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Although the finite element method (FEM) has been used extensively to analyse the slope stability problems, the computational
precision and definition of failure are still two main key concepts of finite element algorithms that attract the attention of
researchers. In this paper, the modified Euler algorithm and the explicit modified Euler algorithm with stress corrections are used
to analyse two dimensional (2D) slope stability problems with the associated flow rule, based on the shear strength reduction
method. +e rounded hyperbolic Mohr-Coulomb (M-C) yield surface is applied. Effects of the element type and various
definitions of failure on the computational precision of 2D slope stability problems are evaluated. Conclusions can be drawn that
the modified Euler scheme is applicable when the factor of safety (FOS) is small; however, the explicit modified Euler algorithm
with stress corrections is more precise if the factor of safety is relatively large. +e fully integrated quadrilateral isoparametric
element is better than the triangular element in terms of the precision. With respect to the definition of failure, the displacement
mutation of the characteristic point combining with the continuums of the plastic zone can be regarded as a reliable definition of
failure and can be widely used to perform and analyse numerical simulations of slope stability problems.

1. Introduction

+e traditional limit equilibrium method [1–4] and limit
analysis method [5–8] have been widely used in analysing a
majority of slope stability problems over the course of
previous decades of research. It should be noted that a close-
form solution of elastic-plastic slope problems is only
possible for basic cases where the loading and geometry are
simple. +e finite element (FE) approach has a number of
merits, e.g., assumptions about the failure shape and location
being no need to be previously determined, assumptions
about the slice side forces being not necessary, information
of deformations having been given at working stress levels,
and the progressive failure process being able to be moni-
tored. +ese advantages make the FE method attractive in
the realm of slope stability problems over the utility of limit
equilibriummethod or limit analysis method. It is noted that
the FE method includes FE strength reduction approach [9]

and FE limit analysis approach [10–12], and only the former
approach is discussed herein.

+e FE approach in analyzing slope stability problems
can be catalogued to the realm of elastic-plastic mechanics.
Marcal and King [13] and Yamada et al. [14] developed a
method to deal with the continuum elastic-plastic problems
through the FE approach.+emethod was based on a plastic
stress-strain matrix facilitating the incremental treatment of
elastic-plastic problems. +eir study demonstrated that the
FE method is convincing and powerful. In particularly, the
assumption of the perfectly plastic material or nonhardening
plastic-rigid body, which was indispensable for limit anal-
ysis, was no longer a must for the FE method [15]. +e FE
approach in terms of incremental plasticity has been widely
applied to the slope stability problems then [16–25]. Zien-
kiewicz et al. [9] proposed a shear strength reduction
technique by which the original shear strength parameters
must be divided into a number (i.e., the FOS), in order to
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bring the slope to the state of failure. Since then, the ap-
plication of FE method in slope stability problems enjoyed a
fruitful outcome. However, the computational precision and
definition of failure probably are two of the main concerns
that still need continuous research.

+e computational efficiency of the FE approach is
typically affected by the integration algorithm, density of
the mesh, shape of the element, and so forth. A number of
studies have been conducted to improve the precision of
the FE method [26–28], among which Sloan [10] proposed
an efficiency substepping scheme (i.e., the modified Euler
scheme) for integrating elastoplastic stress-strain relations.
His methods were applicable to a general type of consti-
tutive law, and the error was controlled in the integration
process of elastoplastic constitutive laws by selecting the
size of each substep automatically over each time interval.
Abbo [29] improved the scheme proposed by Sloan by
giving a method of stress corrections. +eir algorithms are
particularly suitable for analyzing typical boundary value
problems in geotechnical engineering. +e numerical
simulations of slope stability problems have been per-
formed by using the triangle element [20, 23] and the
isoparametric element [16–19]. +ey identified that a dense
mesh can result in an increase in precision, however with a
sacrifice of computing time. Hence, a balance between the
number of mesh and the computational precision should be
considered. Different definitions of failure have been
widely studied; however, a systematic study of comparing
these criteria in slope stability problems has not been fully
performed.

