenn to Fontan, total
cardiopulmonary bypass time, weight and height and hospital discharge, and post-surgical
complications (including complicated effusions, acquired heart block requiring pacemaker
placement, wound infection, surgical revision, catheter based intervention prior to discharge
and/or pancreatitis) were recorded.

All patients underwent exercise testing on a stationary cycle ergometer (Lode Corival) 106 107 using an incremental ramp protocol. The incremental rate was chosen based on the patient's 108 body surface area (BSA) with a goal to reach intolerance in approximately 10 minutes. Cardiopulmonary responses to exercise were assessed breath-by-breath (Ultima CardiO2, MGC 109 110 Diagnostics). Criteria for a maximal effort exercise test was if 2 of the following 3 criteria were met: respiratory exchange ratio (RER) >1.10; maximal heart rate greater >85% of the age 111 predicted maximum (220 - age in years); or maximal Rating of Perceived Exertion >18 on a 6-20 112 scale (8). Predicted VO₂peak was calculated per Wasserman et al and Cooper et al (7, 9). In 113 patients with a body mass index (BMI) < 18 and > 25, the underweight and overweight 114 regression equations were used (7). Percent predicted peak power (in watts, W) was calculated 115 using the prediction equation described by Wasserman et al (7). The chronotropic index (CI) 116 was defined as the heart rate reserve (measured peak heart rate minus resting heart rate) divided 117 by the difference between the predicted peak heart rate and the resting heart rate multiplied by 118 100; a CI >80% was identified as normal (10). 119

The anaerobic threshold (AT) was determined non-invasively using the modified V-slope
method (11). Physiologic variables during submaximal exercise were then measured at 25%
peak power and AT. 25% peak power was below AT for all participants.

As part of the exercise test, all patients underwent pulmonary function testing (PFT) using a metabolic cart (TrueMax 2400; Parvo Medics or Ultima CardiO2; Medgraphics). Each patient performed three tests with the best result used for analysis. Predicted FVC and FEV₁ were based on gender, age and height (12). Maximal voluntary ventilation (MVV) was calculated from FEV₁ x 40 (13). Breathing reserve was defined as follows: (MVV - maximum exercise ventilation)/MVV x 100 (7). Additionally, oxygen saturation by pulse oximetry (SpO₂) at rest and peak exercise were recorded from a forehead probe (Radical 7, Masimo).

Data are presented as mean ± standard deviation. Differences between HCF and UF 130 groups various states of exercise were assessed using an unpaired t-test for normally distributed 131 data and the Wilcoxon Signed-Rank Test for non-normally distributed data where appropriate. 132 133 Univariate association between normally distributed variables was estimated using the Pearson correlation coefficient. A stepwise multivariable linear regression modeling procedure with 0.1 134 as the significance level for entry and 0.05 as the significance level for retention in the model 135 136 was constructed to determine independent predictors of percent predicted VO₂peak. In addition, differences between UF patients with normal and abnormal systolic function as measured by 137 echocardiogram were assessed using an unpaired t-test for normally distributed data and the 138 Wilcoxon Signed-Rank Test for non-normally distributed data where appropriate. All p-values 139 were two-tailed (where applicable) and differences and associations were considered significant 140 when p < 0.05. Statistical analyses were performed using JMP®, Version 14 from SAS Institute 141 Inc. (Cary, NC). 142

143 **RESULTS**:

A total of 130 Fontan patients underwent cardiopulmonary exercise testing from 2013-2018 with 112 completing a maximal effort test and included for analysis. A total of 22 patients achieving a VO₂peak >80% of predicted. These 22 patients comprised the HCF group. Baseline characteristics are shown (Table 1). HCF tended (p=0.06) to be more predominantly female than the UF group.

The HCF group comprised of the following anatomic diagnoses: tricuspid atresia (n=12, 149 54%), hypoplastic left heart syndrome (n=3, 14%), double inlet left ventricle (n=4, 18%), 150 pulmonary atresia with intact ventricular septum (n=2, 9%), and double outlet right ventricle 151 with pulmonary atresia (n=1, 5%). This distribution was not significantly different from the UF 152 group: tricuspid atresia (n=35, 39%), hypoplastic left heart syndrome (n=29, 32%), double inlet 153 left ventricle (n=11, 12%), pulmonary atresia with intact ventricular septum (n=7, 8%), double 154 outlet right ventricle with pulmonary atresia (n=4, 5%), transposition of the great arteries with 155 156 pulmonary stenosis (n=1, 2%), and unbalanced complete atrioventricular defect (n=1, 2%)(Table 1). The type of Fontan connection in the HCF group included extracardiac conduit (n=12, 157 54%), lateral tunnel (n=8, 36%), classic atriopulmonary connection (n=1, 5%) and unknown 158 159 (n=1, 5%) (Table 1). Fontan surgical records and detailed discharge summaries following Fontan completion were available for 80 patients (73%). The HCF group had a shorter length of 160 stay (8 ± 2.8 vs 12.4 ± 0.9 days, p=0.04), lower body mass index at hospital discharge (14.5 ± 1.3 vs 161 15.9 ± 2.1 kg/m², p=0.01) and fewer post-operative complications following the Fontan (8% vs 162 36%, p=0.04) than the UF group (Table 2). 163

