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We consider the implications of the swampland conjectures on scalar-tensor theories defined in the

Einstein frame in which the scalar interaction is screened. We show that chameleon models are not in the

swampland provided the coupling to matter is larger than unity and the mass of the scalar field is much

larger than the Hubble rate. We apply these conditions to the inverse power law chameleon and

the symmetron. We then focus on the dilaton of string theory in the strong coupling limit, as defined in the

string frame. We show that solar system tests of gravity imply that viable dilaton models are not in the

swampland. In the future of the Universe, if the low-energy description with a single scalar is still valid and

the coupling to matter remains finite, we find that the scalar field energy density must vanish for models

with the chameleon and symmetron mechanisms. Hence in these models dark energy is only a transient

phenomenon. This is not the case for the strongly coupled dilaton, which keeps evolving slowly, leading to

a quasi–de Sitter spacetime.

DOI: 10.1103/PhysRevD.101.083514

I. INTRODUCTION

The standard model of cosmology, the ΛCDM model, is

an excellent description of current cosmological and astro-

physical data. It requires two ingredients, which call for

physics beyond the standard model of particle physics: dark

matter and dark energy. Dark matter is believed to be a

particle appearing in theories beyond the standard model

(BSM), while dark energy has yet to find a satisfactory

explanation. The cosmological constant is the simplest

candidate for dark energy and the data are consistent with

it. It predicts that in the far future the Universewill approach

de Sitter spacetime with a constant expansion rate. Theories

which combine the principles of particle physics with that of

general relativity have yet to find an explanation for the

origin of the cosmological constant such as a residual

vacuum energy density. Recently it has been argued that

de Sitter spacetime cannot be realized in string theory; see,

e.g., [1–3], see [4] for a review, and see [5] for a word of

caution about the swampland program. If these results hold,

then either string theory, as currently understood, iswrong or

the current accelerated expansion is not due to a cosmo-

logical constant. Instead, it would have to be driven by other

degrees of freedom in the theory. The de Sitter and distance

conjectures, which we will summarize in the next section,

put constraints on the effective low-energy theory of string

theory. In particular, the de Sitter conjecture strongly

restricts the slope of the potentials for such scalar fields,

which has huge implications for inflation and dark energy

physics; for an incomplete list see [6–27]. At low energy it is

generally expected that, in the absence of underlying

symmetry, the scalar field responsible for the cosmic

acceleration should be coupled to matter. For models of

dark energy this follows from the quantum loops mediated

by gravitons that couple dark energy and matter. In string

theory, this is, for instance, the case of the string dilaton that

couples universally to matter. Such universal couplings

would naturally lead to violations of the solar system tests

of gravity due to the presence of a fifth force modifying

gravity significantly, hence ruling out most of these models

as low-energy candidates for a description of our Universe.

More generally, scalar fields that appear in string theory

could be coupled to different matter species with different

strengths. As such the couplings to dark matter are less

constrained than the ones to standard model particles,

simply because local tests of gravitation are not sensitive

to dark matter per se. However, if these couplings to dark

matter are constant, cosmology bounds them in a stringent
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way [28,29]. In the case of the interactions to the standard

model particles, the coupling of the scalar fields is strongly

constrained by the Cassini experiment [30] when the force

is long-ranged. Such small couplings are not natural unless

they result from the dynamics of the models, i.e., if they

follow from a screening mechanism [31]. Coming back to

the scalar field emanating from string theory whose

evolution would generate the late time acceleration of

the expansion of the Universe, it seems highly relevant

to investigate whether screening mechanisms, which would

lead to a dynamical suppression of fifth force effects, could

be realized in the string theory context. In this paper, we

will discuss three of such mechanisms studied so far in

cosmology, namely the chameleon and symmetron mech-

anisms and the strongly coupled dilaton. These models are

phenomenological, but they serve as a good playground

for other screening mechanisms. The strongly coupled

dilaton is inspired from stringy considerations, i.e., the

self-interaction potential of the runaway dilaton [32] and

the least coupling principle [33]. Let us briefly summarize

the basics of the mechanisms here:

(i) In the chameleon mechanism, the mass of the scalar

fields depends strongly on the environment [34].

This is achieved by an interplay of the interactions

with ambient matter and the self-interactions of the

field. Examples of these theories include fðRÞ
theories that are consistent with local experiments.

(ii) In the symmetron mechanism, the potential of a

scalar field is symmetry breaking, whereas the

conformal coupling is Z2 invariant [35]. The cou-

pling of the scalar field is field dependent. In regions

of high density, the symmetry ϕ → −ϕ is unbroken,

but in the low density region, this symmetry is

spontaneously broken. In dense environments the

coupling to matter would vanish.

(iii) In the case of the strongly coupled dilaton, the

potential of the scalar field is of exponential form,

V ∝ e−λϕ, in the string frame. The conformal cou-

pling of the scalar field to matter possesses a

minimum. In the absence of the potential the field

would be driven toward the minimum of the cou-

pling function during the radiation and matter

dominated areas, where the coupling of the scalar

to matter would vanish (this mechanism has been

called the “least-coupling principle” [33]). The

potential can be arranged such that the scalar field

acts as a dark energy component [36].

All three mechanisms will be discussed in more detail

below, with the emphasis on how these screening mech-

anisms are compatible with the de Sitter and distance

conjectures. As we will see, the swampland conjectures

will put constraints on each of the individual screening

mechanisms and hence on their possible realizations in

string theory. We will also discuss the validity of the

theories as a description of the Universe in the far future.