In this paper, both the modified Euler algorithm and the
explicit modified Euler algorithm with stress corrections
proposed by Sloan [10] and Abbo [29], respectively, are
applied to integrate the elastic-plastic stress-strain re-
lationship. +e rounded hyperbolic M-C yield surface is
used to smooth the vertices, thus eliminating the compu-
tational difficulties. Case studies of two types of homoge-
neous slopes (2D plane strain condition) are performed in an
FE platform to analyse the computational precision in terms
of different integration algorithms, shape of the element, and
effectiveness of the three definitions of failure. +e equiv-
alent strain nephograms will be presented with respect to
different magnitudes of FOS.

2. Finite Element Method for Slope
Stability Analysis

Following Sloan [10] and Abbo [29], the explicit modified
Euler, which is a family of explicit methods, is used in this
study. +is method is associated with the shear strength
reduction scheme to present a systematic analysis on three
definitions of failure in slope stability problems.

2.1. Numerical Integration Scheme. +e explicit modified
Euler integration scheme requires determination of the
intersection with the yield surface when the stresses expe-
rience a transition from an elastic state to plastic state (e.g.,
[10, 29, 30]). +e aim of this approach is to compute the

stress-strain response over each substep by integrating the
elastic-plastic constitutive matrixDep. In order to determine
the portion of the stress increment that lies within the yield
surface, a scaler α must be found. After that, the modified
Euler scheme is accurate for very small time steps, and thus
smaller substeps are required by subdividing ΔT
(0<ΔT< 1). +e error is controlled in the integration
process of elastoplastic constitutive laws by selecting the size
of each substep automatically over each time interval. +is
error control can be achieved by using a local error measure.
Obviously, the size of each subincrement may vary
throughout the integration process instead of assuming
substeps to an empirical standard and of the same size. +e
formulation and numerical implementation of the stress-
strain relationship in the incremental form is as follows:

_σ � Δσe − ΔλDb, (1)

where ∆σe denotes a vector of elastic stresses; D denotes the
stress-strain matrix; b � zg/zσ and g is the plastic potential;
and ∆λ is displayed as

Δλ �
D(zf/zσ)TΔε

(zf/zσ)TD(zg/zσ)
, (2)

where f represents the yield surface and ∆ε is the strain rate.
Following Sloan [10], the nonlinear equation in the light

of variable α is solved by the secant and Newton-Raphson
method for its quick convergence. Abbo [29] argued that the
drawback of this algorithm is that it may diverge in some
circumstances as it does not constrain the solution. Hence,
in his study, the modified regula-falsi procedure was used.
As argued by Potts and Gens [31], who found that it is
necessary to apply some forms of stress corrections because a
cumulative effect does not satisfy the yield condition. Abbo
[29] has given a stress correction method, and details of this
method can be found in his publication. Both the two in-
tegration algorithms are used to perform the stress-strain
relations in the present study. +e flow chart of the in-
tegration algorithm is shown in Figure 1. +e M-C yield
criterion is applied. +e rounded hyperbolic M-C method is
used to solve the computational difficulties due to the
gradient discontinuities which occur at the tip, and details
can be found in the Appendix. As an associated flow rule is
used, the plastic potential follows the same form as that of
theM-C yield criterion with the dilation angleѱ substituting
the friction angle ϕ.

2.2. Shear Strength Reduction Technique. +e shear strength
reduction technique is to define a number, which is normally
named as the factor of safety (FOS). +e original shear
strength parameters, in terms of the cohesion c and the
friction angle ϕ, are divided to a number of FOS, in order to
bring the slope to the point of failure [17]. Hence, the
technique is displayed in terms of the following equations:

c′ �
c

Fs
,

tanϕ′ �
tanϕ

Fs
,

(3)
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where Fs is the FOS and c′ and ϕ′ are the reduced cohesion
and friction angle, respectively.

In addition, the adjustment of the Young’s modulus E
and Poisson’s ratio υ is adopted to allow the shear strength
reduction scheme to be realized in the finite element sim-
ulations [25, 32, 33].