Laboratory findings near the time of the CPET were not significantly different betweengroups (Table 2). Four (18%) HCF patients had evidence of Fontan associated liver disease as

they had splenomegaly, thrombocytopenia and hepatic nodules on imaging as opposed to 33
(37%) of UF (p=0.08). There was one patient death and one listed for transplant during the study
period, both in the UF group. In the HCF group, 1 patient had a pacemaker/ICD compared to 6
patients in the UF group.

170 In this cohort, 102 patients had an echocardiogram at the time of their CPET (Table 2). 171 Among HCF, only 1/21 (4.5%) had had ventricular systolic dysfunction classified as mild or 172 greater, as opposed to 21/81 (26.0%) in the UF group (p=0.03). There was no significant difference between the degree of systemic atrioventricular valve regurgitation between the 173 174 groups. Pulmonary function data were available (i.e. good effort given during the test and 175 complete data available) for 95 patients (19 HCF, 76 UF), and there were no significant differences between HCF and UF in the measures evaluated (Table 2). HCF patients tended to 176 177 have a lower VE/VCO₂ slope (32.1±4.4 vs 34.9±7.3, p=0.1). 17 of the 22 HCF patients selfreported their functional capacity as active including regular performance of running, weight 178 lifting, cycling, dance or swimming as opposed to 9 of the 88 UF patients (p<0.00001). There 179 180 was no significant difference in the NYHA functional class between groups.

At 25% peak power HCF patients had lower heart rate (47.4±6.9 vs 50.9±6.6 % 181 predicted, p=0.03), yet greater VO₂ (34.3 ± 10.5 vs 26.7 ± 6 % predicted VO₂peak, p<0.0001). 182 Heart rate at AT was not different between HCF and UF, yet % predicted VO₂peak remained 183 substantially higher in the HCF group (Table 3; Figure 1). At peak exercise, there remained only 184 a significant difference between the groups in % predicted VO₂peak (Figure 2), which resulted in 185 a normal to above normal O₂Pulse in the HCF group compared to a low O₂Pulse in the UF group 186 (Table 4). To determine whether differences at 25% peak power were associated with the greater 187 absolute power achieved in HCF patients, we evaluated responses at the same absolute power in 188

both groups (40 W). Four UF patients were removed from this analysis because 40W was above
AT. In HCF at 40 W, VO₂ (39.9±12.2 vs 32.4±10.4 % predicted VO₂peak, p=0.004) remained
significantly greater, without a significant difference in HR (52.1±9 vs 54.2±8 % predicted,
p=0.29).

We also compared normal (n=60) and abnormal (n=21) ventricular systolic function on echocardiogram within the UF group. At 25% peak power, there was no significant difference in the VO₂, heart rate or O₂Pulse between UF with normal vs abnormal systolic function. At AT, heart rate was significantly greater in UF with normal vs abnormal systolic function (67.7±11 vs 61.7±11.3 % predicted, p=0.04) (Figure 3). This difference was maintained at peak exercise (84.3±9.2 vs 73.3±15.6 % predicted, p<0.005). VO₂peak was also less in UF with systolic dysfunction (63.7±11 vs 56±14.3 % predicted, p=0.02) (Figure 3).

200 On univariate analysis, echocardiographic ventricular systolic function at time of CPET, 201 a self-reported active lifestyle, length of stay following Fontan completion, and post-operative 202 complications were associated with % predicted VO₂peak (Table 5). On multivariable analysis, 203 a self-reported active lifestyle and ventricular systolic function at time of CPET were associated 204 with % predicted VO₂peak (Table 5).

