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ARTICLE

A therapeutic antibody targeting osteoprotegerin
attenuates severe experimental pulmonary
arterial hypertension
Nadine D. Arnold 1,9, Josephine A. Pickworth 1,9, Laura E. West 1,9, Sarah Dawson1,9, Joana A. Carvalho2,

Helen Casbolt1, Adam T. Braithwaite 1, James Iremonger 1, Lewis Renshall1, Volker Germaschewski2,

Matthew McCourt2, Philip Bland-Ward2, Hager Kowash 1, Abdul G. Hameed 1, Alexander M.K. Rothman 1,

Maria G. Frid3, A.A. Roger Thompson 1, Holly R. Evans 4, Mark Southwood5, Nicholas W. Morrell 5,

David C. Crossman 6, Moira K.B. Whyte 7, Kurt R. Stenmark 3, Christopher M. Newman1, David G. Kiely1,8,

Sheila E. Francis 1 & Allan Lawrie 1*

Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments

increase life expectancy but have limited impact on the progressive pulmonary vascular

remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of

patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery

smooth muscle cells (PASMCs). Here, we report that the pro-proliferative and migratory

phenotype in PASMCs stimulated with OPG is mediated via the Fas receptor and that

treatment with a human antibody targeting OPG can attenuate pulmonary vascular remo-

delling associated with PAH in multiple rodent models of early and late treatment. We also

demonstrate that the therapeutic efficacy of the anti-OPG antibody approach in the presence

of standard of care vasodilator therapy is mediated by a reduction in pulmonary vascular

remodelling. Targeting OPG with a therapeutic antibody is a potential treatment strategy

in PAH.
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P
ulmonary arterial hypertension (PAH) is a devastating
disease driven by a sustained pulmonary-specific vasocon-
striction which triggers a progressive pulmonary vasculo-

pathy that leads to right heart failure1. Early endothelial cell
dysfunction is thought to be an initiating event in the develop-
ment of PAH. The subsequent proliferation of multiple resident
cell types including pulmonary artery smooth muscle cells
(PASMC), endothelial cells (PAEC) and fibroblasts is critical to
the vascular remodelling. The infiltration of circulating inflam-
matory and mesenchymal cells has been shownt to play an
important role in regulating disease pathogenesis2–5. Current
therapies for PAH are effective in relieving symptoms and
improve survival6; however, their effects are often transient and
importantly do not stop the progressive pathological changes7.
PAH remains an orphan disease with no cure other than
transplantation.

The molecular and cellular mechanisms involved in the
pathogenesis of PAH are complex and involve cross-talk between
several signalling pathways including the transforming growth
factor beta (TGF-β)/bone morphogenetic protein (BMP) axis8,
growth factors (e.g. PDGF)9 and vasoactive proteins (e.g.
vasoactive intestinal peptide (VIP)10 and endothelin-1 (ET-1)11

(reviewed with respect to anti-remodelling therapies in ref. 5). We
previously reported that tumour necrosis factor (TNF) related
apoptosis inducing-ligand (TRAIL) is also a critical mediator of
PAH in experimental models12. We13,14 and others15 have
reported that osteoprotegerin (OPG, Tnfrsf11b), a secreted gly-
coprotein belonging to the TNF receptor superfamily capable of
binding to TRAIL, is elevated in the lungs and sera from patients
with idiopathic PAH (IPAH). OPG is a potent mitogen and
migratory stimulus of PASMCs in vitro13. Jia et al. have
demonstrated that mice lacking OPG display an attenuated PAH
phenotype in the Sugen5416 plus hypoxia (SuHx) model15.

We report here that OPG expression is elevated in the mouse
SuHx model, and in a different strain of OPG−/− mice, the PAH
phenotype is similarly attenuated (Supplementary Figure 1).
Levels of OPG also increase consequently with PAH development
in the monocrotaline (Mct) rat (Supplementary Figure 2). Fur-
thermore, we demonstrate in vitro that OPG binds to Fas receptor
to activate cell proliferation, migration and survival pathways.
Finally, using a human OPG antibody we demonstrate a robust
therapeutic effect on established and severe PAH. Importantly,
the efficacy of our approach was mediated through both
improved haemodynamics and pulmonary vascular remodelling.
The haemodynamic efficacy of our approach was at least
equivalent to current standard of care PAH therapies (used in
10–50-fold excess in these rat models). Combination of current
PAH therapies with our anti-OPG antibody demonstrated an
improved response in both haemodynamics and pulmonary
vascular remodelling over standard of care PAH therapies alone.

Results
OPG antibody treatment reverses PAH in HFD-ApoE−/− mice.
Studies by Jia et al15, and confirmed by us, demonstrate the
requirement for OPG expression to develop the full PAH phe-
notype in the mouse SuHx model (Supplementary Figure 1), we
also demonstrated the increase of OPG expression with devel-
opment of PAH in the monocrotaline rat model (Supplementary
Figure 2). We next sought to determine whether OPG was a
tractable therapeutic target in PAH models of established disease.
We investigated the effect of genetic deletion of OPG in the
Paigen high fat, high cholate containing diet (HFD) fed ApoE−/−

mouse as a model with severe and progressive (non-resolving)
pulmonary vascular remodelling12,16. Despite previous reports
from other groups17–19, we were unable to successfully breed and

maintain mice double deficient for ApoE and opg. We subse-
quently generated heterozygous ApoE mice (ApoE+/−), and
mice heterozygous for ApoE but homozygous deficient for OPG
(ApoE+/−/OPG−/−). ApoE+/− mice developed PAH in response
to 8 weeks of feeding HFD, consistent with our previously pub-
lished data12,16. HFD-fed ApoE+/−/OPG−/− were protected from
developing increased RVSP (Fig. 1a) with no significant difference
in left ventricular end-systolic (LVESP) or end-diastolic (LVEDP)
pressure, in either strain (Fig. 1b–c). There was no statistically
significant difference in cardiac index (CI) between HFD-fed
ApoE+/− and ApoE+/−/OPG−/− (Fig. 1d). Analysis of pulmonary
vascular remodelling confirmed that the reduced RVSP in the
ApoE+/−/OPG−/− was associated with a significantly lower
media/CSA of small pulmonary arteries (Fig. 1e–f). We next
examined whether treatment of established PAH with a poly-
clonal anti-OPG antibody could stabilise or induce disease
regression in the HFD-ApoE−/− model. In a separate group
of animals, phenotype was confirmed after 8 weeks feeding of
ApoE−/− mice with HFD. The remaining mice were then ran-
domly assigned to receive blinded treatment with either a poly-
clonal anti-OPG antibody or IgG control for 4 weeks (Fig. 1g).
Compared to HFD-fed ApoE−/− mice phenotyped after 8 weeks,
the mice treated with the IgG control antibody displayed an
increase in disease severity (Fig. 1h–i). In contrast, mice treated
with the anti-OPG antibody demonstrated a significant increase
in pulmonary artery acceleration time (PAAT) (Fig. 1h) and
reduction of RVSP (Fig. 1i). There was no significant effect of
disease, or OPG antibody treatment on LVESP (Fig. 1j). The
beneficial haemodynamic response achieved by anti-OPG anti-
body treatment was associated with a reduction in media/CSA
(Fig. 1k–l) that was associated with fewer proliferating and more
apoptotic cells (Fig. 1l). Since OPG is linked with bone remo-
delling20 we examined whether antibody blockade of OPG would
induce an osteoporotic phenotype but no detrimental effect of the
anti-OPG antibody treatment was observed on either bone
volume, trabecular number or trabecular thickness as assessed by
microCT analysis (Fig. 1m–o).

Bone marrow-derived OPG drives PAH in the murine SuHx
model. To determine if the source of OPG responsible for driving
disease was originating from tissue resident, or bone marrow-
derived cells we next examined the disease phenotype in chimeric
mice generated by bone marrow transplantation (BMT). Mice
lacking tissue OPG displayed significantly reduced serum levels of
OPG (Fig. 2a) but were not protected from developing PAH
(Fig. 2b–f). In contrast, mice lacking OPG in bone marrow only
(red dots, Fig. 2), were protected from developing PAH
(Fig. 2b–f). The presence of OPG was noted within remodelled
pulmonary arteries from mice that developed PAH (Fig. 2g)
suggesting OPG expressing cells might be recruited from a bone
marrow source.

