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Abstract 

Constraining the source terranes of Alpine siliciclastic flysch sequences is crucial for building a clearer 

picture of the palaeogeography and geodynamic evolution of the Western Tethys in the framework of 

impending continental collision. This paper presents an integrated study that involves palaeocurrent 

dispersal analysis, sandstone petrography and detrital zircon geochronology of the Upper Cretaceous-

Paleocene Monte Bignone Sandstones, a siliciclastic turbidite system deposited during the pre-

collisional evolution of the Ligurian Alps. Palaeocurrent analysis illustrates an overall eastward 

transport of the proximal sediments in the present configuration. Considering the ca. 45-50° counter-

clockwise rotation of the Tertiary Piedmont Basin and of the Corsica-Sardinia block in the late 

Paleogene, this indicates the derivation of the sediments from the northern margin of the Piedmont-

Ligurian Ocean. Sandstone petrography records a stratigraphic evolution from quartzose sandstones 

towards lithic and then to lithic sub-arkosic composition. This trend is interpreted to reflect the 

gradual unroofing of the provenance terrane. The lithotypes of the recycled sedimentary rock 

fragments and the up-section increase in dolostone and carbonate clast proportions suggest the 

erosion of the sedimentary cover of the southern European palaeo-margin. New geochronological 

data (U-Pb detrital zircon ages) correspond to the pre-Alpine stages of crustal growth recorded in the 

Variscan Maures-Tanneron Massif, and therewith confirm the derivation of the sediments from the 

passive palaeo-European margin. This conclusion highlights the importance of the lower plate in 

providing the source of coarse-clastic deep-water successions during pre-collisional convergent steps. 

Results from this multi-proxy provenance analysis contribute to better defining the detrital signatures 

associated to the continental micro-fragments that constituted the palaeo-European plate as it 

supplied deep-sea siliciclastic sediments into the Piedmont-Ligurian ocean prior to continental 

collision. 



 

1 Introduction 

Orogenic belts originated from continent-continent collision are the result of vast displacements of 

the individual large-scale tectonic constituents (e.g. Dal Piaz 1999, Schmid et al. 2004; Handy et al. 

2010). In the case of the Western Alps collisional zone, the understanding of the pre-collisional plate-

tectonic configurations is crucial for assessing open questions regarding pre-orogenic geodynamics 

(Dal Piaz et al. 2003; Froitzheim et al. 2008; Molli 2008; Handy et al. 2010; Malusà et al. 2015). One 

classical approach to unriddle the Alpine puzzle is represented by the provenance analysis of pre- to 

syn-orogenic deep-water siliciclastic sedimentary sequences (“flysch” sensu stricto cf. Studer 1825; 

Homewood and Laveltin 1988) deposited in the subducted Piedmont-Ligurian ocean or along its 

thinned continental margins. These successions reflect sedimentation associated with the stages of 

the Alpine orogeny build-up since the onset of convergence in the early Late Cretaceous, when 

subduction of the European lithosphere beneath the Apulian plate initiated (e.g. Homewood 1983; 

Caron et al. 1989; Handy et al. 2010). Since siliciclastic successions record information about the 

nature of the source rocks and the uplift history of the provenance area, provenance constraints allow 

for palaeogeographic reconstructions of the source terranes, and aid in the regional-scale structural 

restoration of laterally displaced tectonic units (e.g. Dickinson et al. 1979; Valloni and Zuffa 1983; Zuffa 

1985; Critelli et al. 2003; Shaw et al. 2014, among many others). Considering the complex build-up of 

the Alpine nappe stack, a steadily increasing number of studies show that the integration of 

petrographic, geochemical and geochronological analyses of pre- to syn-collisional turbiditic 

sandstones yield distinct detrital signatures which allow to uncover the geodynamic history of the 

closing oceanic basin and the bounding margins (e.g. Winkler 1984; Wildi 1985; Dunkl et al. 2001; 

Bracciali et al. 2007; Bütler et al. 2011; Chu et al. 2016; Lin et al. 2018; Carrapa et al. 2016; Di Giulio et 

al. 2017; Ragusa et al. 2017; Mueller et al. 2018). In light of the above, the linkage of detrital zircon U-

Pb ages of sedimentary successions with the ages of rock-forming processes in candidate source areas 

allows for improved precision of provenance allocations (e.g. Fonneland et al. 2004; Dickinson and 

Gehrels 2009; Gehrels 2011; Thomas 2011).  

Detritus derived from the bounding margins of the subducted Piedmont-Ligurian ocean has been 

categorized from many different perspectives such as sandstone modal composition (e.g. Winkler et 

al. 1984; Giorgis et al. 1999; Bütler et al. 2010; Ragusa et al. 2017), heavy mineral assemblages and 

geochemical signatures (Stanley 1965, Wildi 1985; Lihou and Mange-Rajetzky 1996; Thum et al. 2015), 

and U-Pb detrital zircon age patterns (e.g. Vezzoli et al. 2004; Bütler et al. 2010; Manzotti et al. 2015, 

2016; Chu et al. 2016; Lin et al. 2018). Notably, recent studies, and essentially those aided by detrital 



zircon chronology, reveal that the “classic” Swiss flysch successions of the eastern Piedmont-Ligurian 

Ocean were dominantly sourced from the Adriatic plate (i.e. the Sesia extensional allochthon of 

continental crust; Bütler et al. 2011; Ragusa et al. 2017). With respect to “Alpine-vergent” subduction 

polarity (e.g. Stampfli et al 1998; Stampfli et al. 2002a; Handy et al. 2010), this indicates sedimentation 

in an active margin provenance scenario. By contrast, detrital zircon ages reported in several recent 

papers (e.g. Chu et al. 2016; Lin et al. 2018; Mueller et al. 2018) suggest that the re-activated passive 

margin of the lower plate (i.e. the external European continental units) provided the source of the 

Western Ligurian and Corsican flysches deposited in the western part of the Piedmont-Ligurian Ocean 

during the pre-collisional convergent steps. 

We present further evidence for this hypothesis provided by the results of palaeocurrent analysis, 

sandstone petrography, and U-Pb detrital zircon chronology, applied to the siliciclastic  Monte Bignone 

Sandstones (“Quarziti di Monte Bignone”; hereafter MBS) of the Borghetta d´Arroscia-Alassio Unit of 

the Western Ligurian Flysch complex. The results refine the characteristic petrographic and 

geochronological signature for the southernmost domain of the European Tethyan palaeo-margin. 

 

2 Geological setting 

2.1 Regional tectonic framework 

The studied MBS form part of the Borghetto d’Arroscia-Alassio Unit of the Western Ligurian 

Helminthoid Flysch tectonic complex (WLF) in northern Italy (Fig. 1A-B). The WLF represents the 

structurally topmost part of the Upper Penninic Nappe pile, presently located on top of the Penninic 

basal thrust towards the Palaeo-European margin (e.g. Vanossi et al, 1986; Di Giulio 1992; Seno et al. 

2005; Maino et al. 2015). It is composed of units formed by the deep-marine cover of the Piedmont-

Ligurian ocean off-scraped from their substratum and incorporated in the Upper Cretaceous-

Palaeogene accretionary prism along the Ligurian Alps transect of the Alpine subduction system 

(Lanteaume 1962; Vanossi et al. 1986; Di Giulio 1992; Marroni and Pandolfi, 2010). The main tectonic 

units are: the San Remo-Monte Saccarello Unit, the Moglio-Testico Unit, the Borghetto Unit and the 

Colla Domenica-Leverone Unit. They contain two prominent coarse-grained siliciclastic deep-water 

systems within dominant Helminthoid-type calcareous-marly flysches: the Bordighera Sandstones in 

the San Remo-Monte Saccarello Unit (Mueller et al. 2018 and references therein), and the Monte 

Bignone Sandstones in the Borghetto d´Arroscia-Alassio Unit (Galbiati, 1986; Fig. 1B). The present 

configuration of the tectonic units, with the oldest unit resting on top of the nappe pile (Fig. 1C), 

documents the tectonic inversion pattern characteristic of accretionary prisms (Di Giulio, 1992).  



The Borghetto d’Arroscia-Alassio Unit experienced multiple ductile-brittle deformation phases 

(Galbiati, 1986). The initial phase was characterized by the development of S-verging recumbent folds 

and thrust planes that record the S-vergent tectonic phase which also generated the contacts between 

individual flysch units. The second phase is typified by opposite, N-vergent, more open, locally faulted 

folds. A third large-scale S-verging deformation phase resulted in the overall westward inversion of 

the geometric relations between the flysch units. 

Borghetto d´Arroscia-Alassio Unit 

Stratigraphically, the Borghetto d´Arroscia-Alassio Unit is inferred to span from the lower Senonian 

into the Paleocene-Eocene (Lanteaume 1962; Di Giulio 1985). It has been subdivided into three 

formations (Fig. 1C) which are separated by stratigraphic contacts (e.g. Boni and Vanossi 1960, 1972; 

Galbiati 1982; Marini and Terranova 1985). From base to top they are: (i) the Ranzo Shales (“Peliti di 

Ranzo”), (ii) the Monte Bignone Sandstones (“Quarziti di Monte Bignone”), and (iii) the Ubaga 

Limestones (“Calcari di Ubaga”). Owing to the scarcity and poor preservation of microfaunal 

assemblages, the biostratigraphic placement of the siliciclastic members remains vague (cf. Marini and 

Terranova 1985). Only the topmost formation, the Ubaga Limestones, can be certainly assigned to a 

Paleocene-Eocene depositional age (Di Giulio 1985).  