The paper is organized as follows: In Sec. II we recall the

conjectures related to the swampland of string theory. We

also summarize some generic facts about scalar-tensor

cosmology. In Sec. III, we find a generic bound on the

coupling between the scalar field responsible for dark

energy and matter. In Secs. III, IV, and V we study the

implications of the de Sitter and distance conjectures on the

chameleon, the symmetron, and the dilaton screening

mechanisms, respectively. We summarize our findings

and conclude in Sec. VI.

II. THE DE SITTER AND DISTANCE

CONJECTURES IN SCALAR-TENSOR

COSMOLOGY

A. The conjectures

De Sitter vacua are particularly hard to find in string

theory. It has recently been conjectured that the vacuum of

string theory is better described by the dynamics of a scalar

field whose potential must satisfy the inequality

�

�

�

�

∂V

∂ϕ

�

�

�

�

≥ c
VðϕÞ
mPl

ð1Þ

or the corresponding constraints on its mass

∂2V

∂ϕ2
≤ −c0

V

m2
Pl

: ð2Þ

Here, c and c0 are constants of order one. The distance

conjecture states that the scalar field should not roll too far

in field space; otherwise, low-energy excitations would

become relevant hence jeopardizing the effective descrip-

tion of the vacuum being simply endowed with a single

scalar field

Δϕ ≤ dmPl; ð3Þ

where d ¼ Oð1Þ and Δϕ is the total excursion of the scalar

field between the very early universe and now. These are

constraints on the low-energy effective field theory allowed

from string theory. If true, they imply that the current

accelerated expansion of the Universe is not due to a

nonvanishing cosmological constant but is driven by at

least 1 degree of freedom in string theory.

B. Scalar-tensor cosmology

We are interested in consequences of the de Sitter and

distance conjectures in scalar-tensor theories with a screen-

ing mechanism. Below we will recall a few useful facts on

scalar-tensor theories which apply to all theories considered

in this paper.

Scalar-tensor theories can be written in either the

Einstein or the Jordan frame. The Jordan frame metric is

related to the Einstein frame metric by a conformal trans-

formation of the form
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gJμν ¼ A2ðϕÞgEμν; ð4Þ

or equivalently, matter particles have a field dependent

mass

m ¼ AðϕÞm0 ð5Þ

in the Einstein frame. The function AðϕÞ will differ for the
different screening mechanism discussed in this paper.

The dynamics of the scalar field are governed by the

effective potential

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρ ð6Þ

in the presence of nonrelativistic matter of conserved

energy density ρ. The Friedmann equation can be written as

H2 ¼ ρeff þ ρ

3m2
Pl

: ð7Þ

The energy density ρeff ¼
_ϕ2

2
þ VeffðϕÞ plays the role of

dark energy. The conservation equation

_ρeff þ 3Hðρeff þ pϕÞ ¼ 0; ð8Þ

where pϕ ¼ _ϕ2

2
− VðϕÞ implies that the dark energy

equation of state is

ωϕ ¼ pϕ

ρeff
: ð9Þ

Moreover, the conservation equation (8) implies the Klein-

Gordon equation

ϕ̈þ 3H _ϕþ ∂Veff

∂ϕ
¼ 0; ð10Þ

which depends on the effective potential. Notice that the

effective potential depends on the conserved matter.

In the following we will take the potential VðϕÞ and the

coupling functions AðϕÞ as the low-energy results of

dimensionally reducing extra dimensions, integrating out

heavy fields, and taking into account early universe, i.e.,

high energy, phase transitions. As the de Sitter and distance

conjectures are statements about the scalar fields in the low-

energy field theory, we apply them to the potential VðϕÞ as
this controls the existence of de Sitter space in empty

spacetime, i.e., when all matter in the Universe has been

diluted by the cosmological expansion.

III. THE CHAMELEON

In the chameleon models the effective potential has a

minimum ϕðρÞ and the field tracks the minimum cosmo-

logically [37]. The condition for the minimum of the

effective potential is

∂V

∂ϕ
¼ −βA

ρ

mPl

; ð11Þ

where the coupling to matter is

β≡mPl

∂ lnA

∂ϕ
: ð12Þ

We assume without loss of generality that β is positive. The

field tracks the minimum provided the mass [37,38]

m2 ¼ ∂2Veff

∂ϕ2

�

�

�

�

ϕðρÞ
ð13Þ

is greater than the Hubble rate

m ≫ H: ð14Þ

A. The original chameleon model

Let us first look at the original chameleon model [37]

before we move to a more general case that includes fðRÞ
gravity. In the original cosmological model for chameleons,

the potential is of the form

V ¼ Λ
4eð

Λ

ϕ
Þn ; ð15Þ

where Λ is an energy scale of the order of the current dark

energy scale. Notice that in the first chameleon paper [34]

the potential was taken to be VðϕÞ ¼ Λ
4þn

ϕn , which does not

lead to dark energy in the absence of a cosmological

constant. The form (15) was chosen in [37] as VðϕÞ ≃
Λ
4 þ Λ

4þn

ϕn when ϕ≳ Λ has the chameleon screening proper-

ties and leads to the cosmic acceleration. The function AðϕÞ
is assumed to be of exponential form, i.e., AðϕÞ ¼
expðβϕ=mPlÞ with β ≥ 0 constant. Note that this model,

at face value, does not comply with the de Sitter criterion,

as V → Λ
4 for ϕ → ∞. But according to the distance

criterion we expect that this low-energy theory breaks down

anyway for large field values, so we have to keep in mind

that the chameleon model, if realized from fundamental

physics, will become invalid at some point in the distant

future. However, we will now show that the de Sitter

conjecture puts a constraint on the coupling β. The field

value at the minimum can be obtained as

ϕnþ1 ¼
�

nΛnVmPl

βAðϕÞρ

�

: ð16Þ

Using this equation and the de Sitter conjecture, we obtain a

bound on the matter coupling,

β ≥ c
V

ρ
; ð17Þ
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or, using the cosmological density parameter, β ≥ cΩDE=
ΩM. Hence, the coupling cannot be arbitrarily small in this

model.