205 **DISCUSSION:**

Functional capacity, as assessed by exercise testing, is usually severely limited in Fontan patients. The physiological mechanisms of this limitation includes inadequate preload augmentation to the single ventricle (14), inadequate heart rate reserve (15), and poor conditioning with relative skeletal muscle weakness (16). Poor exercise performance is associated with acute cardiovascular decompensation, need for heart transplantation, and early mortality (17). There is evidence however that a few Fontan patients achieve normal exercise performance (6). The most notable study looking at high-performing Fontan patients involved 14 patients all of which had \geq 80% predicted peak VO₂ on CPET and without comparison to Fontan patients with poor exercise capacity (6). Their characteristics however remain poorly understood despite the obvious potential lessons that can be learned from their exercise responses.

This study examined the exercise adaptation of high capacity Fontan patients during ramp incremental cycle ergometer exercise up to the limit of tolerance. We found that 1 in 5 Fontan patients who undergo cardiopulmonary exercise testing have normal exercise capacity for their age, gender, and body habitus. Such high functioning Fontan patients tend to lead physically more active lifestyles, but do not differ in baseline spirometry or the ventilatory response to exercise. While there was a statistically significant difference between the groups in baseline SpO₂ prior to CPET, this is likely not clinically significant as both groups were normal.

We did not find any significant difference in body habitus, gender, systemic right vs. left 224 ventricle, or NYHA functional class between HCF and UF patients. Instead, profound 225 differences were demonstrated in gas exchange patterns at submaximal and peak exercise. In 226 227 HCF, VO₂ was greater from early to peak exercise, with no difference between groups in the degree of mild chronotropic impairment. This resulted in a greater O₂Pulse in HCF throughout 228 exercise by allowing more time for ventricular filling at slower heart rates as expected based on 229 230 the Starling mechanism. This is somewhat expected when making a comparison between fit and less fit individuals. This O₂Pulse pattern implies greater stroke volume augmentation and/or 231 peripheral O₂ extraction in the fit Fontan phenotype. However, greater stroke volume is the 232 more likely mechanism given that fractional O₂ extraction is relatively invariant among patients 233

234	when normalized to % VO ₂ peak (7) or in total cavopulmonary connection circulations (19). In
235	circulations with a subpulmonary pump, exercise adaptation is facilitated through the effect of
236	the muscle and respiratory pumps augmenting ventricular preload (18). In patients with a Fontan
237	circulation, stroke volume, chronotropy and cardiac augmentation is blunted throughout exercise,
238	beginning at unloaded exercise. We could not demonstrate differences in ventilatory responses
239	or ventilatory efficiency, emphasizing the potential role of the skeletal muscle pump (particularly
240	lower limb muscle mass and strength) in enhancing the exercise response in the HCF group. In
241	addition, the workload during different stages of exercise closely mirrored the oxygen
242	consumption, as expected in comparing fit and less fit individuals.
243	Shafer et al. demonstrated early blunting of SV augmentation in Fontan patients, but
244	showed that cardiac output can still be increased through the greater heart rate response and
245	increased preload achieved through the skeletal and respiratory muscle pumps (18). Recent work
246	has demonstrated a close correlation between thigh cross-sectional area and relative VO ₂ peak in
247	Fontan patients (20). It is unclear whether impaired cardiac function in Fontan patients
248	contributes to an under-muscled phenotype, e.g. by impaired nutritive flow and slower
249	oxygenation kinetics during development (21). Nevertheless, it is clear that the muscle strength
250	responds well to exercise training in Fontan patients (in both respiratory and ambulatory
251	muscles) (22), suggesting that physical activity and exercise training are an important target to
252	help maintain physical function and aerobic capacity. This is further supported by self-reported
253	active lifestyle being independently associated with VO2peak on multivariable analysis.
254	While describing the exercise adaptation patterns of HCF patients is important in
255	understanding the physiology during exercise in these patients, we also attempted to determine

risk factors earlier in life that could explain why certain Fontan patients were able to have more

257 normal exercise capacity. While there were no differences between anatomic or surgical phenotype, we found significant differences between the groups in length of stay following 258 259 Fontan completion, post-Fontan complications and body mass index at hospital discharge. 260 Additionally, there was a statistically significant correlation between VO₂peak and post-Fontan complications and length of stay following Fontan. This can imply that a difficult postoperative 261 course following the Fontan negatively affects future functional capacity. This is in keeping 262 with previous research demonstrating length of stay as a strong risk factor for worse late 263 outcomes (23). While length of stay was not shown to be associated with VO₂peak on 264 multivariable analysis, this may be a reflection of the overall small numbers in this study. 265