We next sought to investigate candidate bone marrow-derived
cell-types that could release OPG and drive the PAH pathophy-
siology. Since both endothelial21 and mesenchymal22 progenitors
have been implicated in PAH, and are present in remodelled
arteries we investigated the expression of OPG in PASMCs
(SMC), pulmonary artery fibroblasts (PA-Fib) and fibrocytes
isolated from the hypoxic neonatal calf model of PAH23 and
blood outgrowth endothelial cells (BOEC)24. OPG expression was
2-fold higher in both PA-Fibs and SMCs, but dramatically higher
in fibrocytes isolated from hypoxic calves with PAH compared to
controls (Fig. 2h). We subsequently performed immunohisto-
chemical analysis of the remodelled pulmonary arterioles from
the hypoxic neonatal calf model and observed a marked increase
in diffuse OPG staining throughout the lesions and in the number
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of OPG positive cells within the vessel wall, particularly in the
adventitial outward remodelled parts of the artery (Fig. 2i). In
BOECs, whereas vascular endothelial growth factor (VEGF)
enhanced proliferation of BOEC obtained from healthy and
IPAH donors, OPG only induced proliferation in BOECs derived
from IPAH patients (Fig. 2j). Since OPG is naturally secreted we
postulated from these data that BM-derived cells may be secreting
and in turn responding to OPG alongside resident PASMCs to
drive pulmonary vascular remodelling.

OPG regulates genes important in PH/PAH pathogenesis. To
gain mechanistic insight into how OPG might regulate the pro-
proliferative PASMC phenotype, we examined the transcriptome
and intracellular signalling mediated by OPG in human PASMCs.
Microarray analysis of PASMC mRNA identified 1900 probes
from the microarray that were significantly regulated by OPG.
Utilising the full transcriptomic analysis we performed pathway
analysis using Signalling Pathway Impact Analysis (SPIA)25 and
identified 13 KEGG pathways as being significantly perturbed by
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stimulation with OPG, most notably TGFβ signalling, cytoskeletal
organisation, motility and survival pathways (Fig. 3a). To filter
the data we first applied gene enrichment utilising a previously
curated PAH gene list26. This highlighted 57 genes either pre-
viously associated with PH/PAH, or in key cellular mechanisms
important in disease pathogenesis (Fig. 3b). Further analysis of a
selection of these differentially regulated genes with TaqMan PCR
validated several genes previously described as important in the
pathogenesis of PH/PAH, specifically TRAIL, PDGFRA, tenascin-
C, VEGFA, and caveolin-1, as all being significantly up-regulated
by OPG, and the VIP receptor as being significantly down-
regulated by OPG (Fig. 3c). To examine the intracellular signal-
ling pathways we performed a KinexTM antibody microarray
(KAM) and identified 63 from 800 phosphorylation and pan-
specific antibodies that were significantly regulated by OPG at
either 10, 60 min, or both (Supplementary Figure 3). Significantly
regulated proteins included a number of pro-survival, anti-
apoptotic and cell cycle (Fig. 3d) proteins and members of the
NF-5β pathway (Fig. 3e). Several proteins were validated by
western immunoblotting, further emphasising activation of
MAPK signalling (pERK1/2), anti-apoptotic proteins (pHsp27,
CDK5) and mammalian target of rapamycin (mTOR) and cell
cycle (CDK4) (Fig. 3f).

OPG binds to Fas receptor on PASMCs. Given the effect of
OPG on cell phenotype and the intracellular signalling identified,
we felt that OPG may be acting as a ligand and signalling through
a previously undescribed receptor. To identify the signalling
receptor for OPG, we conducted a reverse transfection membrane
protein array (Retrogenix, UK). Primary and secondary screens
identified six twice-validated OPG-protein interacting partners,
RANKL (tnfsf11), syndecan-1 (SDC-1), Fas, IL1-receptor acces-
sory protein (IL-1RAcP), growth associated protein 43 (GAP43)
and TMPRSS11D (Fig. 4a). We have previously reported that
levels of SDC-1 were undetectable, and RANKL was only detected
at low level in IPAH tissues13. Therefore we focused on investi-
gating the four OPG-interacting proteins identified (Fas, IL-
1RAcP, Gap43 and TMPRSS11D). Expression of TMPRSS11D
was undetectable in mRNA isolated from PASMCs. The RNA
expression of Fas, IL-RAcP and GAP43 was confirmed in
PASMCs, with Fas being the most abundantly expressed, and
further induced by OPG (Fig. 4b). Similarly, FasmRNA was more
highly expressed in PASMCs from patients with IPAH compared
to healthy controls (Fig. 4c). Since Fas was the most abundantly
expressed putative receptor we performed immunoprecipitation
on lysates from PASMCs stimulated with OPG to validate
binding. In both PASMC lysates and recombinant protein pre-
parations, immunoprecipitation with a Fas monoclonal antibody
pulled down a 50 kDa band that stained positive following anti-

OPG immunoblotting (Fig. 4d). Furthermore, Fas immunor-
eactivity strongly associated with both remodelled pulmonary
arteries, and the right ventricle of patients with IPAH (Fig. 4e)
compared to controls. Investigation of rat lung isolated from
control (saline) and moncrotaline rats, as well as control (nor-
moxic) and SuHx rats also demonstrate a significant increase in
expression of both Fas gene expression (Fig. 4f) and protein
expression within remodelled pulmonary arterioles (Fig. 4g).

Fas regulates OPG signalling and phenotype in PASMCs. To
determine the functional and signalling consequences of the
OPG-Fas interaction, PASMCs were stimulated with OPG after
pre-incubation with an anti-human Fas neutralising antibody.
Blockade of the Fas receptor prevented OPG induction of
PDGFRA, TNC, VEGFA and CAV1 gene expression (Fig. 5a–d)
but interestingly not TRAIL (Fig. 5e). To validate the functional
role of the OPG-Fas interaction, we used the well-described
model of FasL/TRAIL-induced apoptosis of HT1080 cells27. Pre-
incubation of HT1080 cells with OPG significantly blocked both
TRAIL but also FasL-induced apoptosis, as measured by Cas-
pase3/7 activation (Fig. 5f) indicating that OPG can antagonise
FasL–Fas binding. To further examine this in a disease-relevant
cell type, we examined the effect of Fas neutralisation on OPG
stimulated human PASMC. Fas neutralisation significantly
reduced OPG-induced transwell PASMC migration (Fig. 5g) and
suppressed OPG-induced proliferation (Fig. 5h). However, Fas
neutralisation had no effect on PDGF-induced proliferation
(Fig. 5h). The observed increase in TRAIL expression following
ligation of Fas receptor with either the Fas neutralising antibody,
or OPG itself (Fig. 5e), led us to hypothesise that the remaining
proliferation in response to OPG where Fas is neutralised may be
mediated by TRAIL (since we have previously described TRAIL
as a PASMC mitogen12). Pre-incubation with both an anti-
TRAIL antibody and anti-Fas antibody significantly reduced
OPG-induced PASMC proliferation to near baseline levels
(Fig. 5h) suggesting a direct activation of TRAIL-induced pro-
liferation in PASMCs following Fas binding. Based on these and
earlier data (Fig. 3), we therefore propose that OPG binding to
Fas causes intracellular kinase signalling, including phosphor-
ylation of ERK1/2, CDK4/5 leading to the activation of multiple
genes associated with PAH, notably TRAIL. This induces a pro-
survival, migratory and proliferative phenotype promoting pul-
monary vascular remodelling and PAH (Fig. 5i). Furthermore, we
propose that inhibition of OPG, e.g. via antibody blockade, will
prevent this signalling and subsequent alteration in pro-PAH
gene expression leading to a reversal of pulmonary vascular
remodelling, normalisation of pulmonary vascular resistance and
inhibition of PAH via alteration in the proliferation, migration
and apoptosis of pulmonary vascular cells (Fig. 5j).