The Ranzo Shales represent the so called "basal complex" of the Borghetto d´Arroscia-Alassio Unit 

(Galbiati 1986; Marini and Terrannova 1985; Di Giulio 1992). It is made up of a monotonous succession 

of dark shales, with sporadic intercalations of thin-bedded calcareous turbidites and of fine-grained 

siliciclastic turbiditic beds. Due to the decollement from their original substratum and pervasive 

deformations, the maximum thickness of the formation is unknown; however, the maximum 

outcropping thickness is in the range of 50 m (Marini and Terranova 1985; Galbiati 1986).  

The Monte Bignone Sandstones (MBS) comprise greyish to whitish-reddish, medium- to thick-bedded 

quartzarenites. They reach an estimated maximum thickness of ca. 230 m (Galbiati 1986), and are 

subdivided into four members. Two main quartzarenitic units (Lower and Upper Quartzites units; Fig. 

2 A-B; Fig. 3 A-B) at their bases interdigitate with polymictic coarse-grained conglomeratic intervals 

(“Lower” and “Middle” conglomerates). The quartzarenitic units are characterized by good down-

current continuity, whereas the conglomeratic intervals rapidly become replaced by pelitic intervals 

(“Lower” and “Middle” shales of Galbiati 1986;) towards the more distal domain (see also Fig. 2 A-B). 

Within the pelitic members, chaotic bodies with exotic clasts (basalt breccias, radiolarian cherts and 

limestone debris) are locally present (Fig. 3C). They have been interpreted as debris-flow deposits 

which document seafloor remobilisation related to mud-diapirism in front of the accretionary prism 

(Di Giulio 1992). 



The Ubaga Limestones are a rhythmic succession of medium- to very thick-bedded calcareous 

turbidites belonging to the wide family of the Alpine Helminthoid Flysches (e.g. Caron et al. 1989; Di 

Giulio 1992). The typical facies motif is that of beds with thin, silty bed bases (siliciclastic or mixed 

siliciclastic and calcareous) and thick calcareous or marly mudstone caps. They are separated from the 

MBS by a transitional lithozone characterized by alternations of thin-bedded, fine-grained siliciclastic 

and calcareous turbidites (“San Pantaleo lithozone”; Fig. 2A-B). The bases of the calcareous turbidites 

locally display ichnofossils of the typical Helminthoides flysch association (Boni and Vanossi 1972). 

Based on qualitative analysis of the clast lithologies of the proximal conglomerates, several authors 

proposed a provenance of the sediment forming the Borghetto d´Arroscia-Alassio Unit from the 

Briançonnais terrane and the Pre-Piedmont domain (e.g. Galbiati 1982; Marini and Terranova 1985; 

Vanossi et al. 1986), the domain that represents the distalmost part of the hyperextended European 

continental margin (e.g. Decarlis et al. 2017).  

 

3 Methodology 

Two stratigraphic sections that offer continuous exposures of the two coarse-grained units of the MBS 

(Lower and the Upper Quarzites units) were chosen for this study (Figs. 1C and 2C-D). Detailed 

sedimentological logging (drawn in the field at 1:25 scale) was undertaken with the aid of a high-

precision Jacob's staff (Patacci, 2016). Palaeocurrent directions were determined by the measurement 

of the orientations of turbidite bed sole markings (flute and groove casts) and of the dip direction of 

ripple laminae and cross-bed lee slopes. Thirty sandstone samples were selected for thin section 

preparation (Fig. 2). The bulk of samples (27) were collected in the most proximal outcrop “Capo Santa 

Croce” near the town of Alassio (GPS 44.0158, 8.1929; all coordinates are in WGS84). Three samples 

were acquired in the more distal part of the system, from a roadcut section between the towns of 

Canata di Ranzo and Ubaghetta (GPS 44.0556, 8.0005). Two additional sandstone samples were 

collected at the distal section for U-Pb detrital zircon geochronology. 

Petrographic analysis was conducted by point-counting a minimum of 200 grains under the optical 

microscope, following the approach proposed in the guidelines of Di Giulio and Valloni (1992).  In order 

to reduce compositional bias due to grain size effects, the Gazzi-Dickinson approach was utilized (Gazzi 

1960; Dickinson 1970; Ingersoll et al. 1984). Recalculations of the framework grain modal proportions 

were performed according to the scheme of Dickinson et al. (1979).  Detrital zircons were separated 

by conventional techniques (heavy liquid and magnetic separation) from two ca. 2 kg medium- to fine-

grained sandstone samples. Only one sample (QdMZ_1) yielded a sufficient number of zircon grains 



for further analysis. Zircons were handpicked from the heavy mineral fraction, placed into epoxy resin 

mounts and polished to expose the zircon cores. Prior to U-Pb radiometric dating, the internal 

structure of detrital zircons was imaged using cathodoluminescence. LAM-ICP-MS analyses on detrital 

zircons were conducted utilizing the system configuration and methodology reported in Perotti et al. 

(2017) at the CNR laboratory at the University of Pavia. Details on the analytical setup are presented 

in the supplementary data file. Zircon grains were commonly analysed at one spot in the grain cores. 

In the cases of overgrowth rims greater than 25 microns, rims were also analysed. Mass bias and laser-

induced fractionation were corrected by adopting external standards, utilizing the GJ-1 zircon as 

primary reference material (608.5 ± 0.4 Ma; Jackson et al. 2004). For means of quality control the 

unknown detrital zircons were bracketed by reference zircons 91500 (1065.4 ± 0.6 Ma; Wiedenbeck 

et al. 1995) and Plešovice (337.1 ± 0.4 Ma; Slama et al. 2008). Data reduction was carried out with the 

GLITTER software package (van Achterbergh et al. 2001). Detrital zircon U-Pb data with discordance 

>10% were discarded. Reported ages were calculated on the basis of 206Pb/238U ratios for grains 

younger than 1400 Ma and 206Pb/207Pb data for older grains (Gehrels et al. 2009). Detrital zircon age 

distributions were illustrated as probability density plots (PDPs) using the DensityPlotter 8.1 software 

(Vermeesch 2012). Cumulative density functions (CDFs) and a multidimensional scaling (MDS) map 

(Vermeesch 2013) were plotted utilizing the IsoplotR software (Vermeesch 2018). 

 

4 Results 

4.1 Sedimentary facies and palaeocurrents  

The proximal “Capo Santa Croce” outcrop displays an overall coarsening-upward and thickening-

upward trend delineated by the up-section transition from thin- to medium-bedded (outcrop-scale) 

tabular sandstones into thick-bedded lenticular coarse sandstones and pebbly conglomerates (Fig. 

2C). The conglomerates are typically clast-supported. Scoured contacts between individual 

conglomeratic beds and bed-sets are common. The distal Ubaghetta section features multiple 

packages of medium- to thick-bedded sandstones that alternate with intervals dominated by 

mudstones and fine-grained thin-bedded sandstones (Fig. 2D). The sandstones are normally graded 

and do not exceed coarse sand grain size. Locally, the sandstones exhibit planar and wavy 

stratification. Towards their tops they sporadically display ripple laminations. Beds are non-

amalgamated. They have sharp bases and sharp to gradational tops, and they exhibit tabular 

geometries at the outcrop scale (10s of metres). In the proximal outcrop, the transition from tabular 

strata into very coarse-grained conglomerate lenses is interpreted as reflecting the progradation of a 

proximal canyon into a channel-mouth depositional environment, most probably located at the break 



of slope of the continental margin (e.g. Lopez Jimenez et al. 2018). By contrast, the outcrop-scale 

tabular bed geometries, the characteristic alternations between sand-rich and heterolithic packages 

recorded in the distal outcrop together with the non-erosive nature and the arrangement of 

sedimentary structures that typify the Ubaghetta section is regarded as representative of a poorly 

confined to unconfined lobe environment (e.g. Marini et al. 2015). 

Palaeocurrent analysis from the proximal section yielded 51 indicators of sediment dispersal 

orientation (two from groove casts, one from a flute cast and 48 from cross-strata foresets). 15 

measurements were acquired from the more distal Ubaghetta section (six groove casts, six flute casts 

and three from ripple foresets). The proximal outcrop displays a relatively tight easterly sediment 

transport direction, whereas the more distal outcrop shows a more dispersed, overall northerly 

sediment dispersal (see palaeocurrent roses in Figs. 2 C&D). In view of the late Paleogene ca. 45-50° 

counter-clockwise rotation of the Tertiary Piedmont Basin and the Corsica-Sardinia Block (cf. Maffione 

et al. 2008 and references therein), we interpret the east-ward sediment dispersal recorded in the 

proximal outcrop as providing evidence of a source terrane located at the northern to northwestern 

margin of the Piedmont-Ligurian Ocean (with flows dispersing toward SE). Considering the inferred 

less confined distal depositional environment, we interpret the palaeocurrent recorded in the distal 

Ubaghetta section as indicating deposition of the sandstone lobes along the basin axis, presumably 

parallel to the base-of-slope. 

4.2 Sandstone Petrography  

Thin sections from the Monte Bignone Sandstones indicate highly compacted, moderately well-sorted 

to relatively poorly sorted sandstones (Fig. 4). Framework grains are typically sub-angular to rounded. 