266 Ventricular systolic function at the time of CPET appears to be associated with functional capacity. For one, systolic dysfunction was less common in the HCF compared to the UF group. 267 268 When further stratified, the UF patients with worse systolic function had a significantly lower 269 heart rate response and lower VO₂peak, compared to those UF patients with normal systolic 270 function. On multivariable analysis, ventricular systolic function at the time of exercise testing 271 was associated with VO₂peak. This is the opposite of previously reported findings, yet this is a 272 somewhat intuitive finding which stresses the importance of a healthy myocardium in achieving a high aerobic capacity (24). 273

We found no significant differences in GGT between the HCF and UF groups. GGT is one of the earliest markers of Fontan associated liver disease and increases primarily in response to congestion (25). Our findings suggest that the physically active and aerobically fit HCF patients had no greater degree of systemic congestion than UF. This is reassuring in that it suggests the physiologic adaptation required for greater physical activity and physical fitness does not necessarily increase the burden of hepatic disease as we and others have previously

suggested (26-27). Indeed, the tendency for a lower incidence of liver abnormality in the HCF
group is consistent with the protective effect of aerobic fitness and/or activity on liver and
inflammatory function, as demonstrated in preclinical studies (28). This study therefore has
important implications in highlighting the potential positive role that exercise rehabilitation
geared towards skeletal muscle strength improvement may play in cardiovascular functioning
during submaximal exercise in Fontan patients.

286 There were several limitations to this study. This was a retrospective observational study over an extended period of time. The active study group was composed of only 22 patients, 287 288 which is a relatively small number and limited the sensitivity to detect significant differences 289 among variables between the groups. In addition, activity was self-reported by patients and noted in chart review, which while helpful in showing the health perception of Fontan patients is 290 291 not as effective as objective measures of daily physical activity such as activity monitors. Addition study using validated surveys and activity monitors should be performed examining the 292 exercise habits of Fontan patients. We did not directly measure stroke volume or cardiac output 293 during exercise, and we did not specifically investigate arterio-venous O₂ concentration 294 295 differences to identify the role of skeletal muscle O_2 extraction. In this study we also did not 296 endeavor to define differences between the Fontan circulation and normal subjects during submaximal exercise, and we refer the reader to previous studies for that comparison (18-19). 297 Lastly, the determination of ventilatory anaerobic threshold by V-slope is subjective with 298 299 significant reviewer variability and its clinical use may be limited for these reasons (29).

In conclusion, almost one fifth of Fontan patients can achieve a normal aerobic capacity
 on a cardiopulmonary exercise test. These HCF patients tended to have a shorter, less
 complicated immediate postoperative course, implying that difficulties during the post-Fontan

period have long-lasting, detrimental effects on cardiorespiratory fitness. These patients also 303 tend to have normal ventricular systolic function, highlighting the importance of myocardial 304 health in maximizing aerobic capacity. In addition, we observed a significantly greater O₂Pulse 305 306 during submaximal exercise in HCF patients suggesting better preserved SV in this high capacity group. Finally, HCF patients self-reported greater habitual physical activity, which may be due 307 to better exercise tolerance or, more intriguingly, it may be that regular exercise training 308 increases cardiorespiratory fitness, as demonstrated in Fontan rehabilitation studies. Overall, 309 these data imply that stronger skeletal and respiratory muscle pump function may increase pre-310 load and SV, allowing normal aerobic capacity in these patients. These findings highlight the 311 importance of preserving the mechanisms that allows for stroke volume augmentation 312 throughout the Fontan patient's lifetime. 313 314 FUNDING: This research received no specific grant from any funding agency, commercial, or not-for-profit sectors. 315

ACKNOWLEDGMENTS: The authors would like to acknowledge The Heart Institute and the
 Cardiopulmonary Exercise Laboratory at Cincinnati Children's Hospital Medical Center for their
 support in this project.