The discussion so far has assumed that the field sits in the

minimum of the effective potential. If this is not the case,

e.g., in the very early radiation dominated epoch, the de

Sitter conjecture implies

ϕnþ1 ≤
n

c
mPlΛ

n: ð18Þ

This equation bounds the field value at any given time.

In addition, the field is subject to kicks at times when

species become nonrelativistic, because at that point, the

trace of the energy momentum tensor of the species no

longer vanishes and contributes to the effective potential.

Summing up all contributions it was found in [37] that the

kicks can displace the field by an amount of order βmPl.

The distance conjecture would then imply that β ≤ d.
Together with Eq. (17), this implies that β has to be of

the same order as the numbers c and d in the de Sitter and

distance conjectures. To avoid a violent displacement of the

chameleon, the field needs to settle at the minimum of the

effective potential either during or shortly after inflation.

We will come back to the issue of the initial conditions for

the scalar field in the discussion at the end of the paper.

B. A generic bound on the coupling

We can derive a generic bound on the coupling which is

applicable to more general scalar-tensor theories in the

Einstein frame which have the screening properties of

chameleon models. This includes the fðRÞ models of

gravity once written in the Einstein frame as a function

of the scalaron field ϕ. Awhole class of such models can be

constructed using the tomographic methods [39] which we

will use below; see Sec. III C. To obtain this bound, it is

convenient to write

_ϕ2

2
¼ VðϕÞ þ ωϕρeff ð19Þ

such that

VðϕÞ ¼ ρeff −
_ϕ2

2
− ðA − 1Þρ

¼ ð1 − ωϕÞρeff − VðϕÞ − ðA − 1Þρ ð20Þ

from which we have

VðϕÞ ¼ ð1 − ωϕÞ
ρeff

2
− ðA − 1Þ ρ

2
: ð21Þ

The function AðϕÞ is taken to be differentiable and there-

fore continuous. As a result the distance conjecture (3)

implies that AðϕÞ is bounded on the interval of variation

of ϕ. We denote by Amax its maximal value such that

AðϕÞ ≤ Amax and by ΔA the largest variation jAðϕÞ − 1j ≤
ΔA.

1
If we normalize AðϕÞ to be close to unity now, this

defines the excursion of the function AðϕÞ in the past.

Using the minimum equation we find that the de Sitter

constraint (1) gives

βAmaxρ ≥ βAðϕÞρ ≥ cð1 − ωϕÞ
ρeff

2
− cΔA

ρ

2
; ð22Þ

where we have used ðA − 1Þρ ≤ ΔAρ. This implies that

β ≥
cð1 − ωϕÞ
2Amax

ρeff

ρ
− c

ΔA

2Amax

: ð23Þ

Now we are interested in models where ρeff represents the

dark energy component of the Universe. We assume that it

grows monotonically, whereas ρ decreases in the cosmic

history [as it is the case for the original chameleon model as

well as for fðRÞ theories]. Hence the most stringent

constraint is

β ≥
cð1 − ωϕÞ
2Amax

ΩΛ0

Ωm0

− c
ΔA

2Amax

; ð24Þ

where ΩΛ0 and Ωm0 are the dark energy and matter

proportions now, i.e.,
ΩΛ0

Ωm0
≃ 3. This generalizes (17) in

two ways: first, we allow the equation of state to deviate

from −1. Second, in deriving (24) we took into account the

variation of AðϕÞ, which is bounded thanks to its continuity
and the distance conjecture (3), whereas in deriving (17) we

set A ¼ 1. Thus, the equation above is a stronger result than

(17), allowing us to consider more general models than the

original chameleon model for which A ¼ 1 and wϕ ¼ −1 is

a very good approximation. On the other hand, as we show

below in (28) for screened models where the minimum of

the effective potential is an attractor, the field hardly moves

and therefore A ≃ 1. This leads to the bound (28). Finally

notice that models of the fðRÞ type, for which β ¼ 1
ffiffi

6
p , are

under pressure as soon as c ¼ Oð1Þ.

C. Screening and the distance conjecture

Models where the effective potential has a minimum can

be exactly parametrized using the properties of the mini-

mum as a function of the density. This allows one to

construct whole classes of models of screened modified

gravity [39]. In this case and assuming that the field at the

minimum vanishes in dense environments, we can always

parametrize the dependence of the minimum on the density

in an analogous way as in cosmology by writing ρ ¼ ρ0=a
3

1
In the Jordan frame where particle masses are constant and

Newton’s constant varies, the variation jA − 1j is half the
variation of GN over the corresponding interval. Tight phenom-
enological bounds exist on this variation at less than the ten
percent level [40].
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as a function of a fiducial scale factor a. The dependence of
the minimum on ρ or equivalently on a can be evaluated

exactly using [38]