Fig. 1 Genetic deletion of OPG prevents and antibody treatment reverses PAH. Panels (a–f) are data obtained from high fat diet (HFD) fed OPG−/−,

ApoE+/−, and ApoE+/−/OPG−/− mice to determine the requirement of OPG for the development of PAH. Panels (g–o) are data obtained high fat diet

(HFD) fed ApoE−/− mice treated with IgG or OPG antibody to determine if OPG antibody treatment can reverse established PAH. Bar graphs (a, i) show

right ventricular systolic pressure (RVSP), (b, j) left ventricular end-systolic pressure (LVESP), (c) left ventricular end-diastolic pressure, (d) cardiac index,

(e&k) the degree of medial wall thickness as a ratio of total vessel size (Media/CSA), (f) representative photomicrographs of serial lung sections stained

with Alcian Blue Elastic van Gieson (ABEVG) or immunostained for α-smooth muscle actin (α-SMA). Panel (g) demonstrates a schema from the

therapeutic intervention with polyclonal mouse OPG antibody. (h) pulmonary artery acceleration time (PA AT). l Representative photomicrographs of

serial lung sections from ApoE−/− mice fed on Paigen diet for 12 weeks. Sections were stained with ABEVG or α-SMA, proliferating cell nuclear antigen

(PCNA) or Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Bar graphs show femoral trabecular bone volume (%) (m), trabecular

thickness (mm) (n), trabecular number (mm−1) (o), bars represent mean with error bars showing the standard error of the mean. Box and Whisker plots

represent the interquartile range (box) with the line representing the median and whisker the full range of the data, each animal is represented by a dot in

each graph; panels (a–f) OPG−/− n= 3 per group, ApoE+/− n= 4 per group, ApoE+/−/OPG−/− n= 5 per group. * p < 0.05, ** p < 0.01, *** p < 0.001

compared to OPG−/− or chow-fed mice following a two-way ANOVA followed by Bonferroni’s multiple comparisons test, or were only two groups,

unpaired t-tests. All images are presented at their original magnification ×400, scale bar represent 50 µm
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Identification of a lead therapeutic anti-OPG antibody. Our
data indicate that OPG is a likely therapeutic candidate for PAH.
Using the KyMouse™ system28 we generated a diverse panel of
high affinity anti-human OPG monoclonal antibodies with cross-
reactivity to rat and cynomolgus monkey, displaying distinct
neutralisation profiles and varying ability to block the interaction
of OPG with TRAIL and RANKL (Supplementary Figure 4).
Selected antibodies were chosen to cover a spectrum of partial

and full inhibition of OPG-TRAIL and OPG-RANKL binding.
OPG-FAS signalling was examined later (see below). Four can-
didate anti-OPG antibodies (Supplementary Figure 4e) were
tested for their ability to attenuate the development of
monocrotaline-induced PAH (Fig. 6a). Weekly delivery of 3 mg
kg−1 antibody or IgG control resulted in the expected levels of
circulating plasma antibody (Fig. 6b). Analysis of the complete
dataset identified the Ky3 antibody as having a significant
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attenuation on markers of PAH including RVSP (Fig. 6c), RVH
(Fig. 6d) and ePVRi (Fig. 6e). There was no significant effect of
either treatment on LVESP (Fig. 6f). Immunohistochemical
analysis of the lung demonstrated a significant reduction in the
media/CSA area (Fig. 6g) and percentage of thickened sub-50 μm
pulmonary arterioles (Fig. 6h–i) in rats treated with the Ky3
antibody. Interestingly rats treated with either the commercial
polyclonal anti-mouse OPG antibody (AF459), which demon-
strated partial efficacy in the SuHx and efficacy in the ApoE−/−

mouse (Fig. 1), or Ky3 resulted in a significant increase in serum
levels of OPG (Fig. 6j), possibly due to retention of antibody
bound OPG in the circulation rather than allowing it to access the
vessel wall.

Ky3 inhibits OPG-induced phenotype and NF-κβ activation.
Once Ky3 was identified as the lead candidate antibody for fur-
ther development we confirmed that Ky3 inhibited OPG-induced
proliferation (Fig. 7a) and migration (Fig. 7b) in human PASMC
in vitro. Having previously identified an NF-κβ response to OPG
(Fig. 3e) we investigated, and show that Ky3 inhibits this acti-
vation (Fig. 7c).

Ky3 attenuates severe PAH. Antibody Ky3 was tested ther-
apeutically in two rat models with severe established PAH, Mct
and SuHx. Rats were exposed to Sugen5416 and hypobaric
hypoxia (18,000 ft, equivalent to 10.8% O2) for 3 weeks before
returning to room air for 3 weeks to allow the progression of
pulmonary vascular remodelling. Rats were then randomised into
groups to receive either sildenafil (50 mg kg−1 per day), Ky3 (3
mg kg−1 per week) or IgG (3 mg kg−1 per week) control antibody
from week 6 for 3 weeks (Fig. 8a). Sustained levels of Ky3 and IgG
were maintained throughout the study (Fig. 8b). PA AT
decreased from week 0 to week 6 as disease progressed. There was
a trend for increased PA AT in sildenafil vs SuHx and Ky3 vs
IgG4 treated animals but this did not reach significance (Fig. 8c).
Sildenafil treated rats showed an increase in cardiac output (CO)
(Fig. 8d). Treatment with sildenafil and Ky3 significantly reduced
RVSP (Fig. 8e) compared to untreated and IgG4 controls,
respectively. RV arterial elastance (RV Ea) and ePVRi were sig-
nificantly reduced only by Ky3 (Fig. 8f–g), treatment with silde-
nafil and Ky 3 significantly reduced RVH (Fig. 8h). There was no
significant effect of any treatment on LVESP (Fig. 8i) indicating
specific effects on the pulmonary circulation. Immunohisto-
chemical analysis of the lung demonstrated that the haemody-
namic changes induced by anti-OPG treatment were associated
with a reduction in both the media/CSA (Fig. 8j) and percentage
of muscularised pulmonary arterioles sub-50 μm in diameter
(Fig. 8k). In contrast there was no significant effect of sildenafil on
either the degree of remodelling, or the percentage of remodelled

vessels (Fig. 8j–k). To try and elucidate the different mechanisms
of action of sildenafil and Ky3 we performed Caspase 3 and
PCNA staining to examine the relationship between treatment
and apoptosis and proliferation on serial sections within the small
remodelled pulmonary arterioles (Fig. 8l). In the sildenafil and
IgG4 treated groups there was evidence of apoptosis, pre-
dominantly in endothelial cells, and medial proliferation. By
contrast, Ky3 treated rats appeared to have apoptosis in both
endothelial and medial layers and reduced medial cell
proliferation.

Plasma levels of OPG were significantly elevated in all SuHx
rats compared to controls at week 6 (Fig. 8m). Consistent with
previous experiments, rats treated with Ky3 displayed a
significant increase in circulating OPG from week 7 through to
week 9 compared to other groups (Fig. 8m). To assess any
potential detrimental side-effect of anti-OPG treatment on bone
turnover, microCT studies were performed on the tibia.
Treatment with Ky3 had no significant effect on bone volume
(Fig. 8n) or trabecular thickness (Fig. 8o) compared to IgG4
treated rats; however, there was a small but significant decrease in
trabecular number (Fig. 8p) in IgG4 treated rats compared to
Ky3, although Ky3 treated rats were not significantly different
compared to control or SuHx rats.

In the Mct model we also observed a significant reduction in
pulmonary vascular remodelling with only 2 weeks of Ky3
treatment but this did not alter the haemodynamic profile
(Supplementary Figure 5). We proposed that this was due to the
shorter treatment duration and, particularly advanced/severe
phenotype in this instance of the model.