REFERENCES:

321	1.	Gewillig M, Brown SC. The Fontan circulation after 45 years: update in physiology.
322		<i>Heart</i> 2016 Jul 15;102:1081-6.
323	2.	Gewillig M, Brown SC, Eyskens B, et al. The Fontan circulation: who controls cardiac
324		output? Interact Cardiovasc Thorac Surg 2010;10:428-33.
325	3.	Fredriksen PM, Veldtman G, Hechter S, et al. Aerobic capacity in adults with various
326		congenital heart disease. Am J Cardiol 2001;87:310-4.
327	4.	Kempny A, Dimopoulos K, Uebing A, et al. Reference values for exercise limitations
328		among adults with congenital heart disease. Relation to activities of daily life-single
329		centre experience and review of the published data. Eur Heart J 2012;33:1386-96.
330	5.	Egbe AC, Driscoll DJ, Khan AR, et al. Cardiopulmonary exercise test in adults with prior
331		Fontan operation: the prognostic value of serial testing. Int J Cardiol 2017 May 15;235:6-
332		10.
333	6.	Cordina R, Plessis K, Tran D, d'Udekem Y. Super-Fontan: Is it possible? J Thorac
334		Cardiovasc Surg 2018;155:1192-4.
335	7.	Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of Exercise
336		Testing and Interpretation: Including Pathophysiology and Clinical Applications. 3 rd
337		edition. Philadelphia, Pa: Lippincott, Williams & Wilkins, 1999.
338	8.	Borg G, Borg's Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics,
339		1998.
340	9.	Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K. Aerobic parameters of exercise
341		as a function of body size during growth in children. J Appl Physiol 1984;56:628-34.

342	10. Wilkoff BL, Corey J, Blackburn G. A mathematical model of cardiac chronotropic
343	response to exercise. J electrophysiol 1989;3:176-80.
344	11. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold
345	by gas exchange. J appl Physiol 1986 Jun;60:2020-7.
346	12. Goldman HI, Becklake MR. Respiratory function tests: normal values at median altitudes
347	and the prediction of normal results. Am Rev Tuberc 1959;79:457-67.
348	13. Campbell SC. A comparison of the maximum voluntary ventilation with the forced
349	expiratory volume in one second. J Occup Med 1982;24:531-3.
350	14. Wong J, Pushparajah K, de Vecchi A, et al. Pressure-volume loop-derived cardiac indices
351	during dobutamine stress: a step towards understanding limitation in cardiac output in
352	children with hypoplastic left heart syndrome. Int J Cardiol 2017 Mar 1;230:439-46.
353	15. Diller GP, Dimopoulos K, Okonko D, et al. Heart rate response during exercise predicts
354	survival in adults with congenital heart disease. J Am Coll Cardiol 2006;48:1250-6.
355	16. Cordina R, O'Meagher S, Gould H, et al. Skeletal muscle abnormalities and exercise
356	capacity in adults with a Fontan circulation. Heart 2013 Oct;99:1530-4.
357	17. Udholm S, Aldweib N, Hjortdal VE, Veldtman GR. Prognostic power of
358	cardiopulmonary exercise testing in Fontan patients: a systematic review. Open Heart
359	2018 Jul 3;5:e000812.
360	18. Shafer KM, Garcia JA, Babb TG, Fixler DE, Ayers CR, Levine BD. The importance of
361	the muscle and ventilatory pumps during exercise in patients without a subpulmonary
362	ventricle (Fontan operation). J Am Coll Cardiol 2012 Nov 13;60:2115-21.

363	19	. Resenthal M, Bush A, Deanfield J, Redington A. Comparison of cardiopulmonary
364		adaption during exercise in children after the atriopulmonary and total cavopulmonary
365		connection Fontan procedures. Circulation 1995 Jan 15;91:372-8.
366	20	. Turquetto ALR, Dos Santos MR, Sayegh ALC, et al. Blunted blood supply and
367		underdeveloped skeletal muscle in Fontan patients: The impact on function capacity. Int J
368		Cardiol 2018 May 25; pii: S0167-5273(17)37880-4. doi: 10.1016/j.ijcard.2018.05.096.
369		[Epub ahead of print].
370	21	. Sandberg C, Crenshaw AG, Elcadi GH, et al. Slower skeletal muscle oxygentation
371		kinectics in adults with complex congenital heart disease. Can J Cardiol 2019 May 7; pii:
372		S0828-282X(19)30299-5. doi: 10.1016/j.cjca.2019.05.001.
373	22	. Laohachai K, Winlaw D, Selvadurai H, et al. Inspiratory muscle training is associated
374		with improved muscle strength, resting cardiac output and the ventilatory efficiency of
375		exercise in patients with a Fontan circulation. J Am Heart Assoc 2017 Aug 21;6.
376	23	Downing TE, Allen KY, Glatz AC, et al. Long-term survival after the Fontan operation:
377		twenty years of experience at a single center. J Thorac Cardiovasc Surg 2017
378		Jul;154:243-53.
379	24	. Wolff D, van Melle JP, Dijksta H, et al. The Fontan circulation and the liver: a magnetic
380		resonance diffusion-weighted imaging study. Int J Cardiol 2016 Jan 1; 202:595-600.
381	25	Paridon SM, Mitchell PD, Colan SD, et al. A cross sectional study of exercise
382		performance during the first 2 decades of life after the Fontan operation. J Am Coll
383		Cardiol 2008;52:99-107
384	26	Navaratnam D, Fitzsimmons S, Grocott M, et al. Exercise-induced systemic venous
385		hypertension in the Fontan circulation. Am J Cardiol 2016 May 15;117:1667-1671.