ϕðρÞ
mPl

¼ 3

Z

a

0

dx

x

ρðxÞβðxÞ
m2

Plm
2ðxÞ ð25Þ

provided the dependence ofmðaÞ, i.e., the mass of the field

at the minimum, and βðaÞ, i.e., the coupling to matter at the

minimum, are known. The original chameleon, fðRÞ
models, and symmetrons can all be constructed in this

fashion with known functions mðaÞ and βðaÞ [38]. Now

(25) corresponds to the full excursion ΔϕðaÞ of the field in

these models as we have assumed here that when ρ

becomes infinite the field at the minimum converges to

zero.
2
Writingm ¼ m0m̃ðaÞwhere m̃ðaÞ is a dimensionless

function of a of order one for matter densities close to the

present cosmological matter density, we obtain that

ϕðρÞ
mPl

¼ 9Ωm0H
2
0

m2
0

IðaÞ; ð26Þ

where

IðaÞ ¼
Z

a

0

dx

x4
βðxÞ
m̃2ðxÞ ð27Þ

is a function of order one in the present Universe on

cosmological scales; see [39]. Now the tracking of the

minimum by the scalar field requires thatm2
0=H

2
0 ≫ 1 [37],

implying that the distance conjecture is always satisfied

now for d ¼ Oð1Þ. The excursion of the field is always very
small of order OðH

2
0

m2
0

Þ ≪ 1 for these models. Hence the

derivation of (24) can be simplified by neglecting the

variation of ϕ altogether. Essentially by taking Amax ≃ 1

and ΔA → 0 the resulting bound becomes

β ≥
cð1 − ωϕÞ

2

ΩΛ0

Ωm0

; ð28Þ

which reduces to the chameleon inequality (17) for models

with ωϕ ≃ −1. In the future when a → ∞, and assuming

thatmðaÞ ≫ HðaÞ to guarantee the tracking behavior, if the
integral IðaÞ is bounded, then the distance conjecture

remains valid for all times.

D. Solar system tests of gravity and the swampland

Before we conclude this section, we will briefly dis-

cuss constraints from solar system gravity tests and the

implications for the swampland conjectures. We refer to

Appendix A for more details.

The Cassini and laser lunar ranging tests of, respectively,

fifth forces and the strong equivalence in the solar system

imply bounds on the excursion of the scalar field in galactic

environments similar to the Milky Way

ΔϕG ¼ ϕG − ϕc ≤ 10−15mPl; ð29Þ

which is well within the Planck scale. Here ϕc is the value

of the field in dense matter, which differs from zero for the

dilaton. Similarly the Cassini bound on the existence of

fifth forces for nearly massless scalar fields imply that

βG ≲ 104; ð30Þ

hence the coupling to matter in the Milky Way cannot be

exceedingly large. Together with the bound (24), this

implies that the coupling to matter is both bounded from

below and from above.

IV. THE SYMMETRON

The cosmological symmetron is a model where a scalar

field undergoes a Z2 breaking transition at low energy. In

the symmetric phase, the coupling of the scalar field to

matter vanishes while it is nonvanishing in the symmetry-

breaking phase. The potential for these models is Higgs-

like with

VðϕÞ ¼ V0 −
μ2

2
ϕ2 þ λ

4
ϕ4: ð31Þ

The value of V0 has to be chosen to lead to the acceleration

of the expansion of the Universe. The coupling function

determining the coupling to matter differs from the one of

the original inverse power law chameleon and is simply a

quadratic function around the origin

AðϕÞ ¼ 1þ ϕ2

2M2
: ð32Þ

This has to be seen as an expansion in powers of ϕ=M.

The de Sitter conjecture implies that μ2m2
Pl > c0V0 and

therefore μ≳H0. This is a very weak condition.

The coupling to matter is

βðϕÞ ¼ mPl

M2
ϕ; ð33Þ

which is linear in the field as long as ϕ ≪ M. When

ρ > μ2M2, the minimum of the effective potential is at the

origin and the coupling to matter vanishes. Otherwise the

minimum is at

ϕðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −
ρ

M2

q

ffiffiffi

λ
p : ð34Þ

2
This will not be the case for the dilaton of Sec. V.
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We require that μ ≪
ffiffiffi

λ
p

M, which guarantees that ϕ ≪ M.

The cosmological symmetron is such that the Z2 breaking

occurs in the recent past implying that

μM ≃H0mPl: ð35Þ

The vacuum value of the coupling to matter is given by

β0 ¼
μmPl
ffiffiffi

λ
p

M2
: ð36Þ

The de Sitter conjecture implies that

ρ

M2
ϕðρÞ ≥ c

VðϕÞ
mPl

: ð37Þ

Assuming that the symmetron leads to dark energy now,

we get

β0 ≥ c
ΩΛ0

Ωm0

; ð38Þ

which is another instance of the generic bound (24) when

the equation of state of dark energy is close to −1.

At high density, the field is at the origin due to the

coupling to matter. In the present Universe we find that

Δϕ

mPl

≤
μ
ffiffiffi

λ
p

mPl

≪
μ
ffiffiffi

λ
p

M
≲ 1 ð39Þ

as long asM ≪ mPl and the last step comes from requiring

that ϕ ≪ M for the validity of the ϕ expansion in AðϕÞ. As
outlined in the previous section and in more detail in

Appendix A, tests of the equivalence principle imply that in

the Milky Way ϕG ≤ 10−15mPl. When ρG ≃ 106ρm0 is

assumed to be larger than μ2M2, we have ϕG ¼ 0 and

the distance conjecture is satisfied. When the symmetry

breaking happens at a larger density, then ϕG ≤ μ=
ffiffiffi

λ
p

and

we must require that μ ≤ 10−15
ffiffiffi

λ
p

mPl. As long as λ is not

tiny, the interval H0 ≲ μ ≤ 10−15
ffiffiffi

λ
p

mPl is not empty. The

de Sitter conjecture implies that

M2 ≤
Ωm0

cΩΛ0

μmPl
ffiffiffi

λ
p ≲ 10−15m2

Pl; ð40Þ

which guarantees that M ≪ mPl. Hence the symmetron is

not in the swampland as long as the coupling to matter in

the present Universe is large enough.

V. THE STRONGLY COUPLED DILATON

So far we have dealt with scalar-tensor theories

where the potential VðϕÞ is defined in the Einstein frame.

In this section we are interested in a string-inspired

model [33] where the scalar field ϕ corresponds to the

dilaton associated with the string coupling constant [36].

