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Author summary

Improvements in technology often drive scientific discovery. Therefore, research requires

sustained investment in the latest equipment and training for the researchers who are

going to use it. Prioritising and administering infrastructure investment is challenging

because future needs are difficult to predict. In the past, highly computationally demand-

ing research was associated primarily with particle physics and astronomy experiments.

However, as biology becomes more quantitative and bioscientists generate more and

more data, their computational requirements may ultimately exceed those of physical sci-

entists. Computation has always been central to bioinformatics, but now imaging experi-

ments have rapidly growing data processing and storage requirements. There is also an

urgent need for new modelling and simulation tools to provide insight and understanding

of these biophysical experiments. Bioscience communities must work together to provide

the software and skills training needed in their areas. Research-active institutions need to

recognise that computation is now vital in many more areas of discovery and create an

environment where it can be embraced. The public must also become aware of both the

power and limitations of computing, particularly with respect to their health and personal

data.

Overview

Research computing is the innovative use of computer hardware and software to enhance sci-

entific research. Here, we discuss the exciting progress in the biosciences that can be made by

embracing computation, in particular because of the recent upsurge in the use of cryo-electron

microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) for structure determination

at multiple biological length-scales. Breakthroughs in experimental biophysical tools for auto-

mated data collection are providing the biosciences, from molecular biology up to the level of

cells and tissues, with a torrent of microscopy and informatics data that needs robust software

and fast hardware for data processing and a suite of new simulation and modelling tools. The

computational challenge of image processing and of integrating experimental information
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from diverse sources may prove to be the major bottleneck to gaining scientific understanding.

As computation becomes ubiquitous, bioscience researchers will need stronger computational

skills, which has implications for provision of training. The rapid pace of growth of computa-

tion in the biosciences requires that our research community urgently address these issues. We

conclude by making predictions about the directions of bioscience computing and the actions

required to secure its future.

Introduction

Until recently, only physical scientists routinely needed expertise in supercomputing and the

management of large datasets. Bioinformatics and bioimaging are now providing the biologi-

cal sciences with a torrent of data. New simulation and modelling tools, underpinned by com-

putation, are essential to provide insight and understanding. Given this key principle, we

describe the exciting scientific discoveries and understanding that computation will inspire

within the biosciences. Although computation also plays a vital role in areas such as ecology,

evolution, and population dynamics, here, we focus on molecular biology, bioinformatics, and

biomaterials, as these areas are arguably experiencing the most rapid current expansion. We

conclude with speculations on the future directions of computing in the biosciences, which

highlight the urgent importance of long-term investment in people and infrastructure for bio-

science computation.

Scientific background

Building on the past: The ‘omics’ revolution

Genomic DNA sequencing (genomics), quantification of RNA expression levels (transcrip-

tomics), microbiome characterisation, and metabolomics studies are providing increasingly

more information about how molecular-level changes affect organisms. Omics data present a

particular challenge concerning their size and in allowing open access to a global research

community. To be searchable and readily accessible, these datasets require the very highest

standards of curation. For example, the Encyclopedia of DNA Elements (ENCODE) database

now contains approximately 13,000 datasets from nematodes, flies, mice, and humans, total-

ling over 500 TB of data [1], and the European Molecular Biology Laboratory–European Bio-

informatics Institute (EMBL–EBI), run collaboratively across 16 partner countries, currently

totals 120 PB in size. This figure is projected to reach the exabyte scale in 2022 [2]. These

resources represent an invaluable shared global resource and thus require new international

agreements between government funding agencies to safeguard their capture, curation, and

maintenance over the long term [3].

Such a wealth of resources brings new challenges: How do researchers find (and trust) the

information that they need, and how do they combine different datasets to make connections

that can answer biological questions? A survey of the 2018 online molecular biology database

collection reported 82 new databases and 84 updates to previously published computational

biology database resources, whereas only 47 databases were discontinued [4]. These databases

span biological disciplines as diverse as genomics, transcriptomics and proteomics, evolution-

ary analysis, metabolomics, and chemical biology. Recent updates to the Reactome Pathway

Knowledgebase [5], which contains molecular details of all known signal transduction and

transport pathways, have focused on providing users with diagrammatic and graphical repre-

sentations of their queries so that complex metabolic relationships can be more readily under-

stood and communicated. The design of interactive software tools that enable exploration of

massive datasets will continue to be an active area of research in bioscience computation. For

informatics, datasets are presently maintained by a mature network of international
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collaborations with a robust community infrastructure. For nascent experimental tools, how-

ever, such as those under development for bioimaging, this is not always the case.