Ky3 reduces tissue expression of IL-6, OPG and TRAIL. To
demonstrate that the therapeutic effects of Ky3 treatment in the
SuHx rat model were associated with reduced OPG signalling,
we examined the expression of OPG and identified downstream
mediators in the lung tissue. Despite the increase in circulating
levels of OPG (Fig. 8m), Ky3 treatment resulted in a significant
reduction in OPG RNA (Fig. 9a) and protein within whole lung
lysates (Fig. 9b), Similarly, levels of TRAIL were also decreased
at RNA (Fig. 9c) and protein level (Fig. 9d). Treatment with
Ky3 was also associated with a reduction in inflammation
within the lung as shown by IL-6 RNA expression (Fig. 9e)
although there was no effect on total circulating levels of IL-6
(Fig. 9f). These changes were also consistent with those
observed within remodelled pulmonary arterioles by IHC
(Fig. 9g).

Ky3 and standard of care vasodilator therapy combination.
Finally, Ky3 antibody (3 mg kg−1 per week) was then tested in
comparison, and combination with, sildenafil (50 mg kg−1

Fig. 2 Bone marrow cell derived OPG is required to initiate PAH in the mouse SuHx model. Bar graphs show (a) serum levels of OPG, (b) right ventricular

systolic pressure (RVSP), (c) right ventricular hypertrophy (RVH), (d) left ventricular end-systolic pressure (LVESP), (e) the degree of medial wall

thickness as a ratio of total vessel size (Media/CSA) in small pulmonary arteries pulmonary arteries less than 50 µm, (f) the relative percentage of

muscularised pulmonary arteries less than 50 µm (<50 µm) in diameter. Representative photomicrographs (g) of serial lung sections from bone marrow-

transplanted (BMT) mice. Sections were stained with Alcian Blue Elastic van Gieson (ABEVG), or immunostained for α-smooth muscle actin (α-SMA), von

Willebrand factor (vWF), OPG, or TRAIL. Panel (h) shows OPG gene expression from RNA-seq performed on control and PAH-derived pulmonary artery

smooth muscle cells (SMC), pulmonary artery fibroblasts (Fib) and fibrocytes obtained from the hypoxic neonatal calf model of PAH. Representative

photomicrographs of lung sections from the hypoxic neonatal calf stained with OPG (i). Proliferation of blood outgrowth endothelial cells (BOEC) from

patients with IPAH and healthy controls (j). Box and Whisker plots represent the interquartile range (box) with the line representing the median and

whisker the full range of the data, each animal is represented by a dot in each graph. C57-C57 BMT n= 6 for each group, OPG−/–OPG−/− n= 3 for each

group, C57-OPG−/− n= 3 and OPG−/−-C57 n= 5 for each group. * p < 0.05, ** p < 0.01,*** p < 0.001 compared to C57-C57 BMT Normoxic mice unless

otherwise stated, # p < 0.05, ## p < 0.01 compared to C57–C57 SuHx mice following one-way ANOVA with Bonferroni’s multiple comparisons post hoc

test. All images are presented at their original magnification x400, scale bars represent 50 µm
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per day) or bosentan (60 mg kg−1 per day) treated rats exposed to
SuHx, with IgG4 treatment as a control (Fig. 10a). There was no
effect of either sildenafil or bosentan on the levels of circulating
Ky3 as measured by IgG4 luminex assay (Fig. 10b). Treatment of
SuHx rats with sildenafil, bosentan or Ky3 resulted in a com-
parable reduction PAH phenotype (Fig. 10c–h). Ky3 in combi-
nation with bosentan resulted in a significant further reduced
RVSP compared to bosentan alone (Fig. 10c). Sildenafil treated

rats only demonstrated a reduction in pulmonary vascular
remodelling when also receiving Ky3 (Fig. 10h). As previously
demonstrated rats treated with Ky3 had increased circulating
levels of OPG (Fig. 10i). Caspase 3 and PCNA staining identified
an increase in apoptosis and decrease in proliferation within the
small remodelled pulmonary arterioles in the lungs of rats treated
with Ky3 when compared to either sildenafil or bosentan alone
(Fig. 10j).
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Discussion
We report that OPG promotes cell survival, pro-migratory and
pro-proliferative signalling in PASMCs through binding to Fas
receptor. Furthermore, we demonstrate that OPG is required for
full development of PAH in multiple rodent models. PAH was
substantially attenuated and reversed in these models by
administration of a human anti-OPG therapeutic antibody (Ky3).
The mechanism for this effect was due to a reduction in pul-
monary vascular remodelling indices through the modulation of
proliferation and apoptosis within small pulmonary arterioles due
to alterations in downstream signalling via NF-κβ, ERK, CDKs.
This effect was in contrast to rats treated with sildenafil (a
vasodilator and first line treatment), which displayed a similar
haemodynamic response but was without effect upon pulmonary
vascular remodelling. Ky3 in combination with bosentan further
reduced RVSP compared to bosentan alone suggesting that anti-
OPG treatment may have a benefit in addition to existing vaso-
dilator therapy (even when used in relative excess in these rodent
models compared to human use). Although new drugs29,30 have
recently been added to the treatment options available to PAH
physicians, these therapies continue to target sustained pulmon-
ary vasoconstriction. While this is a common pathophysiological
feature of all forms of PAH, there is little evidence that drugs
targeting the endothelin, nitric oxide or prostacyclin pathways31

have a direct or lasting effect on pulmonary vascular cell pro-
liferation. Indeed, they do not reverse the proliferative changes
observed in PAH, emphasising the need for anti-proliferative
therapies9. Our data demonstrate an unequivocal role for OPG in
the pathogenesis of PAH via the modulation of proliferative
and apoptotic changes observed in PAH. OPG has also been
shown to block TRAIL binding to its receptors, a key regulator of
apoptosis in sensitive cells32, immunoregulation and immune
surveillance33,34 and in both neutrophil35,36 and macrophage37,38

clearance in the lung. Of particular relevance, we have previously
described an important role for TRAIL in PAH12,39 and have
described how both TRAIL and OPG can be separately regulated
by a number of pathways associated with PAH including BMPs,
5-HT and inflammatory cytokines12,13.

Previous data suggest that the predominant function of OPG is
to regulate osteoclastogenesis, with data from mice demonstrating
that reduced OPG expression results in osteoporosis40 and over-
expression of OPG causes osteopetrosis41 via binding to RANKL.
These data perhaps suggest that therapeutic strategies targeting
OPG might have detrimental effects on bone remodelling; how-
ever, encouragingly in our studies we demonstrate a positive
therapeutic effect on pulmonary vascular remodelling with no
significant effect on bone phenotype. OPG also binds proteins
other than RANKL and TRAIL, e.g. syndecan-1, glycosami-
noglycans (GAGs), von Willebrand factor and factor VIII-von
Willebrand factor complex42. We therefore performed an

unbiased screen of around 60% of known transmembrane pro-
teins and identified OPG binding to RANKL, syndecan-1 but also
with Fas, IL-1RAcP, GAP43 and TMPRSS11D (Fig. 4). Having
previously examined RANKL and syndecan-113, we assessed the
expression of the other binders within PASMCs, and subse-
quently focused on Fas due its relatively high expression levels
within diseased tissue and its close relationship to OPG and
TRAIL (all belong to the TNF superfamily). Our data suggest that
neutralisation of Fas, either by anti-Fas antibody or binding to
OPG, up-regulates TRAIL expression. This may reflect a redun-
dancy mechanism between the two death-receptor signalling
pathways. FasL has been reported to induce PASMC apoptosis43,
so our data highlight another potential mechanism by which
increased OPG (via Fas) may drive PAH pathology. Inhibiting
FasL/Fas binding with endogenous OPG may limit the ability of
FasL to cause apoptosis44. Indeed, we clearly show that OPG
induces a pro-survival/anti-apoptotic phenotype, and activates
many genes previously associated with PAH, including TRAIL,
suggesting a pivotal role in the disease process. The implication
that OPG can regulate the local expression of TRAIL within the
vessel wall fits with our reports demonstrating that TRAIL39, and
specifically tissue-derived TRAIL12 is required for mice to
develop PAH. Of note, TRAIL was also recently described to be
an important member of an immune cluster of circulating pro-
teins that defined poor prognosis in patients with mixed aetiology
PAH45. The relationship between cell expressed, and circulating
TRAIL is however complex. TRAIL is widely expressed, including
by immune cells and circulating “soluble” TRAIL requires pro-
teolytic cleavage of the C-terminal extracellular domain of the
transmembrane TRAIL protein. Whether disease is mediated by
locally expressed and retained TRAIL or by released circulating
TRAIL remains unclear.