The model is naturally defined in the four-dimensional

(4D) string frame. We briefly review the model in the

following.

In the string frame the dilaton action reads

S ¼
Z

ffiffiffiffiffiffi

−g̃
p

d4x

�

e−2ψðϕ̃Þ

2l2s
R̃þ Zðϕ̃Þ

2l2s
ð∇̃2ϕ̃Þ − Ṽðϕ̃Þ

�

þ SmðΨi; g̃μν; giðϕ̃ÞÞ; ð41Þ

where ls is the string length, Ψi are the matter fields, and gi
are coupling constants that depend on the dilaton ϕ̃. Notice

that in the weak string coupling regime ϕ̃ → −∞, we have

ψðϕ̃Þ ≃ ϕ̃ − 1
2
ln v6 where v6 is the volume of the six-

dimensional (6D) compactifying manifold in string units.

In the strong coupling regime, the dependence on the

dilaton of the function ψðϕ̃Þ would require a resummation

of string diagrams involving large powers of e2ϕ̃ or non-

perturbative techniques. In [33], the behavior of this

function was conjectured and assumed to follow the “least

coupling principle” which will be recalled below. In a

nutshell, ψðϕ̃Þ is assumed to be a function with a minimum

for a value ϕ̃0. Notice too that the ansatz for the dilaton

action (41) assumes that all the other moduli such as the

volume of the compactification manifold v6 have been

stabilized. In the following we will simply use (41) as our

starting point and bring it into the Einstein frame in which

we have performed our analysis so far. We define the

Einstein metric gμν by

g̃μν ¼ A2ðϕ̃Þgμν; ð42Þ

where the coupling function is given by

AðϕÞ ¼ lse
ψðϕ̃Þ=κ4 ð43Þ

and the gravitational coupling is given by κ24 ¼ 8πGN. We

have the freedom to normalize Aðϕ̃Þ such that Aðϕ̃0Þ ¼ 1

now where ϕ̃0 will be identified below. We introduce the

ratio between the string scale and the Planck scale in the

Einstein frame as c1 ≡ ls=κ4 ¼ exp ð−ψðϕ0ÞÞ. The kinetic
terms are now dependent on

k2ðϕ̃Þ ¼ 3β2ðϕ̃Þ − A2ðϕ̃ÞZðϕ̃Þ=2c21; ð44Þ

where

β̃ðϕÞ ¼ ðlnAÞ;ϕ̃ ð45Þ

is the coupling to matter for the unnormalized field ϕ̃.

The resulting action becomes
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S ¼
Z

ffiffiffiffiffiffi

−g
p

d4x

�

RðgÞ
2κ24

−
k2ðϕ̃Þ
κ24

ð∇ϕ̃Þ2 − Vðϕ̃Þ
�

þ SmðΨi; A
2ðϕ̃Þgμν; ϕ̃Þ; ð46Þ

where the potential is

Vðϕ̃Þ ¼ A4ðϕ̃ÞṼðϕ̃Þ: ð47Þ

In the strong coupling limit when ϕ̃ is large, we will assume

following [32,41] that

Ṽðϕ̃Þ ∼ V0e
−ϕ̃ þOðe−2ϕ̃Þ;

Zðϕ̃Þ ∼ −
2c21
λ2

þ bZe
−ϕ̃ þOðe−2ϕ̃Þ;

g−2i ∼ ḡ−2i þ bie
−ϕ̃ þOðe−2ϕÞ: ð48Þ

The constants are assumed to be such that bZ ≃ bi ¼ Oð1Þ.
Similarly the ratio c1=λ is assumed to be of order one at

least to avoid naturalness issues. In the strong coupling

regime we expect thus

kðϕ̃Þ ≈ λ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3λ2β2ðϕ̃Þ
q

; ð49Þ

which depends on the coupling to matter. It is useful to

normalize the field to connect with the other sections of this

paper. We now define

κ4dϕ ¼
ffiffiffi

2
p

kðϕ̃Þdϕ̃: ð50Þ

The effective potential that governs the evolution of ϕ is

given by

VeffðϕÞ ¼ V0A
4ðϕ̃Þe−ϕ̃ þ ðAðϕ̃Þ − 1Þρ ð51Þ

in the presence of nonrelativistic matter. Notice the crucial

factor of A4 in the matterless part of the potential. The

minimum of the potential is obtained for

β̃ðϕ̃minÞ ¼
Vðϕ̃minÞ

Aðϕ̃minÞρm þ 4Vðϕ̃minÞ
; ð52Þ

which is an equation for ϕ̃min. Notice that β̃ðϕ̃minÞ ≤ 1
4
.

Moreover, the fact that the theory is originally defined in

the string frame will modify the bound on the coupling to

matter that we will find below.

The coupling to gravity β of the normalized scalar field is

defined by

βðϕÞ ¼ β̃ðϕ̃Þ
ffiffiffi

2
p

kðϕ̃Þ
: ð53Þ

We have the relation

2β2 ¼ β̃2

3β̃2 þ 1

λ2

: ð54Þ

Gravitational tests in the solar system require that β ≪ 1,

which cannot be achieved if β̃λ≳ 1, as then β ≃ 1
ffiffi

6
p . Tests of

gravity can only be passed when λβ̃ ≪ 1, i.e., λ is bounded

from above. In this case we have

ϕ ≃

ffiffiffi

2
p

λ
mPlϕ̃; ð55Þ

and the potential becomes

Ṽ ≃ V0e
−λϕ=

ffiffi

2
p

mPl : ð56Þ

Similarly the coupling to gravity is then

β ≃
λ
ffiffiffi

2
p β̃: ð57Þ

We will assume that the least coupling principle [33]

applies in the recent past of the Universe and expand

Aðϕ̃Þ around its minimum taken to be the value of field in

very dense environments ϕ̃0. Notice again that this assumes

that the function ψðϕ̃Þ can be resummed. Although e−2ψðϕ̃Þ

involves an infinite series of powers of e2ϕ̃, its resummation

could have very different properties from each individual

power of e2ϕ̃. This is the essence of the conjecture in [33] as
used in [36]