386	27. Broda CR, Sriraman H, Wadhwa D, et al. Renal dysfunction is associated with higher
387	central venous pressures in patients with Fontan circulation. Congenit Heart Dis 2018
388	Jul;13:602-7.
389	28. Laye MJ, Rector RS, Borengasser SJ, et al. Cessation of daily wheel running
390	differentially alters fat oxidation capacity in liver, muscle and adipose tissue. J Appl
391	Physiol 2009 Jan;106:161-8.
392	29. Yeh MP, Gardner RM, Adams TD, et al. "Anerobic threshold": problems of
393	determination and validation. J Appl Physiol Respir Environ Exerc Physiol 1983
394	Oct;55:1178-86.
395	
396	
350	
397	
398	
399	
400	
400	
401	
402	
403	
404	
404	
405	

406

407

408 FIGURE LEGENDS:

409	Figure 1: A comparison of the VO ₂ , heart rate, O_2 Pulse, and V_E/VCO_2 slope between the high
410	capacity (orange) and usual (purple) Fontan patients during incremental exercise. HCF (high
411	capacity Fontan), UF (usual Fontan), VO2 (oxygen uptake), % Pred (percent predicted), O2Pulse
412	(oxygen pulse), V _E /VCO ₂ (ventilatory equivalent for CO ₂ output), AT (anaerobic threshold).
413	
414	Figure 2: Parallel plot demonstrating the progression of percent predicted of VO ₂ peak during
415	different stages of exercise in individual patients.
416	
417	Figure 3: Differences at peak exercise between VO ₂ , O ₂ Pulse, and heart rate between the high
418	capacity Fontans (orange), usual Fontan with normal systolic function (purple) and usual Fontans
419	with abnormal systolic function (blue). VO2 (oxygen uptake), O2Pulse (oxygen pulse), AT

420 (anaerobic threshold).

421

422

	HCF	UF	p-value
Number (n)	22	88	
Female Sex (%)	68%	45%	0.06
Age at CPET (yrs)	18.1±6.6	17.3±6.0	0.60
Age at Fontan (yrs)	3.6±1.6	4.0±1.8	0.46
Time from Fontan			
completion to CPET	14.7±6.7	13.6±6	0.49
(yrs)			
Height (cm)	159±15	162±10	0.50
Weight (kg)	53.2±18.4	60.7±18.6	0.13
BSA (m ²)	1.52±0.30	1.64±0.30	0.26
	Triouspid atrasia 54%	Tricuspid atresia 39%	
		HLHS 32%	
	HLHS 14%	Double inlet left ventricle	
	Double inlet left ventricle	12%	
Anatomic diagnosis	18%	PA/IVS 8%	N.S.
	PA/IVS 9%	DORV/PA 5%	
	DORV/PA 5%	TGA/pulmonary stenosis	
		2%	
		Unbalanced CAVC 2%	
	EC 54%	EC 68%	
Fontan subtype	LT 36%	LT 26%	N.S.
	AP 5%	AP 2%	

	NA 5%	NA 4%	
Systemic LV	77%	63%	0.19
Predominant rhythm	Sinus 84%Sinus 96%Ectopic atrial 16%Ectopic atrial 4%		0.06
NYHA Class	I 79% II 21%	I 71% II 23% III 1% Unknown 5%	0.35
Active lifestyle	77%	10%	< 0.00001
Cardiac medication	ACE inhibitor 42% B-blocker 9% Spironolactone 4% None 58%	ACE inhibitor 59% B-blocker 8% Spironolactone 10% Diuretic 13% Digoxin 3% None 34%	N.S.
Anticoagulation	Aspirin 80% Warfarin 10% None 10%	Aspirin 77% Warfarin 20% None 3%	N.S.
Fontan LOS (days)	8.1±2.8	12.4±8.9	0.04
Pre-Fontan SpO ₂ (%)	80.9±4.3	81.4±4.1	0.40
Post-operative complications (%)	8%	36%	0.04