The wider implications of the identified interaction between
OPG and IL-1RAcP have not yet been fully examined. We16

and others46 have previously highlighted the importance of IL-1
in the pathogenesis of PAH but the direct effect of OPG on IL-
1/IL-1R1, or IL-33/ST2 to complex with IL-1RAcP remains
unclear. Similarly, the binding of OPG to GAP43 and
TMPRSS11D has not been further pursued at this stage due
to their low expression in diseased cells. GAP43 is reported
to be a neuron-specific protein47 and TMPRSS11D (human
airway trypsin-like protease, HAT) is a type-II transmembrane
trypsin-like serine protease that is largely found in sputum and
expressed by bronchial ciliated endothelial cells48. Further work
is clearly required to determine the influence of OPG in other
biological processes and diseases where IL-1RAcP, GAP43 and
TMPRSS11D play an important role. Our study was initially
limited by the lack of availability of monoclonal anti-human
OPG antibodies with cross-reactivity to rat but we overcame
this by generating a suite of human monoclonal antibodies that

Fig. 3 OPG activates pro-proliferative signalling and a disease-relevant transcriptome. Panel (a) Signalling Pathway Impact Analysis (SPIA) with each

pathway represented by one dot. The pathways to the right of the red diagonal line are significant after Bonferroni correction of the global p-values

obtained using Fisher’s methods from the combination of pPERT and pNDE values, the pathways to the right of the blue line are significant after FDR

correction. (b) shows a heat map of significant differentially regulated genes after gene enrichment against PAH-associated genes in OPG stimulated

PASMCs, (c) TaqMan validation of gene expression microarray, TaqMan expression data normalised using ΔΔCT with 18 s rRNA as the endogenous

control gene. Panel (d) shows a heat map of cell cycle/CDK proteins significantly regulated by OPG at 10 and 60min expressed as a ratio to unstimulated

controls from the same time point from Kinex phospho-arrays identified, with (e) showing those specifically related to NF-κβ. f Western blot validation of

Kinex array data in unstimulated (0.2% FCS, Un) or OPG-stimulated (50 ngml−1) PASMCs at 10min (10) and 60min (60) with relative band densities of

phospho-ERK1/2, phospho-HSP27, phospho-mTOR, phospho-CDK4 and total CDK5 are shown by the bar graphs and representative western blot images

shown above the graph. Heat maps show Z-ratio gene or protein expression. Bars represent mean with error bars showing the standard error of the mean,

n= 3 for pooled triplicate samples (a, b), n= 12 (c), n= 4 (d, e), n= 5 (f) from three donors of PASMCs, dots represent experimental repeats. Bars from

unstimulated cells are white, OPG stimulated blue. *p < 0.05, ** p < 0.01, *** p < 0.001 compared OPG-stimulated to unstimulated PASMCs using one-way

ANOVA followed by Bonferroni’s multiple comparisons post hoc test. When there were only two groups, unpaired t-tests were used
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included Ky3. Although there are limitations of each rodent
model of PH used in this study, the utilisation of multiple
models, each with different characteristics, combined with
human data circumvent these concerns. Furthermore, the effi-
cacy demonstrated here may not reflect the full potential effect
in humans due to incomplete homology between human and
rat proteins. We provide a strong body of evidence with

concordant data that OPG is a key driver in the pulmonary
vascular remodelling in PAH, thereby validating it as a ther-
apeutic target. It seems likely that Ky3 might be useful as an
adjunct therapy alongside existing treatments that target
vasoconstriction and we are currently exploring the potential
for translation of this human therapeutic anti-OPG antibody to
clinical studies in PAH.
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purchased PASMCs, and (c) PASMCs from patients with IPAH (grey bars) and healthy controls (white bars). d Anti-Fas co-immunoprecipitation of OPG in

endogenous primary human PASMC lysates or recombinant protein replicated 3 times. e OPG and Fas are expressed within remodelled pulmonary arteries

and the right ventricle of patients with IPAH. TaqMan expression of Fas in whole lung RNA (f) and protein expression in lung sections (g) isolated from

control (saline), monocrotaline (d28), control (normoxia) and SuHx (wk9) rats. TaqMan expression data normalised using ΔΔCT with 18 s rRNA as the

endogenous control gene. Bars represent the mean with error bars showing the standard error of the mean. Panel (c) n= 4 and panel (d) n= 3 from three

individual donors, dots represent experimental repeats. * p < 0.05, ** p < 0.01, *** p < 0.001 following one-way ANOVA with Bonferroni’s multiple

comparisons post hoc test. When there were only two groups, unpaired t-tests were used. Scale bar represents 25 µm
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Methods
Animals. All animal experiments were approved by the University of Sheffield
Project Review Committee and conformed to the UK Home Office ethical guide-
lines. A sample size of at least four animals was used to provide greater than 95%
power to detect a difference in RVSP of 10 mmHg with a SD of 3 mmHg with 95%
confidence. Additional animals were studied in large group comparisons and to
obtain sufficient tissue for analysis. Animals used for antibody intervention studies
were randomised blindly based on weights to achieve a similar distribution of
weights across all groups where possible.

Male Sprague Dawley rats were purchased from Charles River UK. PAH was
induced by a single subcutaneous injection of monocrotaline (MCT, Sigma Aldrich,
St. Louis, MO, USA) at 60 mg kg−1 in rats 200–210 g, alongside saline injected
control animals. For time course experiments animals were sacrificed at days 7, 14,
21 and 28. Preventative treatments with the neutralising goat polyclonal anti-OPG
antibody (AF459, R&D Systems, Minneapolis, MN, USA) or control IgG isotype
(AF6775, R&D systems) were administered via an Alzet 2002 mini-pump (200 μl
reservoir, 0.5 μl h−1 for 2 weeks from day 0); preventative treatments with the
human monoclonal anti-OPG antibody or control IgG4 isotype were performed
(3 mg kg−1, i.p.) at day 0, 7 and 14 with the animals sacrificed at day 21.
Therapeutic intervention was performed at day 21 and day 28 (3 mg kg−1, i.p.) and
animals sacrificed at day 35.

PAH was induced in male Wistar (Charles River, UK) rats of 200–220 g by a
single subcutaneous injection of Sugen5416 (Tocris, Bristol, UK) at 20 mg kg−1

followed by housing in hypobaric chambers at an equivalent of 18,000 ft for
3 weeks, followed by normobaric pressures for remaining 6 weeks. Therapeutic

treatments with the human monoclonal anti-OPG antibody or control IgG4
isotype were performed (3 mg kg−1 per week, i.p.) alone or in combination with
sildenafil (50 mg kg−1 per day) or bosentan (60 mg kg−1 per day) in chow from
weeks 6 with animals sacrificed at week 9.

ApoE−/− (JAX 2052) and OPG−/− (JAX 010672) mice from a C57BL/6 J
background were purchased from Jackson Labs. ApoE+/−/OPG−/− were
subsequently bred in-house. Male C57BL/6, ApoE+/−, OPG−/− and
ApoE+/−/OPG−/− aged 10–12 week were fed normal chow (4.3% fat, 0.02%
cholesterol, 0.28% sodium) or Paigen diet (18.5% fat, 0.9% cholesterol, 0.5%
cholate, 0.269% sodium) for 8 weeks8,11. Where stated BMT was performed on
male mice aged 6–8 weeks old, where each received a sub-lethal dose of whole-
body irradiation (1100 rads, split into two doses, 4 h apart). Irradiated recipients
then received 3–4 million cells isolated from 4 to 6 week old mice, in Hanks’
balanced salt solution, by tail-vein injection12,49. Mice were allowed to recover for
6 weeks after bone marrow transfer prior to induction of PAH. Where stated,
neutralising goat polyclonal anti-OPG antibody (AF459, R&D Systems) or control
IgG isotype antibody (AF6775, R&D systems) was used. Antibodies were delivered
via an Alzet 1004 micro pump (100 μl reservoir, 0.1 μl h−1 for 4 weeks at 20 ng h−1

(0.8 ng g−1 h−1). For the Sugen hypoxic model (SuHx), C57BL/6 and OPG−/−

male mice were exposed to hypoxia (10% v/v O2) for 3 weeks with weekly
injections of 20 mg kg−1 Sugen5416 (Tocris) during exposure to hypoxia50.