2.3. Definition of Failure. +ree definitions of failure in the
slope stability problems consist of (1) nonconvergence of the
solution (F1); (2) continuums of the plastic zone (F2); and (3)

mutation displacement of the characteristic point (F3). +e
nonconvergence option indicates that within a user-specified
maximum number of iterations, no stress distribution can be
found that is simultaneously able to satisfy both the failure
criterion and global equilibrium [17, 34].+e second criterion
describes that the plastic zone is continuous throughout from
the toe of the slope to the top of the slope [18, 19], while the
third indicator is the mutation displacement of the charac-
teristic point [17, 20, 21, 23, 35]. All of the three definitions of
failure will be analysed throughout this paper.
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Figure 1: Flow chart of the integration algorithm (after Sloan [10]).
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3. Case Study

Two examples of typical FE soil slope models are established
and analysed, and validation against the literature data is
given where possible. Two examples of different foundation
layers have been selected since Griffiths and Lane [17] argued
that the foundation layer has a significant effect on the FOS.
Effects of the element type and various definitions of failure
on the computational efficiency of the slope stability
problems are systematically studied.

3.1. Case Study 1. Following Dawson et al. [16], the slope is
assumed to be homogeneous with a slope height of 10m and
slope angle of 45° (Figure 2). +e foundation layer D� 3m.
+e material of the soil is discretized with a quadrilateral
isoparametric plane strain element (except the case of
studying the effects of the element type), with a total number
of 330 elements and 369 nodes. Both the left-hand and right-
hand side boundaries allow for vertical movement. +e
condition on the bottom boundary is fixed in both vertical
and horizontal directions. +e soil model consists of six
parameters, as shown in Table 1. +e associated flow rule is
used. +e moving direction of the characteristic point (i.e.,
node a in Figure 2) opposite to the positive x-axis is taken as
positive.

3.1.1. Comparison of the Accuracy of the Definition of Failure.
+e explicit modified Euler algorithm with stress corrections
proposed by Abbo [29] is used to perform the integration of
stress-strain relations. +e convergence fails until the case of
Fs � 1.12. +e equivalent strain nephograms with different
values of Fs are shown in Figure 3. Obviously, the case of
Fs � 1.12 indicates failure of the slope in terms of the F1
definition of failure. +e plastic zone is initially identified at
the toe of the slope and then develops from the toe to the top
of the slope, with the increase in the magnitude of Fs. When
Fs � 1.05, the plastic zone is continuous from the toe of the
slope to the top of the slope. Hence, the case of Fs � 1.05
indicates failure if the F2 definition of failure is used. +e
horizontal displacement of the representative node a, which
is shown in Figure 2, is plotted against the FOS (Figure 4).

As shown in Figure 4, the displacement experiences a few
increases before approaching Fs � 1.05. A sharp deduction of
the displacement can be found beyond Fs � 1.05. +e mu-
tation displacement of the characteristic point (i.e., node a) is
observed at the case of Fs � 1.05, which is an indicator of
failure if the F3 criterion is used. +is result is similar to that
concluded by Dawson et al. [16], who demonstrated that Fs is
equal to 1.03 when failure is identified. F1 definition of
failure gives a larger magnitude of Fs.+e safety factors of the
slope predicted by F2 and F3 definitions of failure are more
conservative and similar to the literature data. It is suggested
that the larger value of either F2 or F3 should be selected as
the FOS.

3.1.2. Effects of the Integration Scheme on the Computational
Precision. In order to analyse the effects of integration

method on the computational precision, the modified Euler
algorithm without stress corrections proposed by Sloan [10]
is used to perform the integration of stress-strain relations.
+e results, as presented in Figure 5, are compared with
those by Abbo [29] as shown in Figure 3. +is time, the
convergence fails before the case of Fs � 1.1. +e develop-
ment of the plastic zone is reasonable before Fs � 1.1.
However, the plastic zone is random when Fs � 1.1, which is
against the common sense. +e reason may lay in the fact
that no stress correction method is incorporated in the al-
gorithm proposed by Sloan, and the accumulation of the
global error may lead to the incorrect plastic strain. In
addition, this error may result in nonconvergence when Fs is
even relatively very small. Hence, the integration method
with stress corrections is more applicable, especially when
the magnitude of Fs is relatively large. When Fs � 1.06, the
plastic zone is continuous from the toe of the slope to the top
of the slope. Hence, the case of Fs � 1.06 indicates failure if
the F2 definition of failure is used. In Figure 6, the mutation
displacement of the characteristic point (i.e., node a) is
observed when Fs � 1.09, which is an indicator of failure if
the F3 criterion is used. It is obvious that if the modified
Euler algorithm is used, combining the failure criterions F2
and F3, the safety factor of this slope is 1.09.