Primary categories of framework grains comprise quartz, feldspar (potassium feldspar and plagioclase) 

and lithic fragments. Samples generally contain high proportions of quartz, very low to low 

proportions of feldspar, and variable (low to moderate) proportions of lithic fragments (Qt51-96F1-19L11-

31; mean Qt83F5L12). Quartz occurs in both mono- and polycrystalline varieties as typically sub-angular 

to sub-rounded grains (Fig. 4A-B). K-feldspar (dominantly orthoclase and microcline; see Fig. 4C) is 

typically more abundant than plagioclase. The lithic group is dominated by a variety of sedimentary 

(Fig.4C) and volcanic fragments (Fig. 4D). Plutonic and low-grade metamorphic fragments (Fig. 4C-E) 

are also common, albeit their shares vary significantly up-section. Among the sedimentary fragments, 

carbonate clasts (Fig. 4F), represented by both micritic limestone (Fig. 4G-J) and dolostone (Fig. 4I-J) 

fragments, are the most abundant, whilst siliciclastic rock fragments (mudstone, siltstone and chert; 

Fig. 4E) only account for minor contributions. Accessory grains types are represented by flakes of 

micas, both muscovite (Fig. 4I) and biotite. Heavy minerals are scarce and dominated by ultra-stable 



tourmaline and zircon, whereas rutile and apatite are rare. The framework grains are surrounded by 

varying proportions of detrital matrix and calcite cement (Fig. 4I-L), with matrix proportions becoming 

more abundant in the Upper Quartzites unit (Fig. 4K-L). In rare cases the detrital matrix is partially 

dolomitized. (Fig. 4J). In addition, in quartzose sandstones, authigenic quartz is present in the form of 

quartz overgrowth that frequently displays sutured contacts of lobate shape (Fig. 4A); it generally 

makes up less than 5% of quartz.  

Modal percentages of essential grain types show significant variations within each investigated 

stratigraphic interval and between them (Figs. 5 and 6). Quartz generally represents the most 

abundant grain component, making up an average of 86% of the modal framework in the Lower 

Quartzites unit, but decreasing up-section towards a mean contribution of 63% in the Upper 

Quartzites unit. Feldspars account for relatively constant low portions throughout the Lower 

Quartzites unit (average 4%), but they are more abundant in the Upper Quartzites unit (average 14%). 

The average lithic fragment count is 10% in the Lower and 22% in the Upper Quartzites unit, 

respectively. Notwithstanding, the analysis of individual rock fragments contributions (Fig. 6) 

documents an up-section trend in the Lower Quartzites unit, defined by increasing proportions of 

sedimentary and volcanic lithic fragments, compensating the up-section decrease of plutonic and low-

grade metamorphic fragments. The Upper Quartzites unit records elevated proportions of feldspar 

grains and plutonic and metamorphic fragments. Noteworthy, an increase in the abundance of mica 

flakes can be also observed (Fig. 4I). This trend is coupled with the reduction in textural maturity (see 

Fig. 4 I-L; cf. Diekmann and Wopfner 1995). The increase in mica flakes and the reduced textural 

maturity are likely to reflect the different proximality of the two sampling locations and not a system-

wide change. Hydrodynamic sorting and density differentiation processes along current are 

documented by various studies (e.g. Lash 1987; Garzanti et al. 2010 and references therein), and this 

is a typical characteristic of the distal domains of turbidite systems (e.g. Ragusa and Kindler 2018).  

The high degree of compositional maturity that characterizes the quartz-rich arenites of the lower part 

of the Lower Quartzites unit suggests intense sedimentary recycling (e.g. Dickinson et al. 1983; Cox 

and Lowe 1995; Critelli et al. 2003; Garzanti et al. 2013). This might have occurred due to temporary 

sediment storage along the source-to-sink pathway, likely in shallow marine environments along the 

passive margin shelf, where reworking and weathering processes could take effect. This interpretation 

is similar to the one for the oldest siliciclastic sediments in the San Remo-M. Saccarello Unit proposed 

by Mueller et al. (2018). The up-section increase in lithic fragments in the Lower Quartzites unit is 

interpreted to mirror the progressive tectonic uplift and denudation of the sedimentary cover of the 

provenance terrane. Although there is not a clear breakdown into different petrofacies, the modal 

composition of sandstones of the Lower and Upper Quartzites units show substantial differences. 



While the gradual change from quartzarenites to litharenites defines the evolution of the modal 

framework of the Lower Quartzites unit, the Upper Quartzites unit is characterized by a further shift 

towards lithic sub-arkoses (Fig. 5). The increasing abundance of sedimentary and volcanic lithic 

fragments that characterizes the stratigraphic evolution of the Lower Quartzites unit suggests the 

growing importance of an eroded terrane comprising a syn-post-rift sedimentary cover sequence, 

dominantly build up by dolostones and limestone sequences, with minor distributions of volcanic 

rocks. The differing modal characteristics of the Upper Quartzites unit suggest a slightly different 

scenario. Here the increased feldspar content points towards a shift in detrital supply with increasing 

contributions from a basement source. 

 

4.3 Detrital zircon chronology 

U-Pb isotopic age determination of 99 ablated spots on 81 detrital zircons (81 core and 18 rims 

analysed) from the basal sample of the Upper Quartzites unit of the MBS yielded 87 concordant ages 

(within ±10% of discordance). Full isotopic U-Pb analytical data is presented in the supplementary data 

file). Representative cathodoluminescence images are illustrated in Fig. 7. Detrital zircon U-Pb ages 

range from 2683 to 306 Ma (Fig. 8A). The bulk of the ages (>85%) fall into the time interval between 

306 and 718 Ma. Two main age populations are observable (Fig. 8B): (1) a dominant component 

between ca. 306 and 400 Ma (accounting for 39% of detrital ages) and (2) a broad population between 

ca. 535 and 660 Ma (30%). The dominant age component (1) is defined by the predominance of Upper 

Devonian to Lower Carboniferous ages (one third of all concordant detrital ages), and is characterized 

by a high proportion of Tournaisian to Visean zircon ages that range from ca. 335-360 Ma. Within the 

Cambrian to Cryogenian main age cluster (2), Ediacaran ages are well represented and make up 26% 

of all ages. Additional ages are represented by an age population between ca. 450 and 490 Ma 

(Cambro-Ordovician), a minor Tonian age component around 900 Ma, a single “Greenville” 

concordant age of 1055 Ma and a small population of Paleoproterozoic ages (ca. 1720- 2000 Ma). Due 

to their wide distribution and low representation (<15%), detrital ages older than 800 Ma disclose 

minor provenance information.  

The broad age population ranging from ca. 535 to 660 Ma is interpreted to correspond to the 

metamorphic and magmatic stages of the Cadomian orogeny (see e.g. Linnemann et al. 2014; von 

Raumer et al. 2013). The abundant representation of the Ediacaran age component provides first-

order insights into the basement configuration of the source terrane. In the context of the assembly 

of Gondwana, Ediacaran to Cryogenian ages from metasediments of the Iberian massifs and the Corso-

Sardinian Block have been interpreted to reflect a Northern Gondwana heritage (e.g. Avigad et al. 



2012; Gutiérrez-Alonso et al. 2015 and references therein). With regards to the pre-Mesozoic 

basement blocks in the Alpine framework, U-Pb detrital zircon age peaks comparable to the main late 

Ediacaran peak around 550 Ma have been reported from metaquartzites from Corsica (530-555 Ma 

age peaks in Cadomian micaschists; Avigad et al. 2018) and, albeit in very low proportions, from 

Sardinia (Cambrian quartzite of NW Sardinia; Avigad et al. 2012). These ages are interpreted as being 

derived from Cadomian arcs and coincide with the amalgamation of micro-terranes along the 

Northern Gondwanan margin (e.g. Stampfli et al. 2011; von Raumer et al. 2015; Franke et al. 2017).  

The late Cambrian to Ordovician age population at around 490-440 Ma is interpreted to mirror the 

gravitational collapse of the Cadomian orogeny and the initiation of the opening of the Palaeo-Tethys 

rifting stage of the “Rheic Cycle” (e.g. Stampfli et al. 2002b; von Raumer et al. 2003; Sirevaag et al. 

2016). Extensional tectonics provided the framework for magmatic episodes that extensively occurred 

along the Northern Gondwana margin (“Caledonian stage” of Frisch et al. 1984). Magmatism is 

nonetheless reported from the Penninic basement of both the European Plate (e.g. Franz et al. 2007; 

Maino et al. 2019) and the Austro-Alpine realm (Frisch et al. 1984).  

The main age population from the Upper Devonian to the Upper Carboniferous provides the most 

significant clue towards a palaeo-European heritage of the source rocks. These ages are interpreted 

to originate from magmatic and metamorphic events that occurred in the framework of the Variscan 

cycle (e.g. von Raumer et al. 2003; Ballèvre et al. 2018). Granite emplacements are predominantly 

documented along the palaeo-European plate (Ballèvre et al. 2018; cf. Giacomini et al. 2007; 

Dallagiovanna et al. 2009; Casini et al. 2012; Li et al. 2012; Fornelli et al. 2016; Manzotti et al. 2016; 

Pavanetto et al. 2012; Rubatto et al. 2001, 2011; Sandrone et al. 1993; Williams et al. 2012), whilst 

minor geochronological constraints on evidence of magmatism from the basement of the 

Adriatic/Apulian margin exist (Schaltegger and Gebauer 1999; see compilations in Bütler et al. 2010, 

Beltrán-Triviño et al. 2013 and Manzotti et al. 2015). The comparison of the detrital age fingerprint of 

the MBS study with that of the older siliciclastic successions of the Western Ligurian Helminthoid 

Flysch tectonic complex (WLF; Bordighera Sandstones and San Bartolomeo Formation; Fig. 8C) 

highlights the pronounced similarity in their Variscan age populations, an observation that additionally 

supports the interpretation of a common source of palaeo-European attribution for the siliciclastic 

members of the WLF (Mueller et al. 2018). 