Human antibody generation. KyMouse™ system of genetically engineered mice
containing a large number of human immunoglobulin genes28 was used for the
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Fig. 5 OPG-Fas interaction mediates the OPG-induced phenotypic response of PASMC. TaqMan expression of (a) VEGFA, (b) PDGFRA, (c) TNC, (d) Cav1

and (e) TRAIL in response to OPG in the presence (hash bars) or absence (Grey bars) of anti-Fas neutralising antibody (1500 ngml−1). Panel (f)

demonstrates OPG inhibition of FasL and TRAIL-induced apoptosis in HT1080 cells. g PASMC migration following 6 h stimulation with PDGF (20 ngml−1),

OPG (30 ngml−1) or 0.2% FCS (serum-free media, SFM), in the presence or absence of Fas neutralising antibody. h Proliferation of PASMCs following
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as a percentage of proliferation to PDGF. Bars represent the mean with error bars showing the standard error of the mean. Dots represent experimental
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generation of a diverse panel of high affinity anti-human OPG monoclonal anti-
bodies. Various immunisation regimens, including conventional intraperitoneal
injections as well as a rapid immunisation at multiple sites (RIMMS) regimes were
set up using recombinant human or rat OPG mature peptide sequences fused to
human IgG-Fc domains expressed in CHO cells (Supplementary Figure 4). At the
end of each regime, secondary lymphoid tissue such as the spleen, and in some
cases, the lymph nodes were removed. Tissues were prepared into a single cell
suspension and fused with SP2/0 cells by electrofusion to generate stable

hybridoma cell lines. A number of human and mouse OPG cross-reactive anti-
bodies were grouped by their neutralisation profiles and varying ability to block the
interaction of OPG with TRAIL and RANKL were identified following the
assessment of hybridoma supernatants in a sequential primary and secondary
screen cascade using HTRF® (Homogeneous Time-Resolved Fluorescence —

see Supplementary Methods) and label-free surface plasmon resonance (SPR).
Selected leads were produced in larger quantity in suspension CHO cells and
purified as fully human IgG4 PE (human IgG4 Fc region with mutated to amino
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acids P and E at residues S228 and L235 (EU index) to stabilise the hinge region
and remove residual antibody-dependent cell-mediated cytotoxicity) and assessed
in in vitro and in vivo studies. The anti-OPG antibodies, KY1–KY4, described in
this manuscript are corporate assets, protected by various patents and, as such, are
only available through licensing or an MTA, the terms of which will be agreed on a
case-by-case basis.

Pulmonary hypertension phenotyping. Operators were blinded to treatment
groups through the collection and analysis of phenotype data. Echocardiography
was performed using the Vevo 770 system (VisualSonics, Toronto, Canada) using
either the RMV707B (mice) or RMV710B (rat) scan head. Rectal temperature,
heart rate and respiratory rate were recorded continuously throughout the study.
Anaesthesia was induced and maintained using isoflurane, sustaining heart rates at
450–500 (mice) and 325–350 (rats) beats per minute (bpm). Rodents were depi-
lated and pre-heated ultrasound gel applied (Aquasonics 100 Gel, Parker Labs Inc.,
Fairfield, NJ). Right ventricle free wall parameters were collected using M-mode
from the right parasternal long axis view. Standard left ventricle parameters were
determined using two-dimensional, M-mode and Doppler pulse wave in the short
axis view at the level of the papillary muscles. Cardiac output (CO) was derived
from flow and annulus diameter at the outflow tract and aortic valve junction, then
normalised by body weight. Analysis was performed using Vevo 770 software (v3.0,
VisualSonics). All measurements were made during the relevant cardiac cycle
phase, avoiding inspiration artefact12,16.

Following echocardiography and under isoflurane-induced anaesthesia, left and
right ventricular catheterisation was performed using a closed chest method via the

right internal carotid artery and right external jugular vein. Pressure volume
measurements were collected using the following catheters: PVR-1045 1F (mouse
LV), PVR-1030 1F (mouse RV), SPR-838 2F (rat LV) and SPR-847 1.4F (rat RV;
Millar Inc.), coupled to a Millar MPVS Ultra and PowerLab 8/30 data acquisition
system (AD Instruments Ltd, Oxford, UK). Data were recorded using LabChart
v7 software (AD Instruments Ltd) and analysed using PVAN v2.3 (Millar,
Houston, TX, USA). Estimated pulmonary vascular resistance (ePVRi) was
calculated using the equation (estimated mean pulmonary artery pressure(EmPAP)
— left ventricular end — diastolic pressure (LVEDP)/cardiac index)51. EmPAP was
derived from RVSP, by substituting systolic PAP for RVSP, to give [EmPAP=

(0.61 x RVSP)+ 2 mmHg]52. EmPAP was then used in place of mean PAP in the
PVRi equation shown above 12. The animals were then humanely killed under
anaesthesia and tissues harvested for analysis described below12,26.

Right ventricular hypertrophy. Right ventricular hypertrophy (RVH) was mea-
sured by calculating the ratio of the right ventricular free wall weight over left
ventricle plus septum weight.

Immunohistochemistry. Immediately after harvest, the left lung was perfusion
fixed via the trachea with 10% (v/v) formalin buffered saline by inflation to 20 cm
of H2O. The lungs were then processed into paraffin blocks for sectioning. Paraffin
embedded sections (5 μm) of mouse and rat lung were histologically stained for
Alcian Blue Elastic van Gieson (ABEVG) and immunohistochemically stained for
α-smooth muscle actin (α-SMA (1:150), M0851, Dako (Agilent), Santa Clara, CA,

Fig. 6 Human anti-OPG antibody attenuates monocrotaline-induced PAH in rats. Panel (a) shows the schema for disease initiation and treatment time

course. b Plasma concentrations of antibody and IgG. Bar graphs show (c) right ventricular systolic pressure (RVSP), (d) right ventricular hypertrophy

(RVH), (e) estimated pulmonary vascular resistance (ePVRi), (f) left ventricular end-systolic pressure (LVESP), (g) the degree of medial wall thickness as

a ratio of total vessel size (Media/CSA), (h) relative percentage of muscularised small pulmonary arteries and arterioles in <50 µm vessels. Panel (i) shows

representative photomicrographs of serial lung sections. Sections were immunostained for α-smooth muscle actin (α-SMA), or von Willebrand factor

(vWF). Panel (j) shows the circulating plasma levels of OPG. Box and Whisker plots represent the interquartile range (box) with the line representing the

median and whisker the full range of the data, each animal is represented by a dot. Ctrl boxes (white, n= 4), Mct (blue n= 5), AF459 (purple, n= 6), IgG

(grey, n= 8), Ky1 (yellow, n= 8), Ky2 (orange, n= 7), Ky3 (green, n= 8) and Ky4 (red, n= 7). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to IgG

treated rats following one-way ANOVA followed by Bonferroni’s multiple comparisons test. All images are presented at their original magnification ×400,

scale bar represents 100 µm
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USA); von Willebrand factor (vWF (1:300), A0082, Dako); F4/80 ((1:100),
ab111101, Abcam, Cambridge, UK); interleukin-6 (IL-6 (1:15), ab6672, Abcam);
OPG ((1:50), ab73400, Abcam); TRAIL ((1:100), ab231063, Abcam); Fas ((1:500),
ab133619, Abcam) and IκBα ((1:100), ab32518, Abcam). To assess proliferation,
slides were stained with a mouse anti-human proliferating cell nuclear antigen
antibody (PCNA (1:125), M0879, Dako). In each case a biotinylated secondary

antibody (1:200) was added before an avidin-biotin enzyme complex (Vectastain®

Kit, Vector Laboratories, Burlingame, CA, USA) and 3,3′-diaminobenzidine tet-
rahydrochloride (DAB) substrate. Apoptotic nuclei were detected with a TUNEL
assay using a colorimetric DNA fragmentation detection kit (fragEL™, QIA33,
Calbiochem®, Merck, Burlington, MA, USA)12,26, or stained immunohistochemi-
cally for cleaved caspase 3 ((1:50), 9661, Cell Signalling Technology, Danvers, MA,
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USA). Human pulmonary artery and right ventricle histology sections were
obtained from patients with IPAH and control lung resection patients from Pap-
worth Hospital (Cambridge, UK) tissue bank and immunohistochemically stained
for Fas ((1:100), ADI-AMM-227-E, Enzo Life Sciences, Exeter, UK) and IL-1RAcP
((1:1000), ab8110, Abcam).