Cardiopulmonary bypass time (min)	91.8±17.5	99.8±30.9	0.20
Time from Glenn to Fontan (yrs)	3.1±1.5	3.2±1.8	0.50
Height at hospital discharge (cm)	97.9±12.1	97.7±10.7	0.90
Weight at hospital discharge (kg)	13.9±3.6	15.3±5.3	0.30
BMI at hospital discharge (kg/m ²)	14.5±1.3	15.9±2.1	0.01

Table 1: Baseline demographics and clinical characteristics of HCF and UF patients at time of exercise test. HCF (high capacity Fontan), UF (usual Fontan), CPET (cardiopulmonary exercise test), yrs (years), BSA (body surface area), cm (centimeters), kg (kilograms), m² (meters squared), BMI (body mass index), LV (left ventricle), HLHS (hypoplastic left heart syndrome), PA (pulmonary atresia), IVS (intact ventricular septum), DORV (double outlet right ventricle), TGA (transposition of the great arteries), CAVC (complete atrioventricular canal defect), EC (extracardiac), LT (lateral tunnel), AP (atriopulmonary), NA (unknown), NYHA (New York Heart Association), LOS (length of stay), min (minutes).

		HCF		UF	Normal	p-
	HCF	n	UF	n	Values	value
Echocardiogram results						
Abnormal ventricular function	1 (mild)	/21	15 (mild), 5 (mod), 1 (sev)	/81		0.03
Mod-sev AV valve insufficiency	2	/21	12	/80		0.52
PFT results						
FVC (% pred)	77.1±15	/19	79.3±15.4	/76	>80	0.59
FEV ₁ (% pred)	76.4±15.6	/19	77.1±17.3	/76	>80	0.87
FEV ₁ /FVC (% pred)	99.9±7.1	/19	96.5±9.8	/76	>80	0.19
Breathing reserve (%)	39.7±10.6	/19	44.8±16.3	/76	>20	0.20
Laboratory results						
Hemoglobin (gm/dL)	16±1.4	/19	15.5±1.6	/65	13-16	0.21
Platelets (K/mcl)	198.3±58.5	/19	191.4±71.9	/65	135- 466	0.54
Albumin (gm/dL)	4.4±0.4	/19	4.2±0.6	/64	3.3-4.8	0.22
AST (u/L)	27.2±21.1	/19	27.4±10.7	/69	10-36	0.10
ALT (u/L)	36.9±25.4	/19	39±18	/69	12-49	0.28
Total Protein (mg/dL)	7.5±1.1	/19	7.5±1.4	/62	0.1-11	0.75
GGT (u/L)	62.4±39.7	/16	84.4±55.3	/31	5-55	0.06

Table 2: Resting echocardiographic, spirometric and laboratory results in HCF and UF patients.HCF (high capacity Fontan), UF (usual Fontan), n (number), Mod (moderate), sev (severe), AV

(atrioventricular), FVC (forced vital capacity), FEV₁ (forced expiratory volume in 1 second), % pred (percent predicted), AST (aspartate aminotransferase), ALT (alanine aminotransferase), GGT (gamma-glutamyl transferase).

	25% peak power			Anaerobic threshold			
	HCF	UF	p-value	HCF	UF	p-value	
HR (min ⁻¹)	95.7±14.1	103.3±14.5	0.03	138±21	134.5±23.7	0.410	
HR (% pred peak)	47.4±6.9	50.9±6.6	0.03	68.3±10	66.3±11	0.350	
SBP (mm Hg)	126.8±16.8	130±13.7	0.19	145±23.7	143.7±17.8	0.930	
VO ₂ (% pred of VO ₂ peak)	34.3±10.5	26.7±5.9	<0.0001	61.8±9.6	46.8±12	<0.0001	
Indexed VO ₂ (ml.kg.min ⁻¹)	12.1±3.1	10.5±2.3	0.006	21.9±18.6	18.6±0.6	0.008	
O ₂ Pulse (% pred of maximum O ₂ Pulse)	71.3±16.2	53.4±13.5	<0.0001	91.6±16.2	71±16.9	<0.0001	
Power output (% pred of peak power)	31.5±10.5	29.2±10.2	0.35	65.5±15.9	42.1±17.8	<0.0001	
$V_{\rm E}$ (L.min ⁻¹)	17.3±4.0	18.5±4.3	0.23	34.0±7.6	33.2±9.2	0.630	
RR (min ⁻¹)	28.5±11	28.6±7.3	0.43	35.9±11.5	36.6±11	0.780	
$V_{T}(L)$	7.8±2.8	8.4±2.9	0.48	12.8±5.1	11.8±4.4	0.450	
SpO ₂ (%)	95.6±2.7	93.6±4	0.03	94.5±4.8	92.7±4.2	0.020	
V _E /VCO ₂	36.1±6.2	35.3±6.1	0.45	30±5.8	32.5±7.9	0.090	