 

5 Discussion 

5.1 Source terrane considerations 



Sandstone compositional data indicate the dominant derivation from the polycyclic sedimentary cover 

of a continental block. Analysis of the lithic clasts reveals a close similarity to the passive margin 

sequence of the distal palaeo-European margin (sensu lato) of the Alpine Tethys, which comprises the 

Dauphinois/Provençal domains and the (present-day) adjacent Ligurian Briançonnais terrane (Barale 

et al. 2017; d´Atri et al. 2017). Although it is straightforward to compare the characteristics of the 

recycled sedimentary fragments with the stratigraphic make-up of these autochthonous cover 

sequences, we rule out the proposed Briançonnais provenance (Galbiati 1982; Vanossi et al. 1986; 

Marini and Terranova 1985). As demonstrated by the widespread Late Cretaceous to Early Tertiary 

marly pelagic limestones (e.g. “calcschistes planctoniques”, “couches rouges”; cf. Michard and 

Martinotti 2002) which represent the characteristic feature of the Briançonnais post-rift stratigraphic 

sequence, the Briançonnais terrane was submerged during that time span (Froitzheim et al. 2008; 

d´Atri et al. 2017), and therefore no erosion of the Briançonnais basement appears to have taken place 

during time of deposition of the MBS. 

The detrital zircon age data from this study are in good correspondence with the crystallization stages 

recorded in the basement rocks of the Maures-Tanneron Massif (hereinafter MTM), which are 

represented by polycyclic magmatic and metamorphic suites related to the Cadomian and Variscan 

orogenies (see Oliot et al. 2015 for a detailed discussion on available age data). The oldest U-Pb zircon 

age components from the MTM are represented by inherited zircons of orthogneisses dated at 1580 

Ma and 1510 Ma (cf. Moussavou 1998). Gneisses from the Internal Zone yielded inherited ages of 630 

Ma and 612 Ma, respectively (Moussavou 1998), whilst Innocent et al. (2003) report a Cambrian age 

of 548 Ma from felsic rocks of the inner part of the Maures basement. The direct provenance 

assignment to the MTM is primarily based on the match of crystallization ages with zircons within the 

Late Tournaisian and Visean detrital age component. The oldest granitoid emplacement is dated to 

the Early Devonian (ca. 404 Ma; Oliot et al. 2015). U-Pb monazite ages of 382 Ma as well as 331 Ma 

and 329 Ma have been interpreted to mirror stages of crustal thickening in the Early Devonian and in 

the Visean (Oliot et al. 2015). The latter metamorphic ages concur with granite (338 Ma) and tonalite 

(334 Ma) emplacement ages in the central and in the eastern Maures Massif (Moussavou 1998). Late 

Variscan granite intrusions in the Tanneron Massif are documented from both the Tanneron Massif, 

at 302 Ma and 297 Ma (Demoux et al. 2008) and the Maures batholith, where similar emplacements 

are dated from the Moulin Blanc Granite (301 Ma) and the Pinet Granite (310 Ma), respectively 

(Duchesne et al. 2013). Within the latter, inherited zircon ages correspond to crystallization at ca. 512 

and 1015 Ma.  

The thick, continuous Mesozoic sedimentary succession of the Dauphinois/Provençal domain (Barale 

et al. 2016 and references therein) reveals further clues towards a detailed provenance classification. 



Only a brief summary of the cover sequence is provided here; for a detailed assessment of the 

stratigraphy and characteristics of the Mesozoic cover sequence of the Ligurian Briançonnais the 

reader is referred to the comprehensive reviews of Durand (2008) and Barale (2014). The 

autochthonous cover sequence of the southeastern Provençal domain begins with an Upper 

Carboniferous continental sedimentary succession that unconformably superimposes the Variscan 

basement. It comprises reworked granites and metamorphic rocks as well as volcaniclastics deposited 

in basins adjacent to the MTM (Durand 2008). The Permian stratigraphic succession consists mainly of 

sandstones and conglomerates in the alluvial Maures graben basin and of subordinate rhyolithic lava 

flow deposits and effusive tuffs. From the beginning of the Upper Permian to Lower Triassic times, the 

Provençal domain experienced Buntsandstein-type sedimentation characterized by the presence of a 

single fluvial system. The Muschelkalk transgression represents the first marine deposits (thin Ladinian 

dolostones which are superimposed by thick, massive limestones) in the Middle Triassic. The Upper 

Triassic is represented by pelites and Keuper evaporite deposits which indicate arid conditions 

(Durand 2008). Following a hiatus from latest Triassic–Lower Jurassic (Barale 2014), thick platform 

carbonates mark the recommencement of marine sedimentation in the southern Provençal domain 

from Middle Jurassic to the Lower Cretaceous (Berriasian) times (Barale et al. 2016). The development 

of a Hauterivian hardground surface, locally overlain by thin pelagic marly limestones, testifies to the 

drowning of the carbonate platform (Barale et al. 2017).  

5.2 Stratigraphic trend in modal composition and significance for passive margin detrital signatures  

The petrographic signature of the MBS differs from those of the siliciclastic turbidite systems of the 

oldest unit of the Western Ligurian Flysch (San Remo Unit), the Bordighera Sandstone (BGS) and its 

basal complex (Mueller et al. 2018). Notwithstanding, the clastic systems in both units record similar 

stratigraphic trends, defined by a marked up-section decrease in compositional maturity (Fig. 9). 

Stampfli et al. (1998) and Michard and Martinotti (2002) propose that coarse-grained sedimentation 

along the passive European margin was driven by flexural forebulge development and consequent 

uplift of the lower plate continental margin since the Upper Cretaceous. Mueller et al. (2018) integrate 

this scenario for the explanation of the supply of coarse sediment of the BGS, allowing for the direct 

comparison of the compositional evolution of clastic successions sourced from different types of 

terranes, but deposited in the same geodynamic context. 

The composition of the protolith of the sediments dictate the compositional evolution pathway in the 

provenance discrimination diagrams (Dickinson et al. 1983; cf. Cox and Lowe 1995). Due to their 

similar geodynamic framework, but divergent stratigraphic organization of the basement rocks and 

the extent of their sedimentary cover, the successions of the Western Ligurian Flysch complex offer a 



natural laboratory for the evaluation of models of compositional evolution in comparable uplift 

scenarios. Both coarse-grained clastic deep-water successions of the Western Ligurian Flysch complex 

(MBS and BGS) provide an example of the range of detrital signatures that the re-activated passive 

margin can generate as it approaches the subduction zone (Fig. 9A). The major difference between 

the MBS and the BGS is that the first-cycle origin of the BGS can be ruled out for the MBS. The 

abundance of sedimentary and volcanic rock fragments and small proportions of feldspar grains imply 

the scarcity of exposed crystalline rocks in the source area. The BGS display the compositional and 

textural characteristics of first-cycle sandstones and represent a sequence derived from a stable 

cratonic (shelf?) setting (as represented by the basal complex sands) first and subsequently from a 

progressively uplifted basement block (Fig. 9B). In this scenario tectonic instability of the craton is 

illustrated by the modal evolution along the QtF limb. By contrast, the recycling-dominated 

sedimentation recorded by the MBS is representative for a setting in which the progressively reduced 

mineralogical maturity of the uplifted stable cratonic margin sequence is illustrated by the evolution 

along the QtL limb of the provenance ternary diagram (Fig. 9C), illustrating the re-activation of a 

passive margin segment that experienced high subsidence and sedimentation rates mostly during pre-

syn rifting stages. 

5.3 Towards a provenance signature of the Southern European Tethyan Palaeomargin? 

The new detrital zircon ages obtained in this study, in combination with the lithic fragment types 

(which provide the direct link towards the Mesozoic cover sequence), reveal the palaeo-European 

origin of the clastic detritus. This suggests that the Borghetto d´Arroscia-Alassio Unit was sourced from 

recycled sediments of the catchment area of the Variscan Maures-Tanneron Massif which represents 

the northern continuation of the Corso-Sardinian Block microcontinent (Rossi et al. 2009). The 

proposed Ligurian Briançonnais source (Vanossi, 1962; Galbiati, 1986; Marini and Terranova, 1985) 

could not be confirmed. The detrital zircon age spectra match the crystallization events recorded in 

the Provencal domain of the southern Variscan belt and thus have the potential to serve as a tracer 

for detrital provenance from the southern part of the southern palaeo-European Tethyan margin 

domain.  

The detrital zircon age distributions of Permo-Carboniferous metasediments of the Pinerolo Unit and 

the Permian Zone Houillère (Manzotti 2016) show significant commonalities with that of the MBS (Fig. 