Aðϕ̃Þ ¼ 1þ A2

2
ðϕ̃ − ϕ̃0Þ2 þ � � � ; ð58Þ

where the neglected terms are higher powers of ðϕ̃ − ϕ̃0Þ.
As the conformal factor A deviates very little from unity in

the late-time Universe, we can identify the dark energy

scale with

ρΛ ≃ V0e
−ϕ̃0 : ð59Þ

The minimum equation implies that in a dense environment

we have

A2ðϕ̃min − ϕ̃0Þ ¼
Vðϕ̃minÞ

Aðϕ̃minÞρþ 4Vðϕ̃minÞ
: ð60Þ

In dense environments such as the matter and radiation

epochs the field value is essentially given by ϕ̃0, while at

late time we have the approximation

ϕ̃min − ϕ̃0 ≃
1

A2

ρΛ

ρþ 4ρΛ
: ð61Þ

This is also related to the excursionΔϕ of the field since the

early universe
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Δϕ

mPl

≃
λ
ffiffiffi

2
p

A2

ρΛ

ρþ 4ρΛ
≤

λ

4
ffiffiffi

2
p

A2

ð62Þ

as the value of the field in very dense matter is ϕ0. Using

that Aðϕ̃Þ is close to unity we also find the constraint from

the de Sitter conjecture,

λ ≥
ffiffiffi

2
p

c: ð63Þ

If we assume the naturalness constraint c1 ≳ λ, this selects

models where ls ≳ lPl in the strong coupling regime. One

can relax these assumptions as long as
c2
1

λ2
≫ bZe

−ϕ̃0 to

guarantee that Zðϕ̃Þ is dominated by its constant term in the

series expansion (48).

As the value of the dilaton in very dense region does not

vanish, the lunar ranging constraint reads

jϕG − ϕ0j ≃
λ
ffiffiffi

2
p

A2

ρΛ

ρG
mPl ≤ 10−15mPl ð64Þ

as ϕ ≃ ϕ0 inside matter. This implies that

A2

λ
≥ 109 ð65Þ

and the excursion (61) is extremely small in Planck units as

A2=λ is so large. Moreover, in this regime the mass of the

dilaton cosmologically is

m0 ≃

ffiffiffiffi

A
p

2

λ
H0; ð66Þ

which is always large enough to guarantee that the dilaton

tracks the minimum of the effective potential. Coming back

to the value of the coupling and using (63) we find that

β ≳ c
ρΛ

ρþ 4ρΛ
; ð67Þ

which is a weaker version than the generic bound

we obtained previously [in Eq. (24)]. The main change

comes from the 4ρΛ term in the denominator which comes

from the fact that the dilaton potential is defined in the

string frame and not in the Einstein frame. Thus, the

strongly coupled dilaton does not violate the de Sitter and

the distance conjectures. Note that dark energy is eternal as

the scalar field approaches ϕ̃min but never reaches it

[see Eq. (61)].

VI. DISCUSSION AND CONCLUSION

In this paper we have discussed the implications of the

swampland on three screened modified gravity theories,

namely the chameleon, the symmetron, and the strongly

coupled dilaton. In these theories, the dark energy scalar is

universally coupled to matter, and hence producing a fifth

force which needs to be hidden by a screening mechanism.

While some of the screening mechanisms are meant to be

only effective descriptions, which are not valid for all

values of the scalar field, our considerations have impli-

cations for each of the models. Let us summarize the

findings for each of these theories separately:

(i) Since the chameleon field tracks the minimum of the

effective potential for most of the cosmological

history, the derivative of the potential is related to

the matter density and the coupling between the

chameleon field and matter. The distance and de

Sitter conjectures then imply a lower bound on the

coupling [Eq. (24)]. Note that this bound is time

dependent and strictly speaking we require it to be

valid only up to the present epoch. The ratio ρeff=ρ
will grow over time and larger values of β are

required. One expects that the field excursion over

the cosmic history will eventually exceed one Planck

unit at which point the theory will cease to be valid,

even probably before this time. Alternatively, the

field will stop tracking the minimum of the effective

potential in the very near future. Moreover, the

original chameleon model can be an effective

description of the Universe only up to the present

epoch, as the potential energy does not vanish for

arbitrary large field values and the Universe ap-

proaches de Sitter spacetime. If the field description

does not break down in the future, the chameleon

models must be modified with a vanishing potential

asymptotically. Hence in these models, dark energy

can only be transient.

(ii) As the chameleon, the symmetron tracks the mini-

mum of the effective potential for most of the

cosmological history. The coupling of the symme-

tron is linear in the field [see Eq. (33)]. The distance

conjecture is easily fulfilled, and again we find that

the de Sitter conjecture implies that the coupling has

to be large enough for the symmetron not to be in the

swampland. In the future of the Universe, the

symmetron will converge to a finite value well

below the Planck scale. The bound on the coupling

to matter (24) implies that the minimum of the

potential in vacuummust vanish, hence adjusting the

constant V0 in the potential. As in the chameleon

model, in the symmetron model dark energy is only

transient.