Comparing the two integration algorithms, the explicit
modified Euler integration with stress corrections yields a
more conservative result, and its estimation of FOS is similar
to the literature data.

3.1.3. Effects of the Element Type on the Computational
Decision. To investigate the effects of the element type, the
material of the soil is discretized with a triangular plane
strain element, with a total number of 1920 elements and
1027 nodes. Parametric studies have been performed on the
number of the elements. It is found that if the equal numbers
of the triangular elements are used as those of the quadri-
lateral isoparametric elements, the results are not correct
when validated with the literature data. As aforementioned,
the modified Euler scheme with stress corrections is used to
perform the integration. +e convergence fails until the
magnitude of Fs is equals 1.12. Hence, the indicator of failure
is that Fs � 1.12 with the utilization of F1 criterion. As shown
in Figure 7(b), the plastic zone develops from the toe of the
slope to the top of the slope, and the transfixion of the plastic
zone through the toe to the top can be observed when

a

20m

D
 =

 3
m

45°
2m

13
m

8m

Figure 2: Soil slope mode with quadrilateral isoparametric plane
strain element mesh (D� 3m, Fs � 1.03).
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Figure 3: Equivalent strain nephograms for quadrilateral isoparametric plane strain elements by using the modified Euler integration with
stress corrections: (a) Fs � 1; (b) Fs � 1.05; (c) Fs � 1.08; (d) Fs � 1.1; (e) Fs � 1.12.

Table 1: Material properties for the slope in case study 1.

Young’s modulus E (kPa) Poisson’s ratio υ Unit weight c (kN/m3) Friction angle ϕ (°) Dilation angle ψ (°) Cohesion c (kPa)
100000 0.35 20 20 20 12.38
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Fs � 1.05. With respect to the F3 definition of failure, the case
of Fs � 1.05 indicates the failure of the slope as shown in
Figure 8. +e horizontal displacement increases rapidly after
the characteristic value of Fs � 1.05. +e conclusions are

coincident with those obtained by using the quadrilateral
isoparametric plane strain elements. However, the total
number of elements when using the triangular elements is
much larger than those when using the quadrilateral
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Figure 4: Horizontal displacement versus Fs for quadrilateral isoparametric plane strain elements by using the modified Euler integration
with stress corrections.
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Figure 5: Equivalent strain nephograms for quadrilateral isoparametric plane strain elements by using the modified Euler integration
without stress corrections: (a) Fs � 1; (b) Fs � 1.06; (c) Fs � 1.09; (d) Fs � 1.1.
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Figure 7: Continued.
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isoparametric elements. As a result, the computation time is
larger when comparing the triangular elements to their
quadrilateral isoparametric counterparts.

+e velocity fields obtained from case study 1 are illus-
trated in Figure 9, in terms of both quadrilateral isoparametric
elements (Figures 9(a) and 9(b)) and triangular elements
(Figures 9(c) and 9(d)).+e directions of arrows represent the
flow of velocity while the length of arrows represents the
magnitude of displacement. It can be found in Figure 9 that
the velocity patterns are coincident with the theoretical
pattern predicted by the slip line method. In addition, the
velocity zone indicated by the F1 criterion is larger and wider
than that indicated by the F3 criterion. It can be expected that
the failure zone is wider when the F1 criterion is used. Hence,
the F3 criterion is more conservative, which is consistent with
the conclusion drawn from the equivalent strain nephograms
and horizontal displacement plots.

3.2. Case Study 2. +e soil slope model is assumed to be
homogeneous. +e dimensions are just the same as those

studied by Su and Li [35], with a slope height of 10m and a
slope angle of 26.57°, as shown in Figure 10. +e foundation
layer D� 10m. +e boundary conditions and the flow rule
are the same as those used in case study 1.+ematerial of the
soil is discretized with a quadrilateral isoparametric plane
strain element (except the case of studying the effects of the
element type), with a total number of 1000 elements and
1081 nodes. +e material properties are present in Table 2.
+e positive moving direction of the characteristic point
(i.e., node c in Figure 10) coincident with positive x-axis is
taken as positive.