10). With respect to the dominant age populations between 300-350 Ma and the broad peak between 

ca. 500-650 Ma, the samples from the Pinerolo Unit are almost identical to the one analysed in this 

study. The Pinerolo Unit is exposed in a window beneath the Dora Maira Nappe and comprises a 

basement made up of late-Variscan granitoid bodies and a Permo-Carboniferous sedimentary cover 



(Avigad et al. 2003; Froitzheim et al. 2008). Notably, the detrital ages of the Pinerolo Unit are 

characterized by the absence of ages younger than 300 Ma, whereas this age population is well-

expressed in the detrital spectra of the Zone Houillère sediments. Manzotti et al. (2016) favour a 

common provenance for both the Pinerolo Unit and the Permian Zone Houillère, represented by the 

palaeo-European Variscan basement units (i.e. the External Massifs, the Maures-Tanneron Massif, the 

Corsican-Sardinian Massif). Although the older Cambro-Ordovician age peaks are equally present in 

the detrital zircon age spectra of late Carboniferous-early Permian metasedimentary rocks proposed 

to be sourced from the Briançonnais domain (Money Zone of the Gran Paradiso Unit; Manzotti et al. 

2015), the detrital record of the Briançonnais appears to be characterized by the absence of Upper 

Carboniferous ages. Manzotti et al. (2015) interpret this sparse representation of Upper Carboniferous 

crystallisation ages as a distinguishing feature of the Briançonnais domain (see also Ballèvre et al. 

2018), and suggest that the similarities of the Briançonnais with the Adriatic palaeomargin exceed 

those with its European counterpart. 

In accordance with the new petrographic and chronologic results presented in this study, we regard 

the age signature recorded in both the Pinerolo Unit and in the Monte Bignone sediments as 

representing the detrital zircon age fingerprint of the Southern European Tethyan palaeomargin. 

Taking into account the still poorly constrained displacement of palaeo-European terranes, Penninic 

basement blocks and metasedimentary sequences by out-of-sequence thrusting (e.g. Froitzheim et al. 

2008; Handy et al. 2010), and the debated palaeogeographic position of the Briançonnais continental 

fragment (e.g. Dal Piaz et al. 2003; Froitzheim et al. 2008; Handy et al. 2010; Manzotti et al. 2015), the 

identification of distinct source terrane detrital signatures can aid to further untangle the Western 

Alps tectonic puzzle. A comparison of the new detrital zircon age data with those from several 

published datasets has been performed by means of the multidimensional scaling (MDS) method 

(Vermeesch et al. 2013). This approach converts the dissimilarities between samples into distance in 

non-dimensional space (Vermeesch 2013) and creates a dimensionless arrangement of the sample 

points in which in a Cartesian coordinate system similar samples cluster together (Saylor et al. 2017). 

MDS visualization has proven to represent a valuable tool in provenance analysis, since it provides 

constraints on the role of pre-orogenic tectonic units in providing sediment (Stephan et al. 2018). 

Twenty-nine detrital age datasets (2955 individual detrital zircon ages) of representative siliciclastic 

successions deposited in the framework of the Alpine tectono-sedimentary cycle (e.g. Beltrán-Triviño 

et al. 2013; Cassinis et al. 2018) have been considered (Fig. 11). The compiled dataset comprises 

available detrital zircon age data of clastic sequences deposited in both the Piedmont-Ligurian oceanic 

domain and in the European foreland basin. Published source works comprise: detrital zircon ages 

from successions derived from the Inner (Manzotti et al. 2015) and External Crystalline Massifs 



(Manzotti et al. 2016) as well as from the Briançonnais terrane (Chu et al. 2016); detrital zircon ages 

for the Western Ligurian Flysch (Mueller et al., 2018); a detrital zircon dataset from the Corsica Nappes 

(Lin et al. 2018); detrital zircon data from the Elba Verruco Flysch (Sirevaag et al. 2016); detrital zircon 

ages for the European Foreland Basin (Grès de Champsaur and Flysch des Aiguilles d'Arves) and the 

cover of ophiolite nappes deposited in the Piedmont-Ligurian Ocean (Schistes Lustrès) from Chu et al. 

(2016); and finally detrital zircon data of Southern Alps and Austro-Alpine successions (Beltrán-Triviño 

et al. 2013).  

The MDS plot illustrates a distinct cluster of sedimentary successions sourced from the pre-Alpine 

Internal and External Massifs and various micro-terranes of palaeo-European affinity (green outline; 

Fig. 11). However, some close vicinity is observable between successions derived from the Austro-

Alpine domain with successions interpreted to be representative of Southern Alps provenance 

(Austroalpine Altein, Buchenstein and Prosanto Formations with the Southern Alps-derived Val Sabbia 

Fm.; Austroalpine Fuorn and Southern Alps Dasdana Fms.; as well as the Salluver and Bellano Fms., 

respectively; all data from Beltrán-Triviño et al. 2013). Remarkably, some flysch formations 

incorporated into the Corsican Balgane and Piedmont Nappes (Narbinco Flysch and Tralonca Flysch 

Fms., respectively) of previously unassigned provenance (cf. Lin et al. 2018), show closer similarity 

towards the Apulian/Adriatic plate. In view of the growing body of detrital zircon studies, this 

approach can potentially become an indispensable tool for solving tectonic and palaeogeographic 

problems in the debated pre-collisional framework of the Alps-Apennine orogenic system.   

 

6 Conclusions 

The results of the multi-proxy sediment provenance study of the Monte Bignone Sandstones (MBS) of 

the Western Ligurian Flysch complex contribute to a better understanding of the pre-collisional 

evolution of the Piedmont-Ligurian Ocean and the controversial geodynamic history of its bounding 

margins. The main findings can be summarized as the following: 

 - Measurement of palaeocurrent indicators reveals a primarily eastward transport of proximal 

slope channel-fill sediments. Restoration of the ca. 45-50° counter-clockwise rotation related to the 

opening of the Liguro-Provençal Basin illustrates a sediment source situated at the northern Tethyan 

margin. 

- MBS sandstone modal composition suggests an up-section increase in the importance of an 

eroded sedimentary cover of a continental terrane as the source for the clastic sediments. This 



portrays the progressive erosion of a passive margin segment characterized by a thick pre-syn rift 

Mesozoic sedimentary cover. 

 - Based on the results of detrital zircon chronology, the source area of the MBS can be 

narrowed to have been located along the European Tethyan Palaeomargin. Considering the strong 

representation of Tournaisian and Visean detrital ages within the Variscan detrital age component, 

reworked sediments staged from the Maures-Tanneron Massif most likely provided the major 

contribution of detrital zircons into the catchment area of the MBS.   

 - In the context of Alpine subduction, these results strengthen the hypothesis that the 

siliciclastic pre-collisional turbidite systems along the Western part of the subduction system were 

derived from the re-activated margin of the down-bending European continental block while it was 

approaching the subduction zone.  

 - The comparison of the new geochronological age signatures of this study with detrital age 

distributions from published datasets of the Western Alps by means of non-metric multidimensional 

scaling (MDS) analysis yields a distinct cluster of the palaeo-Europe-derived successions. Considering 

the tectonically complex make-up of the Alpine Nappe pile, this palaeo-European detrital zircon age 

signature has the potential of providing an accurate tool for linking sedimentary successions to their 

sediment sources and therefore allowing refined reconstructions of the geologic histories of the 

bounding Tethyan margins. 

 

Acknowledgements 

Financial support for this research was provided by the University of Pavia research grant to P. Mueller. 

Field work was supported by funding provided by the Turbidite Research Group sponsors: AkerBP, BP, 

ConocoPhilips, Equinor, Eni, Hess, Murphy Oil Corporation, OMV and Shell. We are grateful to M. 

Zattin (University of Padova) for the heavy mineral separation and to M. Palenzona (CNR Pavia) for 

assistance with CL images. We thank U. Linnemann and an anonymous reviewer for their helpful 

suggestions that improved the manuscript. Journal editors W.-C. Dullo and T. Voigt are thanked for 

their corrections and editorial handling. 

 

7 References  

Avigad D, Chopin C, Le Bayon R (2003) Thrusting and extension in the Southern Dora-Maira Ultra-High- 

Pressure Massif (Western Alps): view from below the coesite-bearing unit. J. Geol. 111:57–70 



Avigad D, Gerdes A, Morag N, Bechstädt T (2012) Coupled U–Pb–Hf of detrital zircons of Cambrian 

sandstones from Morocco and Sardinia: implication for provenance and Precambrian crustal evolution 

of North Africa. Gondwana Res. 21:690–703 

Avigad D, Rossi, P, Gerdes A, Abbo A (2018) Cadomian metasediments and Ordovician sandstone from 

Corsica: detrital zircon U–Pb–Hf constrains on their provenance and paleogeography. Int. J. Earth Sci 

107:2803–2818 

Ballèvre M, Manzotti P, Dal Piaz GV (2018) Pre-Alpine (Variscan) inheritance: A key for the location of 

the future Valaisan Basin (Western Alps). Tectonics 37:786–817 

Barale, L (2014) The Meso-Cenozoic stratigraphic succession adjoining the Argentera Massif: 

stratigraphic, sedimentologic and diagenetic evidence of syndepositional tectonics. Stratigraphy. 

Dissertation, Universita degli Studi di Torino, 240 pp. 

Barale L, d'Atri A, Piana F (2016) The Meso–Cenozoic stratigraphic succession of the Col de Braus area 

(Maritime Alps, SE France), Journal of Maps 12(5):804-814 

Barale L, Bertok C, d’Atri A, Martire L ,Piana F (2017) -Stratigraphy, sedimentology and syndepositional 

tectonics of the Jurassic-Cretaceous succession at the transition between Provençal and Dauphinois 

domains (Maritime Alps, NW Italy). Riv. It. Paleontol. Strat. 123: 355-378. 