Current challenges: The imaging revolution

One of the notable challenges for the biosciences today is to connect from the omics (molecu-

lar) level through to the whole organism. Although omics quantifies which molecules are pres-

ent, it does not show where they are. New imaging tools, such as cryo-EM, cryo-ET, and

superresolution light microscopy, now allow us to visualise biological systems from the level of

a single protein molecule to cells and tissues. This will allow us to connect the molecular and

cellular levels for the first time, revealing details of processes such as assembly and disassembly

of cellular structures, the operation of enzyme-controlled chemical factories, the protein trans-

port network, and cell regulation strategies. The Electron Microscopy Database (EMDB),

which provides a public archive of 3D electron microscopy reconstructions, grew from 640

entries in 2015 to 4,431 by the end of 2016 and is projected to contain 10,000 entries by 2020

[6]. For comparison, there are already over 139,000 atomic models for biological macromole-

cules in the Protein Data Bank (PDB). The complementary Electron Microscopy Public Image

Archive (EMPIAR) database contains raw electron microscopy images [7], and discussion of

the need for equivalent archives for emerging 3D cellular imaging techniques, including 3D

scanning electron microscopy and soft X-ray tomography, have been initiated [8][9][10]. The

provision of these resources builds on best practice acquired through the curation of omics

and atomistic structural data (e.g., the PDB). The importance of gaining an international con-

sensus on common file formats, which is vital for software interoperability (as is nonpropri-

etary software), functionality, and usability, has already been established. The bioimaging

community faces additional challenges owing to the large size and multiscale nature of the

datasets. Curating, sharing, and integrating these data will require new storage, networking,

software, and skills infrastructure.

Single-particle cryo-EM imaging is now providing atomic-resolution structural data for

macromolecular complexes that have eluded X-ray crystallography [11][12]. Processing and

curating this wealth of information requires robust, user-friendly software [6], high-perfor-

mance computing (HPC), and bespoke data storage facilities [6]. Cryo-EM facilities can gener-

ate over 10 Tb of image data per day per microscope, and potentially>160 Tb each year will

need archiving for 10 years (see S1 Supporting Information) to satisfy the open-data require-

ments of funding bodies. As the next generation of detectors become available, this will

increase by a factor of around 6 (e.g., in the transition from the Gatan K2 to K3 detector [13]),

requiring an equivalent uplift in the data storage and analysis pipelines. Only major research

facilities have previously had to tackle the problems of understanding and controlling for con-

tinuous data production. This is an urgent issue in many cryo-EM facilities. In response, there

is an important emerging industry set around the products and services that are designed to

make data more portable and widely accessible, with the expectation that the researcher also

stands as an expert ‘software analyst’. Many electron microscopy facilities now do significant

data processing concurrently with data collection to speed up processing of the datasets, but it

is clear that a substantial, continual investment into networking and storage infrastructures

will be required in the future.

Although single-particle cryo-EM is particularly computationally intensive, other imaging

tools, such as superresolution microscopy, soft X-ray tomography, and cryo-ET are also gener-

ating increasing amounts of data. Robotics technologies and upgraded beamlines at synchro-

trons provide data ever more quickly. The combination of cryo-ET with cryo-focused-ion-

beam (cryo-FIB) milling is providing information for whole-cell cross sections of around 300

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006958 May 16, 2019 3 / 15

https://doi.org/10.1371/journal.pcbi.1006958


nm in thickness, in which the molecular resolution at the surface is approximately 10 Å [14].

Soft X-rays now achieve resolutions of<50 nm and can be used for 3D reconstructions of

whole cryopreserved cells [15]. Correlated microscopies, in which data from distinct modali-

ties are combined to give complementary information, are now used to identify specific mole-

cules of interest within 3D cellular landscapes [16] by labelling them with a fluorescent tag or

bar-coded strands of DNA [17]. Adaptive optics combined with lattice light-sheet microscopy

in transparent living cells has revealed the subcellular dynamics of processes as diverse as the

nanoscale diffusion of clathrin-coated pits, cancer cell metastasis, and the motility of axons,

which involved mining and visualisation of around half a terabyte of raw data [18]. Much of

the future bottleneck for understanding this new wealth of biological information is computa-

tional [18]. Although microscope suppliers do already provide bespoke software tools for visu-

alising and processing 3D microscopy data, such as the Amira program [19], bioimaging is

evolving so rapidly that the future software needs of this community are unknown. As a result,

new programming tools, particularly for correlative microscopies and the segmentation of

noisy volumetric datasets, now need to be developed concurrently with the experiments that

rely on them and be implemented close to the science. The Image Data Resource, for example,

combines experimental results from multiple independent imaging modalities for reanalysis

[20]. A broad awareness of the growing computational needs of the biosciences is now neces-

sary to ensure that the required hardware, software, and technical expertise is available locally.