3.2.1. Comparison of the Accuracy of the Definition of Failure.
+e modified Euler scheme with stress corrections is used
to perform the integration. Convergence cannot be
achieved after Fs reaches 1.8. Likewise, the plastic zone
commences on the toe of the slope and then develops
through the toe to the top of the slope. +e final transfixion
of the plastic zone from the toe to the top of the slope can be
found at Fs � 1.7 (Figure 11(c)). As illustrated in Figure 12,
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(a) (b) (c) (d)

Figure 9: Velocity fields of the slope: (a) quadrilateral isoparametric elements with Fs � 1.05; (b) quadrilateral isoparametric elements with
Fs � 1.12; (c) triangular elements with Fs � 1.05; (d) triangular elements with Fs � 1.12.
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Figure 10: Soil slope mode with quadrilateral isoparametric plane strain element mesh with D� 10m and Fs � 1.667.

Table 2: Material properties for case study 2.
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Figure 11: Equivalent strain nephograms for quadrilateral isoparametric plane strain elements by using the modified Euler integration with
stress corrections: (a) Fs � 1.5; (b) Fs � 1.67; (c) Fs � 1.7; (d) Fs � 1.8.
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the indicator of failure is found at the case of Fs � 1.67 if the
F3 criterion is used to define the failure, which agrees well
with the conclusion of Fs � 1.667 proposed by Su and Li
[35]. Similar conclusions can be drawn that the combining
the F2 and F3 definitions of failure, the estimation of FOS is
more conservative than that of the F1 definition of failure.

3.2.2. Effects of the Integration Scheme on the Computational
Precision. +e equivalent strain nephograms obtained by
using the modified Euler scheme without stress corrections
are plotted in Figure 13. When compared to Figure 11, the
results are the same by using both of the two integration
schemes. However, when the value of Fs is larger than 1.5,
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Figure 13: Equivalent strain nephograms for quadrilateral isoparametric plane strain elements by using the modified Euler integration
without stress corrections: (a) Fs � 1.5; (b) Fs � 1.67; (c) Fs � 1.8.
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Figure 12: Horizontal displacement versus Fs for quadrilateral isoparametric plane strain elements by using the modified Euler integration
with stress corrections.
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the results are random and the plastic belt is very difficult to
be achieved. +e convergence problem cannot be well
controlled, and it takes much longer computational time.
Hence, the modified Euler scheme with stress corrections is
more applicable, in particular for the case with a higher value
of Fs.

3.2.3. Effects of the Element Type on the Computational
Decision. +e triangular plane strain elements are used to
be compared with the quadrilateral isoparametric ele-
ments, to investigate the effects of the element type on the
computation decision in slope stability problems. +e
total number of elements is 2000. Likewise, the explicit
modified Euler scheme with stress corrections is applied.
Convergence fails until Fs approaches 1.8. As illustrated in
Figure 14, the plastic zone is continuous throughout the
toe of the slope to the top of the slope when Fs � 1.67
(Figure 14). +e mutation displacement of the charac-
teristic point is found at the case of Fs � 1.67 (Figure 15).
+ough consistent conclusions can be obtained by using
the triangular elements, more computational elements are
required compared with the quadrilateral isoparametric
elements. +e accuracy of the computation cannot be well
guaranteed if the mesh is coarse.

4. Discussion

+e main objective of the present study is to evaluate the
effects of the failure criterion on the slope stability, which
have not been fully revealed theoretically in the literature.
Apart from the above two cases, two more cases involving
the conditions of heterogeneity and irregular geometrical
shapes have been studied as well. Similar conclusions can be
drawn that if F1 is used as the definition of failure, the
calculated safety factors of the slope depend on the in-
tegration algorithms that are used. It means that different
integration algorithms result in different outcomes. How-
ever, if we combine the F2 and F3 definitions of failure, the
larger value obtained by these two failure criterions is se-
lected as the FOS, and the value of FOS is rarely affected by
the integration algorithms.