Beltrán-Triviño A, Winkler W, von Quadt A (2013) Tracing Alpine sediment sources through laser 

ablation U–Pb dating and Hf-isotopes of detrital zircons. Sedimentology 60:197–224 

Bertok C, Martire L, Perotti E, d'Atri A, Piana F (2012) Kilometre-scale palaeoescarpments as evidence 

for Cretaceous synsedimentary tectonics in the External Briançonnais Domain (Ligurian Alps, Italy). 

Sed. Geol. 251-252:58-75 

Boni A, Vanossi M (1960) Ricerche e considerazioni sul flysch della Liguria occidentale. Atti Ist. Geol. 

Univ. Pavia 11:31-178 

Boni A, Vanossi M (1972) Carta geologica dei terreni compresi tra il Brianzonese Ligure s.l. ed il Flysch 

ad Elmintoidi s.s. Atti Ist. Geol. Univ. Pavia 23 , carta allegata, Pavia. 

Bracciali L, Marroni M, Pandolfi L, Rocchi S, (2007) Geochemistry and petrography of Western Tethys 

Cretaceous sedimentary covers (Corsica and Northern Apennines): from source area to configuration 

of margins. In: Arribas J, Critelli S, Johnsson MJ (eds.), Sedimentary Provenance and Petrogenesis: 

Perspectives From Petrography and Geochemistry. GSA Special Paper 420:73–93 



Caron C, Homewood P, Wildi W (1989) The Original Swiss Flysch: A reappraisal of the Type Deposits in 

the Swiss Prealps. Int. J. Earth Sci 26:1–45 

Carrapa B (2010) Resolving tectonic problems by dating detrital minerals. Geology 38:191-192 

Carrapa, B., Di Giulio, A., Mancin, N., Stockli, D., Fantoni, R., Hughes, A., Gupta, S., 2016. Tectonic 

significance of Cenozoic exhumation and foreland basin evolution in the Western Alps, Tectonics 

35:1892–1912 

Casini L, Cuccuru S, Maino M, Oggiano G, Tiepolo M (2012) Emplacement of the Arzachena Pluton 

(Corsica–Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 544-545:31–

49 

Cassinis G, Perotti C, Santi G (2018). Post-Variscan Verrucano-like deposits in Italy, and the onset of 

the alpine tectono-sedimentary cycle. Earth-Sci. Rev. 185:476-497 

Chu Y, Lin W, Faure M, Wang Q (2016) Detrital zircon U-Pb ages and Hf isotopic constraints on the 

terrigenous sediments of the Western Alps and their paleogeographic implications. Tectonics 35:1-20 

Cox R, Lowe DR (1995) A Conceptual Review of Regional Scale Controls on the Compositions of Clastic 

Sediments and the Co-Evolution of Continental Blocks and Their Sedimentary Cover. J. Sed. Res. 65:1-

12 

Critelli S, Arribas J, Le Pera E, Tortosa A, Marmaglia KM, Latter, KK (2003) The recycled orogenic sand 

provenance from an uplifted thrust belt, Betic Cordillera, southern Spain: J. Sed. Res. 73:72–81 

Dal Piaz GV (1999) The Austroalpine–Piedmontnappe stack and the puzzle of Alpine Tethys. Mem.  Sci. 

Geol. Padova 51:155–176 

Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26:175–180 

D´Atri, A, Piana F, Barale L, Bertok C, Martire L (2016) Geological setting of the southern termination 

of Western Alps. Int. J. Earth Sci. 105:1831–1858 

Decarlis A, Beltrando M, Manatschal, G, Ferrando S, Carosi R (2017) Architecture of the distal 

Piedmont-Ligurian rifted margin in NW Italy: Hints for a flip of the rift system polarity. Tectonics 

36:2388–2406 

Di Giulio, A. (1985) Sull'eta terziaria dei Calcari di Ubaga, Successione di Borghetto d'Arroscia-Alassio 

(Alpi Marittime). Riv. It. Paleont. Strat. 92:251-260 



Di Giulio A (1992) The evolution of the Western Ligurian Flysch Units and the role of mud diapirism in 

ancient accretionary prisms (Maritime Alps, Northwestern Italy). Int. J. Earth Sci. 81:655-668 

Di Giulio A, Galbiati B (1991) Le facies caotiche della Liguria occidentale: un nuovo modello 

interpretativo. Atti Ticinensi Sci. Terra 34:155–160 

Di Giulio A, Ronchi A, Sanfilippo A, Balgord EA, Carrapa B, Ramos VA (2017) Cretaceous evolution of 

the Andean margin between 36°S and 40°S latitude through a multiproxy provenence analysis of 

Neuquen Basin strata (Argentina). Basin Res. 29/3:284-304 

Di Giulio, A., Valloni, R., 1992. Analisi microscopia delle arentiti terrigene: parametri petrologici e 

composizioni modali. Acta Naturalia de l´Ateneo Parmese 28:55–101 

Dickinson WR (1970) Interpreting detrital modes of graywacke and arkose. J. Sed. Petr. 40 (2):695–

707 

Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, 

G.G. (Ed.), Provenance of arenites: 165–189, NATO ASI Ser., Dordrecht (Reidel). 

Dickinson WR, Suczek C (1979) Plate tectonics and sandstone compositions. AAPG Bulletin 63:2164–

2182 

Dickinson WR, Valloni R (1980) Plate settings and provenance of sands in modern ocean basins. 

Geology 8:82–86 

Dickinson WR, Gehrels, GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional 

ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288:115-

125 

Diekmann B, Wopfner H (1996) Petrographic and diagenetic signatures of climatic change in periand 

postglacial Karoo Sediments of SW Tanzania. Palaeogeogr., Palaeoclimatol., Palaeoecol. 125:5–25 

Duchesne JC, Liégois JP, Bolle O, Vander Auwera J, Bruguier O, Matukov DI, Sergeev SA (2013) The fast 

evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula 

granites and related dykes (Maures Massif, SE France). Lithos 162–162:195–220 

Dunkl I, Di Giulio A, Kuhlemann J (2001) Combination of single-grain fission track chronology and 

morphological analyses of detrital zircon crystals in provenance studies – origin of the Macigno 

Formation (Apennines, Italy). J. Sed. Res. 71:515-524 

Durand, M (2008) Permian to Triassic continental successions in southern Provence (France): an 

overview. Boll. Soc. Geol. It. 127(3):697-716 



Fonneland HC, Lien T, Martinsen OJ, Pedersen, R.B., Kosler J (2004) Detrital zircon ages: a key to 

understanding the deposition of deep marine sandstones in the Norwegian Sea. Sed. Geol. 164:147-

159 

Fornelli A, Micheletti F, Piccarreta G (2016) Late-Proterozoic to Paleozoic history of the peri-Gondwana 

Calabria–Peloritani Terrane inferred from a review of zircon chronology. Springerplus 5:1-19 

Franke W, Robin M, Cocks L, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana 

Res. 48:257-284 

Franz L, Romer RL (2007) Caledonian high-pressure metamorphism in the Strona-Ceneri Zone 

(Southern Alps of southern Switzerland and northern Italy). Swiss J. Geosc. 100:457-467 

Frisch W, Neubauer F, Satir M (1984) Concepts of the evolution of the Austroalpine basement complex 

(Eastern Alps) during the Caledonian-Variscan cycle. Int. J. Earth Sci.  73:47–68 

Froitzheim N, Plasienka D, Schuster R 2008 Alpine tectonics of the Alps and Western Carpathians. In: 

McCann, T. (ed.), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, Geol. Soc. Publ., 

London,  1141-1232.   

Galbiati B (1982) Nuovi dati e considerazioni sull'elemento di Borghetto d'Arroscia (Alpi liguri). Rend. 

Soc. Geol. It., 4:339-341 

Galbiati B (1986) L’unità di Borghetto d’Arroscia-Alassio. Mem. Società Geol. d’Italia, 28:181-210. 

Garzanti E, Andò S, Vezzoli G (2006) The Continental Crust as a Source of Sand (Southern Alps Cross 

Section, Northern Italy). J. Geol. 114:3–554 

Garzanti E, Doglioni C, Vezzoli G, Ando S (2007) Orogenic belts and orogenic sediment provenance. J. 

Geol. 115:315-334 

Garzanti E, Ando S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and 

chemical variability of fluvial sediments 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth  

Planet. Sci. Lett. 299:368–381 

Garzanti E, Limonta M, Resentini A, Bandopadhyay PC, Najman Y, Andò S, Vezzoli G (2013) Sediment 

recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth-Sci. 

Rev. 123:113-132 

Gazzi P (1966) Le arenarie del flysch sopracretaceo dell’Appenino modenese: correlazioni con il flysch 

di Monghidoro: Mineral. Petrogr. Acta12:69-97 



Gehrels G (2011) Detrital zircon U‐Pb geochronology: Current methods and new opportunities. 

Tectonics of sedimentary basins: Recent advances:45-62 

Giacomini F, Braga R, Tiepolo M, Tribuzio R (2007) New constraints on the origin and age of Variscan 

eclogitic rocks (Ligurian Alps, Italy). Contrib. Mineral. Petrol. 153:29–53 

Giorgis D, Thélin P, Stampfli M, Bussy F (1999) The Mont-Mort metapelites: Variscan metamorphism 

and geodynamic context (Briançonnais basement, Western Alps, Switzerland). Schweiz. Mineral. 