(iii) The strongly coupled dilaton, contrary to chame-

leons and symmetrons, is best defined in the string

frame. The action in the Einstein frame is then

derived, implying that the bound on the coupling to

matter (67) is modified compared to (24) as obtained

for all chameleonlike theories defined in the Einstein

frame. When the least coupling principle is satisfied,

we find that the strongly coupled dilaton tracks the

minimum of its effective potential. In field space, its
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excursion is always finite and of small magnitude in

Planck units. As the field keeps evolving, the

cosmology of spacetime is the one of a quasi–de

Sitter universe. Contrary to chameleons and symme-

trons, dark energy is eternal.

In a similar vein, we can discuss the initial conditions for

the three types of models. Indeed, we have assumed that the

field sits at the minimum of its effective potential since

early times. Once at the minimum, the condition on the

mass of the scalar field m ≫ H guarantees that the field

tracks the time-evolving minimum. In each of the three

mechanisms let us discuss how the field could be attracted

to the minimum of the effective potential:

(i) For chameleon models [37] such as the inverse

power law chameleon, the effective potential pos-

sesses a minimum during the inflationary era as the

trace of the energy-momentum tensor of the inflaton

is nonvanishing and nearly constant. The field falls

exponentially fast toward the nearly static minimum.

When inflation stops and assuming that reheating is

quasi-instantaneous, the minimum of the effective

potential evolves rapidly toward a much larger value

than during inflation. The field then starts evolving

fast and overshoots the minimum before stopping

after an excursion of around
ffiffiffiffiffiffiffiffiffi

6Ωi
ϕ

q

mPl where Ω
i
ϕ is

the initial energy fraction in the scalar, i.e., a small

number. Notice that the field stops short of the

Planck scale. Subsequently in the radiation era, the

field is kicked by a negative fraction of the Planck

scale every time a species decouples. This should

eventually bring back the field within the basin of

attraction of the minimum where it will eventually

settle. The validity of this scenario has been ques-

tioned in [42]. In the absence of a concrete model of

reheating, it is far more conservative to assume that

the field sits at the minimum after reheating. This

protects the field from being kicked during the

decoupling of species.

(ii) For symmetrons, at high density, i.e., during in-

flation and after reheating, the field sits at the origin.

When the matter density decreases, the field follows

the minimum [43]. In this model, there is no initial

condition problem as the minimum is not shifted

from its position during inflation, i.e., at the origin,

to a new position in the early radiation era.

(iii) For dilatons the situation is similar to the one for

symmetrons, i.e., very early in the Universe the field

sits at the minimum of the coupling function. As the

energy density of matter decreases, the field evolves

with the minimum.

To conclude, we have shown that the de Sitter and

distance conjectures have important implications for all

three screening mechanisms. In the case of chameleons, we

find that fðRÞ models come under pressure from the de

Sitter conjecture, at least as long as the scalar field tracks

the minimum of the effective potential [see [44] on a

different view of fðRÞ gravity and the swampland]. The

lower bound on the coupling (24) implies that those

theories cannot hold for arbitrarily long into the future.

As the original chameleon model, the theory will have to

break down at some point (or the field no longer tracks the

minimum of the effective potential). For example, other

corrections to the Einstein-Hilbert action may become

important. Moreover, as shown in [45] and elaborated in

Appendix A, the quantum corrections to the screened

models do not lead to more fine-tuning than the usual

cosmological constant problem provided one considers

them as low-energy effective theories below a cutoff scale

of order 10−2 GeV. This is the low-energy regime of

cosmology where screening should take place, i.e., from

big bang nucleosynthesis onwards.

Given the implications of the swampland for dark energy

physics, it seems highly relevant to study the consequences

of couplings of the scalar field to matter within string

theory. This coupling can be universal either to all forms of

matter or to only one sector, such as dark matter. Given the

theoretical difficulties of constructing quintessential mod-

els within string theory [5,45,46], the swampland conjec-

tures lead us to surmise that coupled models with screening

mechanisms should play a role within string theory. The

chameleon models with a constant coupling is difficult to

construct within N ¼ 1 supergravity [47] (see also [48] for

an alternative point of view). They are also under pressure

from the de Sitter and distance conjectures. Furthermore, it

has been argued that the form of the potential energy of the

scalar field should be related to the tower of particles via the

Gibbons-Hawking (GH) entropy [3]. If this is the case, then

screening via the chameleon mechanism might not be

possible. For example, if the mass of particles depends

exponentially on the field, then the GH entropy suggests

that the potential energy of the scalar does as well; in such a

setup the thin-shell mechanism in chameleon theories does

not exist [36]. Alternatives such as field dependent cou-

plings may be promising as hinted by the strongly coupled

dilaton (there are also examples of chameleon theories with

field dependent couplings—see, e.g., [49]; these theories

need to be studied in more detail). In particular, once solar

system constraints on gravity are imposed, the strongly

coupled dilaton keeps evolving without violating the

distance conjecture and its potential energy leads to a

quasi–de Sitter spacetime which evades Weinberg’s no-go

theorem [50]. A more thorough investigation of the

strongly coupled dilaton from the string theory point of

view would certainly add to this discussion.
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APPENDIX A: SOLAR SYSTEM

GRAVITY TESTS

In this appendix we briefly summarize constraints

coming from solar system experiments.