In addition, the effects of the parameters on the slope
stability, including friction angle, cohesion, unit weight, and
Poisson’s ratio, are studied. +e results are shown in Fig-
ures 16 and 17.

+e parametric studies show that the slope stability
increases with the increase in the friction angle or cohesion
and, however, decreases with the increase in the unit weight,
as expected. Poisson’s ratio exhibits negligible effects on the
FOS.
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Figure 14: Equivalent strain nephograms for triangular plane strain elements by using the modified Euler integration with stress cor-
rections: (a) Fs � 1.5; (b) Fs � 1.67; (c) Fs � 1.7; (d) Fs � 1.8.
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Figure 15: Horizontal displacement versus Fs for triangular plane strain elements by using the modified Euler integration with stress
corrections.
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5. Concluding Remarks

In the framework of elastic-plastic mechanics, the shear
strength reduction technique was utilized to analyse the
slope stability. +e effects of the finite element calculation
conditions (e.g., the definition of failure, the element type,
and the numerical integration algorithm) on the compu-
tational efficiency of 2D slope stability were studied. Con-
clusions were drawn as follows:

(1) Because of the accumulative error of the computa-
tional stress, the modified Euler scheme without
stress corrections was applicable only when FOS is
relatively small, and it is not applicable to predict the
slip surface of the slope for some cases (e.g., case 2);
however, the explicit modified Euler algorithm with
stress corrections was more precise even if the factor
of safety was relatively large.

(2) +e displacement mutation of the characteristic
point combined with the continuums of the plastic
zone can be regarded as the most reliable definition
of failure and can be widely used to perform and
analyse numerical simulations of slope stability
problems.

(3) Compared with the fully integrated quadrilateral
isoparametric element, the triangular element can
yield the same FOS but with more elements.

Appendix

A Rounded Hyperbolic M-C Yield Function

For the sake of implementation of geotechnical consti-
tutive laws into finite analysis, many technical problems
must be taken into consideration. Great efforts must be
made for parametric control in finite element analysis
allowing the newly proposed theory to run successfully in
finite element codes, among which the computational
difficulties due to the gradient discontinuities which occur
at the tip or vertex of the yield curve are the most im-
portant. In the present study, the rounded hyperbolic M-C
yield function is used to eliminate the computational
difficulties [10, 29].

+e M-C yield surface in the three dimensional stress
space is a hexagonal yield surface pyramid. +e rounded
hyperbolic M-C approach is to use a hyperbolic approxi-
mation in the meridional plane to eliminate the tip singu-
larity and a trigonometric rounding in the octahedral plane
to eliminate the edge singularities.

As shown in Figure 18(a), the expression of the
straight line can be determined directly by the de-
termination of the conventional M-C yield criterion and
the slope of the straight line is given by sin ϕ. +e straight
line intercepts the p-axis at p � − c cotϕ. Following Sloan
[10] and Abbo [29], the hyperbolic approximation to the
Mohr-Coulomb criterion is utilized to remove the apex
singularity. +e general equation can be displayed as
follows:

f σx, σy, σxy􏼐 􏼑 �

����������������������
σx − σy

2
􏼒 􏼓

2
+ σ2xy + a2sin2 ϕ

􏽳

− (p + c · cot ϕ) · sinϕ,

(A.1)

where a is the shape parameter, which is shown in
Figure 18(b).

As shown in Figure 19, the M-C can be written in the
space of (σm, σ, Θ):

f � σm sinϕ + σK(Θ) − c cosϕ � 0,

K(Θ) � cos θ −
1
�
3

√ sinϕ sinΘ,

(A.2)

where Θ is the lode angle.
As shown in Figure 19(a), in the octahedral plane, there

are six vertices. A rounded surface is used to smooth these
vertices, and the complete yield surface is displayed as

K(Θ) �

(A − B sin 3Θ), |Θ|>ΘT,

cosΘ −
1
�
3

√ sinϕ sinΘ􏼠 􏼡, |Θ|≤ΘT,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.3)

where A and B are parameters defined in Abbo [29].
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