Immunofluorescent staining. Lung tissue was obtained from chronically hypoxic
neonatal calves and normoxic age-matched controls. This neonatal calf model of
severe hypoxic pulmonary hypertension has been described previously53 and
includes the development of PA pressure equal to, or exceeding, systemic pressure
as well as remarkable PA remodelling with medial and adventitial thickening,
resembling that of human neonatal PH. Indirect immunostaining was performed
with rabbit polyclonal anti-OPG antibodies ((1:500), Bioss Antibodies, Woburn,
MA, USA) followed by biotin-conjugated anti-rabbit secondary antibody ((1:100),
Vector Laboratories) and Streptavidin-Alexa-488 ((1:200), Invitrogen, Carlsbad,
CA, USA).

Quantification of pulmonary vascular remodelling. Images of stained sections
were captured using a Zeiss Imager Z2 microscope with an Axiocam 506 colour
(brightfield) or MRm (fluorescence) camera with HXP 120 V light source (Carl
Zeiss, Oberkochen, Germany). Zen 2 software (Carl Zeiss) was used for image
analysis. Pulmonary vascular remodelling was quantified by assessing the degree of
muscularisation and the percentage of affected pulmonary arteries and arterioles.
For each lung, pulmonary arteries were categorised as either muscularised (i.e. with
crescent or complete rings of muscle) or non-muscularised (no apparent muscle)
on ABEVG stained sections. Vessels were also divided into sub-groups determined
by their external diameter: <50 μm for small arterioles and, additionally where
stated, 51–100 and >100 μm for medium arteries. The proportion of muscularised
vessels within each sub-group was calculated as a percentage of the total number of
vessels. The degree of muscularisation was also determined for each group, and
given as the area of positive α-smooth muscle actin staining in the vessel media
divided by the total vessel cross-sectional area (media/CSA)12.

Quantification of bone structure by microCT. Femora were scanned on a Sky-
scan microCT scanner (1172a, Bruker, Belgium) at 50 kV and 200 μA using a
0.5 mm aluminium filter and a detection pixel size of 4.3 μm. Images were captured
every 0.7° through 180° rotation and 2x averaging of each bone. Scanned images
were reconstructed using Skyscan NRecon software (v. 1.6.8.0) and datasets ana-
lysed using Skyscan CT analysis software (v. 1.13.2.1). Trabecular bone was mea-
sured over a 1 mm³ volume, 0.2 mm from the growth plate. Trabecular bone
volume as a proportion of tissue volume (BV/TV, %), trabecular thickness (Tb. Th,
mm), trabecular number (Tb. N, mm−1) and trabecular structure model index
(SMI) were assessed in this area. Cortical bone was measured over a 1 mm³ volume,
1 mm from the growth plate, and cortical bone volume (C. BV, mm³) assessed in
this area.

Cell culture. Prior to experimentation, human PASMCs (CC2581; Lonza, Basel,
Switzerland) were sub-cultured in SmBM containing SmGM-2 SingleQuot™ Kit
supplements and growth factors (Lonza) containing penicillin and streptomycin at
37 °C (5% CO2). Cells were synchronised with growth arrest media (DMEM, 0.2%
FBS, penicillin and streptomycin) for 48 h prior to stimulation. All experimentation
was conducted at 37 °C with 5% CO2 with cells aged between passage 4–7.

Proliferation assay. PASMCs were seeded into 96 well plates (0.5 × 104 cells per
well) and allowed to adhere for 24 h (37 °C, 5% CO2). Cells were then synchronised
with growth arrest media (DMEM, 0.2% FBS, penicillin and streptomycin) for 48 h
prior to stimulation. PASMCs were pre-incubated with Fas neutralising antibody
(1500 ng ml−1, Clone ZB4, Merck) and/or TRAIL neutralising antibody (1500 ng
ml−1, Clone 75411, R&D Systems), where indicated for 30 min before stimulation
with PDGF (20 ng ml−1, R&D Systems) or OPG (30 ng ml−1, R&D Systems).

Proliferation was assessed after 72 h using the CellTiter-Glo® Luminescent Cell
Viability Assay (Promega, Southampton, UK).

Kinex antibody microarray (KAM). PASMCs were synchronised with growth
arrest media (DMEM, 0.2% FBS, penicillin and streptomycin) for 48 h prior to
stimulation. Cells were then stimulated with 0.2% (v/v) FBS (negative), rhOPG
(50 ng ml−1) and PDGF (20 ng ml−1) for 10 and 60 min. Phosphorylation targets
were identified from protein lysates by Kinex antibody microarray (Kinexus,
Vancouver, Canada). A Z-ratio of ± 1.5 was deemed significant. Uniprot accession
codes of proteins were analysed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) functional annotation to generate fold
enrichment pathway analysis through the KEGG Pathway Database.

Western blotting. PASMCs were stimulated with rhOPG (50 ng ml−1) (R&D
systems), alongside quiesced cells (negative control) for 10 and 60 min, before
lysing. Cell lysates were mixed with sample buffer (Life Technologies, Carlsbad,
CA, USA) and sample reducing agent (Life Technologies), denatured by heating
and subjected to gel electrophoresis. The membranes were then incubated with
primary antibodies against phospho-CDK4, phospho-HSP27, total mTOR,
phospho-mTOR (1:500) and GAPDH (1:1000) (Cell Signalling Technology),
CDK5 (1:500) (Abcam), or β-actin (1:1000) (Santa Cruz Biotechnology, Heidel-
berg, Germany). Membranes were then incubated with anti-Rabbit IRDye 800CW
and anti-Mouse IRDye 800CW (Li-COR, Lincoln, NE, USA) and signal detection
and band density quantification was performed using the LiCOR Odyssey SA
system.

Retrogenix cell microarray. Identification of OPG human protein binding part-
ners was performed using the Retrogenix Cell Microarray (Sheffield, UK). Optimal
binding conditions were first established using syndecan-1 (positive control) and
TREM-1 (negative control). HEK293 cells were reverse transfected with expression
vectors consisting of one of 2505 human plasma membrane proteins. Cells were
treated with 0.5 μg ml−1 rhOPG (Peprotech, London, UK), 0.5 μg ml−1 anti-OPG
(Peprotech) followed by Alexafluor647 anti-goat antibody. Fluorescent images were
analysed and quantified using the ImageQuant software (GE) (http://www.
retrogenix.com/default.asp).

Co-immunoprecipitation. PASMCs were stimulated with rhOPG (500 ng ml−1)
for 30 min at 37 °C. After stimulation, cells were lysed and the protein lysate
concentration determined by a Pierce 660 nm protein assay. Co-
immunoprecipitation was then performed using an anti-Fas or Ky3 antibody with
human PASMC lysate and recombinant proteins, alongside negative controls,
where antibodies were not added. ProteinG sepharose 4 Fast Flow beads (50%
slurry) were added to each Co-IP reaction and immune complexes were pre-
cipitated. Each Co-IP reaction was then centrifuged and the pellet washed before
re-suspending in sample reducing agent (NuPAGE, Life Sciences) with 5% v/v SDS
and heating at 95°C. The supernatant was then analysed by western blotting.
Membranes were incubated with goat polyclonal anti-OPG antibody (1:1000)
(SC8468, Santa Cruz Biotechnology) or anti-Fas antibody (MA1–7622, Invitrogen)
and IRDye 680LT Donkey anti-goat secondary antibody (1:15000) or IRDye
800CW donkey anti-mouse secondary antibody (1:15000) (Li-COR) to detect co-
immunoprecipitated OPG. Membranes were scanned using the Li-COR Odyssey Sa
system (LiCOR).

