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There has been substantial interest of late in using population genetic methods to study sexual conflict, 

where an allele increases the fitness of one sex at some cost to the other (Mank 2017). Population genomic 

scans for sexual conflict offer an important advance given the difficulties of identifying antagonistic alleles 

from more traditional methods, and could greatly increase our understanding of the extent and loci of 

sexual conflict. This is particularly true for studies in natural populations, for which obtaining accurate 

fitness measurements for each sex can be challenging. In this issue of Molecular Ecology, Bissegger et al. 

(XX, XXX-XXX) present a cautionary tale about how to interpret these population genomic data.

Several recent reports have used differences in allele frequency (such as FST) between males and females to 

assess the extent of sexual conflict in a population. Because allele frequencies are identical between the sexes 
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at conception for autosomal loci, the thinking goes that any significant sex differences observed in adults 

must result from discrepancies between males and females in how an allele influences viability, predation or 

disease (Mank 2017). Over the life cycle of a cohort, we might expect allele frequency differences to increase 

as sex differences in mortality accumulate (Fig. 1). 

Although some assessments have found significant differentiation in a few loci (Flanagan & Jones 2017; 

Wright et al. 2018; Wright et al. 2019), others have identified hundreds, even thousands of loci that show 

major differences in allele frequency between females and males (Cheng & Kirkpatrick 2016; Dutoit et al. 

2018; Lucotte et al. 2016). While the former have been argued to be evidence of sex-specific genetic 

architecture, and therefore conflict resolved (Wright et al. 2018), the latter findings were taken as the 

signature of ongoing sexual conflict manifesting across a large proportion of the genome. 

However, the observation of widespread allelic differences between the sexes presents an intriguing mystery. 

The selection coefficients required to produce significant differences in allele frequency by sexual conflict are 

quite high (Kasimatis et al. in press; Kasimatis et al. 2017), and strong selection coefficients on a large number 

of loci across the genome would result in excessive sex-specific mortality rates (Fig. 1). If true, populations 

would be expected to experience unbearable mortality loads, as vanishingly few individuals would carry the 

correct allelic complement for their sex and would not survive to reproduce. How could any species, 

particularly those with low fecundity such as humans (Lucotte et al 2016; Cheng & Kirkpatrick 2016) and 

passerines (Dutoit et al. 2018), possibly persist in the face of these predicted mortality rates?

In this issue, Bissegger et al. (2019) present at least a partial explanation for these findings. They searched the 

stickleback genome for regions with allele frequency differences between males and females. Similar to other 

studies (Cheng & Kirkpatrick 2016; Dutoit et al. 2018; Lucotte et al. 2016), they initially found an implausibly 

large number of loci with substantial differences between the sexes. Further analysis revealed that these 

were in fact regions that had recently duplicated from the autosomes to the Y chromosome. Because the 

stickleback reference genome assembly was done on a female, it currently lacks a Y sequence, and so 

sequence reads from the Y duplications in male samples mapped back to the original autosomal location. This 

created perceived allelic differences between the sexes that were in fact due to male-specific mutations 

accumulating on the Y chromosome (Fig. 2). Subsequent copy number expansion of the Y duplications can in 

turn generate even higher patterns of intersexual allele frequency differences.
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This explanation carries an interesting irony. Although many have concluded that intersexual allele frequency 

differences are the product of sexual conflict (but see Wright et al. 2018; Wright et al. 2019), the pattern 

found by Bissegger et al. (2019) actually represents at least the partial resolution of sexual conflict. 

Duplication to the Y chromosome is a well accepted route by which sexually antagonistic variation can 

become male-specific, thereby resolving conflict. Fisher (1931) predicted that the Y chromosome would 

accumulate genetic variation beneficial to males, and recent surveys have suggested that the rate of 

translocation from the autosomes to the Y chromosome can be very high (e.g. Tobler et al. 2017). 

Duplications to the sex-limited chromosome could account for much of the signal of allele frequency 

differences in other species currently attributed to ongoing conflict. This is particularly likely for observations 

that sex-biased genes in particular exhibit elevated allele frequency differences (Cheng & Kirkpatick 2016; 

Dutoit et al. 2018), given that genes duplicated to a Y chromosome will show male-specific expression. 

Indeed, the loci with the most extreme allele frequency differences might actually be those for which conflict 

has been most effectively resolved via Y duplication and subsequent copy number expansion.
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Fig. 1. Opposing selection at multiple loci between males and females. Two loci, one encoding colour and 

another for pattern, are associated with different mortality rates between the sexes. Selection for optimal 

female phenotype (orange, plain) and male phenotype (blue, spotted) results in both significant mortality and 

sex-specific allele frequency differences in adults.

Fig 2. Duplication to the Y chromosome leads to perceived differences in male and female allele frequency. 

Duplications from autosomal loci (green) to the Y chromosome (blue) map back to the autosomal locus on the 

female reference genome. Y-specific mutations on duplicated regions (blue stars) lead to false inflation of 

allele frequency differences between the sexes. 
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