Petrogr. Mitt. 79:381-398 

Gutiérrez-Alonso G, Fernández-Suárez J, Pastor-Galán D, Johnston, ST, Linnemann U, Hofmann M, 

Shaw J, Colmenero JR, Hernández P (2015) Significance of detrital zircons in Siluro-Devonian rocks 

from Iberia. J. Geol. Soc. Lond. 172:309–322 

Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic 

reconstructions of Alpine tethys with the geological record of spreading and subduction in the Alps. 

Earth-Sci. Rev. 102:121–158 

Homewood P, Laveltin O (1988) Classic swiss clastics (flysch and molasse): The Alpine connection. 

Geodinamica Acta 2:1-11. 

Ingersoll RV, Bullard, TF, Ford RD, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on 

detrital modes: a test of the Gazzi-Dickinson point-counting method. J. Sed. Petrol. 54:103–116 

Innocent C, Michard A, Guerrot C (2003) U-Pb zircon age of 548 Ma for the leptynites (high grade felsic 

rocks) of the central part of the Maures massif. Geodynamic significance of the so-called leptyno-

amphibolitic complexe of the Varsican belt of western Europe. Bull. Soc. Géol. Fr. 174: 585-594 

Jackson SE, Pearson, NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively 

coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211:47–69 

Lanteaume M (1962) Contribution à l'étude géologique des Alpes Maritimes franco-italiennes. Thèse 

Sc. Nat., Paris, n° 4649, 413 p. 

Lanteaume M, Radulescu N, Gavos M, Feraud J (1990) Notice explicative, Carte Géol. De France 

(1/50.000), feuille Viève-Tende (948). Orleans: BRGM. 139 pp. 

Lash GG (1987) Longitudinal petrographic variations in a Middle Ordovician trench deposit, central 

Appalachian Orogen. Sedimentology 34:227–235 



Lihou JC, Mange-Rajetzky MA (1996) Provenance of the Sardona Flysch, Eastern Swiss Alps: example 

of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sed. Geol. 105:141-

157 

Lin W, Rossi P, Faure M, Li, X-H, Ji W, Chu Y (2018) Detrital zircon age patterns from turbidites of the 

Balagne and Piedmont nappes of Alpine Corsica (France): evidence for an European margin source. 

Tectonophysics 722:69–105 

Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008). The Cadomian Orogeny and the opening 

of the Rheic Ocean: The diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon 

dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 

461:21–43 

Lopez Jimenez R, Cronin BT, Turner CC, Celik H, Bastidas R, Kneller BC (2018). The Alikayasi Canyon-

Channel System (Miocene, SE Turkey) compared with the South Brae Fan System (Upper Jurassic, 

North Sea): Characterising sand and gravel filled channel complexes in coarse-grained deep-water 

systems without gravel cone geometries. In Turner CC, Cronin BT, editors, Rift-related coarse-grained 

submarine fan reservoirs: the Brae Play, South Viking Graben, North Sea: AAPG Memoir, p. 595-618 

Maffione M, Speranza F, Faccenna C, Cascella A, Vignaroli G, Sagnotti L (2008). A synchronous Alpine 

and Corsica–Sardinia rotation. J. Geophys. Res. 113(B03104) 

Maino M, Casini L, Ceriani A, Decarlis A, Di Giulio A, Seno S, Setti M, Stuart FM (2015) Dating shallow 

thrusts with zircon (U-Th)/He thermochronometry — the shear heating connection. Geology 43:495–

498 

Maino M, Gaggero L, Langone A, Seno S, Fanning M (2019) Cambro-Silurian magmatism at the 

northern Gondwana margin (Penninic basement of the Ligurian Alps). Geosci. Front. 10:315-330 

Manzotti P, Poujol M, Ballèvre M (2015) Detrital zircon geochronology in blueschist-facies meta-

conglomerates from the Western Alps: Implications for the late Carboniferous to early Permian 

palaeogeography. Int. J. Earth Sci. 104:703–721 

Manzotti P, Ballèvre M, Poujol M (2016) Detrital zircon geochronology in the Dora Maira and Zone 

Houillère: A record of sediment travel paths in the Carboniferous. Terra Nova 28:279–288 

Marini M, Terranova R (1985) Nuovi dati sulla litostratigrafia dei flysch della Liguria occidentale e sui 

loro rapporti strutturali. Atti Soc. Tosc. Sc. Nat. 92:95-163 



Marini M, Milli S, Ravnas R, Moscatelli A, (2015) A comparative study of confined vs. semi-confined 

turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for 

assessment of reservoir architecture. Mar. Petr. Geol. 63:142-165 

Marroni M, Meneghini F, Pandolfi L (2010) Anatomy of the Ligure-Piemontese subduction system: 

evidence from Late Cretaceous–middle Eocene convergent margin deposits in the Northern 

Apennines, Italy. Int. Geol. Rev. 52:1160-1192 

Michard A, Martinotti G (2002) The Eocene unconformity of the Briançonnais domain in the French—

Italian Alps, revisited (Marguareis massif, Cuneo): a hint for a Late Cretaceous—Middle Eocene frontal 

bulge setting. Geodin. Acta 15:5-6 

Moussavou M (1998) Contribution à l’histoire thermo-tectonique varisque du massif des Maures par 

la typologie du zircon et la géochronologie U/Pb sur minéraux accessoires. PhD Thesis, University of 

Montpellier 2, 187 p. 

Mueller P, Langone A, Patacci M, Di Giulio A (2018) Detrital signatures of impending collision: The 

deep-water record of the Upper Cretaceous Bordighera Sandstone and its basal complex (Ligurian 

Alps, Italy). Sediment. Geol. 377:147-161 

Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y (2015) Variscan crustal thickening in 

the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical 

dating of high-grade rocks. Bull. Soc. Géol. France 186:145-169 

Patacci, M. (2016). A high-precision Jacob's staff with improved spatial accuracy and laser sighting 

capability. Sediment. Geol. 335: 66-69. 

Pavanetto P, Funedda, A, Northrup CJ, Schmitz M, Crowley J, Loi A (2012) Structure and U–Pb zircon 

geochronology in the Variscan foreland of SW Sardinia, Italy. Geol. J. 47:426–445 

Perotti M, Andreucci B, Talarico F, Zattin M, Langone A (2017) Multi-analytical provenance analysis of 

Eastern Ross Sea LGM till sediments (Antarctica): Petrography, geochronology, and thermochronology 

detrital data. Geochem. Geophys. 18 (6):2275-2304 

Ragusa J, Kindler P, Segvic B, Ospina-Ostios LM (2017). Provenance analysis of the Voirons Flysch 

(Gurnigel nappe, Haute-Savoie, France): stratigraphic and palaeogeographic implications. Int. J. Earth 

Sci. 106:2619–2651 

Ragusa J, Kindler P (2018). Compositional variations in deep-sea gravity-flow deposits. A case study 

from the Voirons Flysch (Voirons-Wägital complex, Chablais Prealps, France). Sediment. Geol. 

377:111-130 



Rossi P, Oggiano G, Cocherie A (2009) A restored section of the “southern Variscan realm” across the 

Corsica–Sardinia microcontinent. C. R. Gèoscience 341: 224-238 

Saylor JE, Jordan JC, Sundell KE, Wang X, Wang S, Deng T (2017) Topographic growth of the Jishi Shan 

and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Res. 30:544-563 

Schaltegger U, Gebauer D (1999) Pre-Alpine geochronology of the Central, Western and Southern Alps. 

Schweiz. Mineral. Petrogr. Mitt. 79: 79-87 

Seno S, Dallagiovanna G, Vanossi, M (2005) Pre-Piedmont and Piedmont-Ligurian nappes in the central 

sector of the Ligurian Alps: a possible pathway for their superposition on to the inner Briançonnais 

units. Bollett. Soc. Geol. Italiana 124 (2): 455-464 

Shaw J, Gutiérrez-Alonso G, Johnston S, Pastor-Galán D (2014) Provenance variability along the early  

Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital  zircon  

ages from the Armorican Quartzite of the Iberian Variscan belt. GSA Bulletin 126:702-719 

Sirevaag H, Jacobs J, Ksienzyk AK, Rocchi S, Paoli G, Jørgensen GH, Košler, J (2016) From Gondwana to 

Europe: the journey of Elba Island (Italy) as recorded by U/Pb detrital zircon ages of Paleozoic 

metasedimentary rocks. Gondwana Res. 38:273–288 

Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala 

L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008): Plesovice zircon - a new 

natural reference material for U-Pb and Hf isotopic microanalysis. – Chem. Geol. 249(1-2):1—35 

Stampfli GM, Borel GD, Marchant R, Mosar J (2002a) Western Alps geological constraints on western 

Tethyan reconstructions. J. Virt. Explorer 8:77–106 

Stampfli GM, von Raumer J, Borel G (2002b) The Paleozoic evolution of pre-Variscan terranes: from 

Gondwana to the Variscan collision. GSA Spec. Publ. 364:263–280 

Stampfli GMM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction 

processes in the Swiss Alps. Tectonophysics 296:159-204 

Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana derived terranes in the 

early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds.) The Ordovician of the world, 

Cuadernos del Museo Geominero, Instituto Geológico y Minero de España, Madrid 14:567–574 

Stanley DJ (1965) Heavy minerals and provenance of sands in flyschof central and southern French 

Alps. AAPG Bulletin 49:22-40 



Stephan T, Kroner U, Romer RL (2019) The pre-orogenic detrital zircon record of the Peri-Gondwanan 

crust. Geol. Mag. 156(2):281-307 

Thomas WA, (2011) Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3:304-

308 

Thum L, De Paoli R, Stampfli GM, Moix, P (2015) The Piolit, Pelat and Baiardo Upper Cretaceous flysch 

formations (western Alps): Geodynamic implications at the time of the Pyrenean tectonic phases. Bull. 