HT1080 apoptosis assay. HT1080 cells (CCL121; ATCC, USA) were seeded at
5 × 104 cells per ml in 96 well white walled cell culture plates in EMEM (EBSS) with
2 mM glutamine, 1% non-essential amino acids (NEAA) and 10% foetal bovine
serum (FBS) (Life Sciences Ltd, UK). After 24 h, cells were stimulated with OPG
30 ng ml−1 alone, or OPG 30 ng ml−1 with 1 or 5 ng cross-linked FasL (R&D
Systems), 2 nM Fas neutralising Ab (05–338, Merck) or 5 ng ml−1 TRAIL (R&D
Systems). Apoptosis was measured using a Caspase 3/7 assay (G8091, Promega).

Fig. 8 Therapeutic delivery of Ky3 attenuates development of established severe SuHx PAH. Panel (a) shows the schema for disease initiation and

treatment time course. b Plasma concentrations of antibody and IgG. Bar graphs show (c) Pulmonary Artery Acceleration Time (PA AT), (d) cardiac

output, (e) right ventricular systolic pressure (RVSP), (f) right ventricular arterial elastance (RV Ea), (g) estimated pulmonary vascular resistance (ePVRi),

(h) right ventricular hypertrophy (RVH), (i) left ventricular end-systolic pressure (LVESP). Bar graphs (j) show the degree of medial wall thickness as a

ratio of total vessel size (Media/CSA) and (k) the relative percentage of muscularised small pulmonary arteries and arterioles in < 50 µm vessels. Panel

(l) shows representative photomicrographs of serial lung sections. Sections were stained for Alcian Blue Elastic van Gieson (ABEVG), immunostained for

α-smooth muscle actin (α-SMA), or von Willebrand factor (vWF), proliferating cell nuclear antigen (PCNA) or cleaved Caspase 3. Panel (m) shows the

circulating level of OPG and quantification of femoral trabecular bone volume (%) (n), trabecular thickness (mm) (o), trabecular number (mm−1) (p). Box

and Whisker plots represent the interquartile range (box) with the line representing the median and whisker the full range of the data, each animal is

represented by a dot, white boxes represent control (n= 8), blue (SuHx, n= 8), yellow (Sildenafil treated, n= 7), grey (IgG4 treated, n= 8) and green

(Ky3 treated, n= 8) rats. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to IgG treated rats following one-way ANOVA with Tukey’s multiple comparisons

post hoc test. All images are presented at their original magnification ×400, scale bar represents 20 µm

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13139-9

14 NATURE COMMUNICATIONS |         (2019) 10:5183 | https://doi.org/10.1038/s41467-019-13139-9 | www.nature.com/naturecommunications

http://www.retrogenix.com/default.asp
http://www.retrogenix.com/default.asp
www.nature.com/naturecommunications


Agilent RNA microarray. mRNA expression profiling was performed using the
SurePrint G3 Human Gene Expression 8 × 60 K v2 Microarray according to the
manufacturer’s instructions (Agilent Technologies, UK). Human PASMCs (Lonza)
were stimulated in triplicate with 0.2% FCS (control) or 50 ng ml−1 OPG
(Peprotech). RNA samples (200 ng) from each condition were labelled and
hybridised using standard Agilent protocols. Sample array matrices were scanned
on an Agilent Technologies Scanner G2505C using Feature Extraction Software
(Agilent Technologies). Loess normalisation and data analysis was performed using
the Linear Models for Microarray Data (LIMMA) package54 in R (http://www.r-
project.org/). Data were analysed by two means. (1) A Medline (PubMed) search
using term ‘pulmonary hypertension’ was used to compile a curated list of disease-
relevant genes (Supplemental table 5) (39). This list was used to identify PAH
related genes differentially regulated in PASMCs between OPG and control sam-
ples (BH adjusted p-value < 0.05 and log2 FC > 1.2). (2) Signalling Pathway Impact
Analysis (SPIA) is an unbiased method that combines over-representation analysis

with a measurement of the perturbation in a pathway to identify signalling net-
works that are relevant in a given dataset. Full gene expression data (not filtered for
PAH relevant genes) were analysed (BH adjusted p-value < 0.01) using the SPIA
package25 in R to identify KEGG Pathways55–57 regulated by OPG.

Taqman PCR. PASMCs were stimulated with 0.2% (v/v) FCS (control) or OPG
(50 ngml−1) alone or in the presence of Fas antibody (1500 ngml−1) following
30minute pre-incubation with Fas antibody. After 6 h stimulation, total RNA was
extracted using the Direct-zol™ RNA kit (Zymo Research, Irvine, CA, USA). Purified
RNA was reverse transcribed with the High Capacity RNA-to-cDNA Kit (Life
Technologies). Gene expression was measured by performing TaqMan PCR using
Gene Expression MasterMix (Applied Biosystems) for, Cav-1 (Hs00971716_m1),
PDGFRa (Hs00998018_m1), TNC (Hs01115665_m1), TRAIL (Hs00921974_m1,
Rn0059556_m1, Mn01182929_m1), VEGFA (Hs00900055_m1), VIPR1
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(Hs00270351_m1), Fas (Hs00236330_m1, Rn00685720_m1) and OPG
(Mn01205928_m1, Rn00563499_m1) on the 7900HT fast real time PCR system
(Applied Biosystems). Gene expression was calculated using the ∆∆CT comparative
quantification method with 18 S rRNA (Hs03003631_g1) as an endogenous control.

NF-kB activation assay. PASMCs were seeded into 96 well plates (0.5 × 104 cells
per well) and allowed to adhere for 24 h (37 °C, 5% CO2). Cells were then trans-
fected with 100 ng per well inducible NFkB responsive firefly luciferase reporter
and constitutively active Renilla construct mixture using the Cignal reporter assay

kit (Qiagen) and Lipofectamine 2000 transfection reagent (Invitrogen) and incu-
bated for 24 h (37°C, 5% CO2). Media was then renewed in the presence or absence
of stimulation with OPG (30 ng ml−1, R&D Systems) with or without 1500 ng ml−1

of Ky3 or control IgG4 antibodies. Luciferase activity was detected following 48 h
stimulation using Dual-Glo luciferase assay system (Promega).

Human tissue. Experimental procedures using human tissues or cells conformed
to the principles outlined in the Declaration of Helsinki. Papworth Hospital ethical
review committee approved the use of the human tissues (Ethics Ref 08 -H0304–56
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þ 5) and informed consent was obtained from all subjects Sections of formalin-
fixed lung and right ventricle from patients with IPAH or unused donors were
stained for Fas ((1:500), ab133619, Abcam) and OPG ((1:50), ab73400. In each case
a biotinylated secondary antibody (1:200) was added before an avidin-biotin
enzyme complex (Vectastain® Kit, Vector Laboratories, Burlingame, CA, USA) and
3,3′-diaminobenzidine tetrahydrochloride (DAB) substrate.

Statistics. Statistical analysis was performed using either a one-way ANOVA or
two-way ANOVA followed by Sidak’s multiple comparisons test or Bonferroni’s
multiple comparisons test. When there were only two groups, unpaired t-tests were
used. P < 0.05 was deemed statistically significant (Prism 8.0.2 for Macintosh,
Graphpad Software).

Study approval. All animal experiments were approved by the University of
Sheffield Project Review Committee and conformed to the UK Home Office ethical
guidelines.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
correspondingauthor upon reasonable request. The source data underlying Fig. 3a is
available from the Gene Expression Omnibus (GEO), GSE137886. The data for all other
figures are provided as a Source Data file.
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