1. Strong equivalence principle

The screening models lead to a violation of the strong

equivalence principle for screened bodies. Contrary to point

particles that couple to the scalar field with the coupling

βðϕÞ, extended bodies couple with a scalar charge

βeff ¼
jϕout − ϕinj
2mPlΦ

; ðA1Þ

where Φ is the Newton potential at their surface. These

objects are screened when

βeff ≤ βðϕoutÞ; ðA2Þ

where ϕin is the field value deep inside the body corre-

sponding to the field value associated with the density of

the object and ϕout is the field value far away from the

object associated with the density of the environment. For

most chameleon models, ϕ decreases with ρ in such a way

that we can approximate

βeff ¼
jϕoutj
2mPlΦ

; ðA3Þ

which depends both on the environment and on the inner

gravity of the object. For dilatons, ϕin has to be kept in the

previous expression. Three screened bodies A, B, and E
embedded in the same background but with differing

Newton potentials couple differently to the scalar implying

a nonzero value for the Eötvos parameter

ηAB ¼ jaA − aBj
jaA þ aBj

≃ βEjβA − βBj; ðA4Þ

where aA;B are the accelerations toward E. In the Moon-

Earth-Sun system and as the couplings depend on the

objects as in (A3), the constraint given by the laser lunar

ranging experiment on the violation of the equivalence

principle for the Earth and the Moon falling toward the Sun

is [34]

β⊕ ≤ 10−6: ðA5Þ

As Φ⊙ ¼ 10−9, this implies for the screened field in the

Milky Way

ϕG ≲ 10−15mPl: ðA6Þ

Hence as long as the density dependence of ϕðρÞ is not too
strong as well as using ρG ≃ 106ρ0, we find that the distance

conjecture is always satisfied for screened models which

pass the Lunar Laser Ranging test.

2. The Cassini experiment

The Cassini satellite has given a strong constraint on

long range forces in the solar system [30]. Assuming that

the Compton wavelength of the screened scalar in the solar

is larger than the solar system, the deviation from Newton’s

law (or the Shapiro effect) implies that

βsatβ⊙ ≤ 10−5: ðA7Þ

Assuming that the satellite is not screened as it is a small

object and using Φ⊙ ¼ 10−6 implying that β⊙ ≤ 10−9 from

(A5), this leads to

βG ≤ 104: ðA8Þ

Hence the constraint from the Cassini experiment on the

coupling in the galactic environment is quite loose. It is

certainly compatible with (24) when the density depend-

ence of β is weak.

APPENDIX B: QUANTUM CORRECTIONS

We have focused on classical properties of scalar-tensor

theories with screening. In this appendix, we will discuss

the quantum corrections in these models. We will face the

usual fine-tuning of the vacuum energy at low energy

which requires one fine-tuning using a bare cosmological

constant as a counterterm. Other quantum corrections are

also important and will give a restriction on the quantum

validity of the models.

Let us concentrate on the matter contributions to the

quantum corrections following [51]. In the Jordan frame,

matter quantum corrections to the vacuum energy do not

involve the scalar field at all and come from the vacuum

diagrams with matter particles running in the loops. The

result is formally divergent and equal to Λ
4
quðμÞ after

regularization and renormalization. For instance, in dimen-

sional regularization, the contributions involve quartic
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powers of the masses of particles up to logarithmic

corrections which depend on the sliding scale μ. In the

Einstein frame, this would lead to a new potential

δVðϕÞ ¼ Λ
4
quðμÞA4ðϕÞ. In general, ΛquðμÞ is much bigger

than the dark energy scale. This is simply the usual

cosmological constant problem. At the quantum level,

one can always require that the bare cosmological constant

Λbare whose role is to cancel the infinities of the quantum

corrections would also absorb the finite part for a given

value μ ¼ μ0. For this value of the sliding scale, the dark

energy potential VðϕÞ is not corrected by quantum effects.

This requires the same fine-tuning as in all models of dark

energy when facing the cosmological constant problem.

The quantum corrections to the potential VðϕÞ coming

from the scalar itself have for magnitude δVðϕÞ ≃m4
ϕ

which is negligible as long as mϕ ≪ 10−3 eV as required

for dark energy scalar to have some influence on cosmo-

logical scales. Matter-scalar mixing can also lead to new

contributions. For instance, at two loops with one insertion

of a scalar propagator, a fermion loop gives a contribution

of order

δV ≃ β2
m6

ψ

m2
Pl

; ðB1Þ

which, for β ≳ 1, is a negligible correction to the late-time

dark energy when mψ ≪ 10−2 GeV [45]. As a result,

screened models of dark energy are only low-energy

effective field theories with a low cutoff. Notice that this

does not preclude the use of these models at low energy

since big bang nucleosynthesis, which takes place around

the energy scale of the order of the electron mass.

Finally we must analyze the quantum corrections to

the coupling to matter β. When scalar and gravitational

nonlinearities are neglected, it has been argued in [52]

that the coupling β receives only corrections from the

wave-function renormalization of the scalar ϕ by matter

loops. The wave function renormalization is Zϕ ≃ 1þ δZϕ

inducing a correction δβ ≃ − 1
2
βδZϕ to β. At leading order

for a fermion of mass mψ , we have

δZψ ≃ β2
m2

ψ

m2
Pl

; ðB2Þ

which is negligible when β ≃ 1 at low energy. Mixing

between the scalar and gravitons leads to a logarithmic

correction to β from a graviton loop

δβ ≃
m2

ϕϕ

m3
Pl

≲ d
m2

ϕ

m2
Pl

ðB3Þ

using the distance conjecture. This is very small. Finally

scalar loops give contributions in

δβ ≃mPlA
00V 000

eff ; ðB4Þ

which involves the triple derivative of the effective potential

with respect to ϕ at the minimum of the effective potential.

This can be estimated using the tomographic map as

A00 ≃
A

m2
Pl

�

d ln β

da
þ β

�

m2
ϕ

H2
; V 000 ≃

1

βmPl

m2
ϕ

H2

dm2
ϕ

da
: ðB5Þ

This leads to competing factors. Dimensionally we have
dm2

ϕ

da
∼m2

ϕ ≪ m2
Pl which cannot be compensated by

m4
ϕ

H4

unless in extremely dense environments. As a result the

correction to β is negligible.

In conclusion, the quantum corrections are no worse than

in usual quintessence models as long as the models are used

at low energy below 10−2 GeV.
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