Soc. Géol. France, 2015 186:209-221 

Valloni R, Zuffa GG (1984) Provenance changes for arenaceous formations of the northern Apennines, 

Italy. GSA Bulletin 95:1035–1039 

Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA‐ ICP‐ MS. 

Laser‐ Ablation‐ ICPMS in the earth sciences — Principles and applications, Mineralog. Assoc. Canada 

Short Course Series 29:239–243 

Vanossi M, Cortesogno L, Galbiati B, Messiga B, Piccardo G, Vannucci R (1986) Geologia delle Alpi 

Liguri: dati, problemi, ipotesi. Mem. Soc. Geol. It. 28:5-75 

Vermeesch P (2012) On the visualisation of detrital age distributions. Chem. Geol. 312:190-194 

Vermeesch P (2018) IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9:1479-1493 

Vezzoli G, Garzanti E, Monguzzi S (2004) Erosion in the Western Alps (Dora Baltea basin). 1. Quantifying 

sediment provenance. Sed. Geol. 171:227-246 

Von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement area at 

the north-Gondwanan margin. Int. J. Earth Sci. 91:35–52 

Von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents-the constituents of 

the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22 

Von Raumer JF, Stampfli GM, Arenas R, Sánchez Martínez S (2015) Ediacaran to Cambrian oceanic 

rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 104:1107–1121 

Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick, JC, Spiegel W 

(1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. 

Geostandard Newslett. 19:1–23 

Wildi W (1985) Heavy mineral distribution and dispersal pattern in penninic and ligurian flysch basins 

(Alps, northern Apennines). Giorn. Geol. 47:77-99 



Figure captions 

Fig. 1. (A) Location of the study area in the framework of the Western Alps. (B) Geological map of the 

Western Ligurian Flysch Complex and its surrounding tectonic units. ATF: Alpine Thrust Front; E-U: 

Embrunais-Ubaye nappe; WLF: Western Ligurian Flysch nappe; TH-M: Torino Hills and Monferrato 

High; TPB: Tertiary Piedmont Basin. (C) Schematic geological map of the Moglio-Testico, Borghetto 

d´Arroscia and Colla Domenica-Leverone Units of the Western Ligurian Flysch complex. Red stars 

indicate sampled sections at localities “Capo Croce” (Samples PA 01-27) and (B) “Ubaghetta” (see Fig. 

2 for details). Modified from Boni and Vanossi (1972), Lanteaume et al (1990), Di Giulio (1992) and 

Maino et al (2015). 

 

Fig. 2. Summary logs of the Borghetto Unit in the proximal (A) and distal (B) domain (modified from 

Galbiati 1986). Insets show detailed logs at Capo Croce (C) and Ubaghetta (D) and the stratigraphic 

position of sandstone samples PA_1 to PA_27 (diamonds) and UR_01 to UR_03 (triangles). Position of 

detrital zircon samples QdMZ_1 and QdMZ_2 are also highlighted. Rose diagrams represent 

palaeocurrent indicators from detailed logs (black: groove casts; white: flute casts, ripples and cross-

bedding foresets). 

 

Fig. 3. Outcrop examples of the Monte Bignone Sandstones. A) Medium- to thick-bedded strata from 

the Lower Quartzites unit in the proximal sample location “Capo Santa Croce”. View towards SSE. Note 

the eastward dipping of foresets of cross-bedded strata. B) Sampled outcrop of the Upper Quartzites 

unit close to “Ubaghetta”. Location of the sample processed for detrital zircon chronology is indicated 

with an orange star. C) Chaotic body within the pelitic member in the distal outcrop “Ubaghetta”. D) 

Representative strata of the “middle” conglomerates, characterized by poorly sorted polymict gravel 

conglomerate dominated by calcareous clasts. Locality “Capo Santa Croce”. 

 

Fig. 4. Representative photomicrographs of the thin sections investigated under crossed nichols. 

Samples from the Lower Quartzites unit (A-H). A) Almost pure quartzitic composition characterizing 

the basal part of the Lower Quartzites unit in the “Capo Santa Croce” sample location. Note the quartz 

overgrowth (arrows). B) Quartz aggregate (dashed patch) in orthoquartzite sample. C) Feldspar 

varieties (microcline and albite) observed in sample PA_12. Note the partial dissolution of the lamellae 

in the perthitic alkali feldspar grain (Fp). D) Assemblage of lithic fragments types: fine-grained 

sandstone lithic fragment (Ls) together with low-grade metamorphic lithic fragment (Lm). E) 



Association of lithic clasts (volcanic (Lv), sedimentary (siltstone; Ls) and lithic-plutonic (Lp) fragments) 

and mono- and polycrystalline quartz varieties in sample PA_13. F) Rhyolithic volcanic fragment (Lv) 

characterized by K-feldspar phenocrysts (arrows) floating in porphyric matrix in assemblage with 

quartz grains and sedimentary lithic fragments G) Sample PA_19 characterised by abundant dolostone 

fragments (ds). H) Poor degree of sorting that characterises the topmost samples of the Lower 

Quartzites unit. Note the angularity of grains and the high abundance of detrital matrix. CE: carbonatic 

lithic fragment; CEm: micritic limestone lithic fragment. Samples from the Upper Quartzites unit (I-L). 

I) Mica flakes (yellow arrows) in texturally and compositionally immature lithic arenites characteristic 

of the lowermost part of the Upper Quartzites unit. J) Poorly sorted litharenite. Note the partial 

dolomitization of the matrix (yellow arrows). K) Examples of texturally immature samples from the 

Upper Quartzites unit defined by angular grains, high overall feldspar (Fk: alkalifeldspar; Fp: 

plagioclase) proportions and abundant detrital matrix. L) Abundant calcite cement precipitation 

characteristic of the uppermost sample of the Ubaghetta section. 

 

Fig. 5. Modal framework composition of the analysed samples from the Monte Bignone Sandstones 

and interpreted provenance discrimination fields (QtFL plot after Dickinson et al., 1983; QmFLt plot 

Dickinson & Suczek, 1979). Note the up-section trend from quartzose sandstones to litharenites in the 

Lower Quartzites unit and the subsequent shift towards a quartzolithic-feldspathic composition 

characteristic of the Upper Quartzites unit. 

 

Fig. 6. Stratigraphic changes of modal composition. QFLt plot on the left and detailed lithic clast 

components (Qp: polycrystalline quartz, Lm/p: metamorphic/plutonic fragment, Lv: volcanic 

fragment, Lsed: sedimentary fragment, Ldolo: dolostone fragment and LCe: calcareous lithithic 

fragment), on the right.  A) Samples UR_01 to UR_03 from a ca. 30 m thick section through the Upper 

Quartzites unit in the more distal domain (locality Ubaghetta). B) Samples PA_01 to PA27 from a 40 m 

thick section through the Lower Quartzites unit in the more proximal domain (locality Capo Croce). 

See Fig. 1 for locations and Fig. 2C-D for samples stratigraphic positions. Note how the QFLt plot for 

the Lower Quartzites unit illustrates the systematic up-section increase in lithic grains at the expense 

of total quartz, a trend which is contrasted by the overall stratigraphic pattern recorded in the Upper 

Quartzites unit. 

 



Fig. 7. Representative cathodoluminescence images of analysed detrital zircons with approximate 

ablation spot location. Yellow scale bars are 100 microns long.  

 

Fig. 8. A) Detrital age spectra (probability density plot) of the Monte Bignone Sandstones for the time 

interval 0-3500 Ma (bin width: 50 Ma). B) Detrital age distribution in the time interval 200-1200 Ma. 

C) Qualitative comparison of detrital zircon age data of the analysed samples with that from other 

siliciclastic members of the WLF (Bordighera Sandstones and San Bartolomeo Formation (SBF); 

Mueller et al., 2018). Geological time-scale according to the International Commission on Stratigraphy. 

 

Fig. 9. A) Idealized compositional evolutions illustrating the unroofing of contrasting source terranes 

as documented in the detrital modes of the siliciclastic members of the WLF. This model (A) is derived 

from the comparison of the compositional stratigraphic evolution (arrow indicates younging direction) 

of the two main siliciclastic successions of the Western Ligurian Flysch Units (B and C). B) 

Compositional trends of the first-cycle Bordighera Sandstones and the underlying basal complex 

(Mueller et al. 2018). C) Compositional trends of the polycyclic Monte Bignone Sandstones (this study).  

Provenance discrimination fields after Dickinson et al. (1983). 

   

Fig. 10. Cumulative distribution functions of detrital zircon ages from siliciclastic successions derived 

from the Southern European Variscan basement blocks from this study (MBS) and from candidates 

from published literature (Money Unit: Manzotti et al. 2015; Zone Houillère and Pinerolo Unit: 

Manzotti et al. 2016) for the time span from 0 to 3500 Ma. 

 

Fig. 11. Non-metric multidimensional scaling (MDS) plot of compiled detrital zircon age datasets ( 29 

datasets; 2955 ages) of selected pre- and syn-orogenic siliciclastic successions deposited in the context 

of the Alpine Cycle. The compilation of detrital ages is reported in the supplementary data file. Note 

the distinct cluster of U-Pb detrital age spectra of palaeo-Europe-derived successions highlighted by 

the green outline in the left. 
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