Table 3: Submaximal cardiopulmonary exercise test responses between the high capacity Fontan (HCF) and usual Fontan (UF) patients at 25% peak power and anaerobic threshold. HCF (high capacity Fontan), UF (usual Fontan), RER (respiratory exchange ratio), VO₂ (oxygen uptake), % pred (percent predicted), O₂Pulse (oxygen pulse), V_E (minute ventilation), RR (respiratory rate),

 SpO_2 (oxygen saturation by pulse oximetry), SBP (systolic blood pressure), HR (heart rate), V_T (tidal volume), V_E/VCO_2 (ventilatory equivalent), AT (anaerobic threshold).

	Units	High Capacity Fontan	Usual Fontan	Normal	_
		(HCF)	(UF)	Values	p-value
Peak RER		1.19±0.14	1.18±0.10	>1.10	0.730
Incremental					
exercise test	min	8.7±1.1	8.1±1.4	8-10	0.060
duration					
Peak power (%	0/0	93 1+12 8	66 9+17 9	>80	<0.0001
pred)	70	<i>75</i> .1±12.0	00.7±17.7	- 80	<0.0001
VO ₂ peak (% pred)	%	86.1±6.1	61.5±12.2	>80	< 0.0001
VO ₂ peak	ml.kg.min ⁻¹	30.6±4.8	24.2±5.8	Variable	< 0.0001
Peak O ₂ Pulse (%	0/_	103 0+0 2	76 8+18 2	~80	<0.0001
pred)	/0	103.7-7.2	/0.8±18.2	~80	<0.0001
Baseline SpO ₂	%	97.6±1.8	96.0±2.2	>90	0.001
Peak SpO ₂	%	94.9±2.7	93.4±4.1	>90	0.130
SBP	mm Hg	154.1±25.9	157.3±20.2	Variable	0.540
Peak HR	min ⁻¹	168.1±13.9	165.4±25	Variable	0.780
Peak HR (% pred)	%	83.3±6.5	81.5±11.6	>85	0.880
Chronotropic index	%	74.3±9.0	69.8±19.1	>80	0.610
$\Delta V_E / \Delta V CO_2$		32.1±4.4	34.9±7.3	Variable	0.100
Peak V _E	L.min ⁻¹	59.9±20.2	57.6±20.9	Variable	0.630
Peak RR	min ⁻¹	48.6±8.9	49.4±11.6	<60	0.750

Table 4: Cardiopulmonary exercise test responses between the high capacity Fontan (HCF) and usual Fontan (UF) patients at peak exercise. HCF (high capacity Fontan), UF (usual Fontan), RER (respiratory exchange ratio), VO₂ (oxygen uptake), % pred (percent predicted), O₂Pulse (oxygen pulse), SpO₂ (oxygen saturation by pulse oximetry), SBP (systolic blood pressure), HR (heart rate), V_E/VCO₂ (ventilatory efficiency), V_E (minute ventilation), RR (respiratory rate).

Univariate analysis	R value	P value
Active lifestyle	0.45	<0.0001
Pre-CPET systolic function	0.29	0.004
Post-operative complications	-0.25	0.030
BMI at hospital discharge	-0.25	0.030
Fontan LOS	-0.22	0.040
Cardiopulmonary bypass time	-0.16	0.190
Weight at hospital discharge	-0.13	0.300
Age at CPET	-0.05	0.600
Time from Glenn to Fontan	-0.01	0.900
Height at hospital discharge	0.003	0.900
Multivariable analysis	Standardized β coefficient	P value
	(parameter estimates)	
Active lifestyle	0.24 (9.5±4.6)	0.040
Pre-CPET systolic function	-0.20 (-7.4±3.6)	0.040
BMI at hospital discharge	-0.20 (-1.7±0.9)	0.070
Post-operative complications	-0.03 (-1.1±4.9)	0.800
Fontan LOS	-0.02 (-0.03±0.2)	0.900

 Table 5: Results of the univariate and multivariable analysis for percent predicted of VO2peak.

 VO2 (oxygen uptake), CPET (cardiopulmonary exercise test), BMI (body mass index), LOS (length of stay).