Requirments for the future: Biomolecular modelling and simulation

Computational tools have been developed at all length-scales in the biosciences, but integrating

between these different regimes remains a challenge. Examples in which this challenge has

been embraced include the Virtual Cell Software Environment [21], which provides a ‘biol-

ogy-orientated’ tool for spatial–temporal modelling and visualisation of biochemical pathways.

The European ‘Virtual Physiological Human’ (VPH) project has undertaken to construct a

‘digital representation of the human body and its relevant physiological systems’, with the

long-term aim of using computational physiology in biomedical research and clinical practice

[22]. In biomechanics, the aspiration is for simulations to speed up the design cycle for medical

implants and devices before experimental prototypes are built. In 2016, the United States Food

and Drug Administration (FDA) agency issued guidance on the use of computational studies

to evaluate the safety and effectiveness of medical devices [23]. Multiscale models of the heart

that span from the length-scale of ion channels up to whole-organ models [24] have already

been integrated with imaging data from individual patients in research towards personalised

surgery [25]. The concept of a ‘Digital Twin’, which is a 4D in silico copy of a physical system,

and which has been widely adopted in mechanical engineering for applications as diverse as

sensors to power plants, will similarly become an integral component of industrial tissue engi-

neering [26].

Simulations test our understanding of biological mechanisms and provide information that

cannot be obtained by experiment alone. For example, in molecular and cellular biology, imag-

ing tools require samples to be fixed in space to make it possible to collect enough information

to extract a signal out of noisy data, so much of the dynamics of biomolecules are impossible

to access experimentally. However, molecular recognition and the ability to respond to cellular

signals relies on such dynamics, so the relationship between structure and biological function

is still not well understood, which remains a significant obstacle in rational drug design. In

principle, atomistic molecular dynamics (MD) simulations can predict binding constants,

locate allosteric sites, and explain gating mechanisms such as in membrane transporters and

ion channels [27][28]. In practice, however, such simulations remain severely limited by the
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simulation timescales that can be explored, even with specialist HPC resources. This has, in

turn, inspired radical developments in bespoke hardware for MD (e.g., the Anton chip [29]

[30]). Biomolecular simulation has a mature software stack that is actively developed and

maintained by the community as an international priority. This facilitated the porting of the

most popular community codes to graphical processing units (GPUs). As well as the improve-

ments in speed, the relatively low cost and easy availability of GPUs have broadened the avail-

ability of such tools. Molecular modelling software developers know that usability is key to

user engagement and are investing considerable effort into making their software (which has

traditionally been limited to the HPC community) more user friendly. The importance of

bringing high-quality computational tools into the everyday repertoire of experimental biolo-

gists has been emphasised by the computational biology community [31]. In the molecular

biosciences, in silico screening has already been integrated into the rational drug design pipe-

line. As their predictive power improves, the hope is that in the future, biomolecular simula-

tions will replace animal testing, and patients will be treated with personalised medicines

designed using bespoke computer models.

We therefore need a deeper understanding of how changes at the molecular level propagate

through to cells and tissues. Statistical approaches, such as those used in systems biology, have

proven particularly powerful for identifying correlations in complex datasets that can be used pre-

dictively. For example, Bayesian methods have been developed that can assess functional assign-

ments to unknown genes—for example, by analysis of hormonal networks described by multiple

(e.g., of order 10) experimentally measured rate constants [32]. Machine learning is now being

used to extract patterns and correlations from elaborate datasets, and in image processing [33]

[34][35], drug design [36], and omics analysis (for a review, see [37]). Identification of correla-

tions in large datasets is valuable for hypothesis generation and provides new understanding

when combined with complementary tools, such as simulation and experimentation. However,

machine learning cannot explain the underlying, causative interactions, which limits its predictive

power to within the scope of the data supplied [38]. Computer modelling is therefore essential for

applications such as personalised medicine because the number of genetic mutations possible is

so vast that the circumstances of individual patients will never be captured in any dataset.

The bioimaging revolution is providing data that is inherently multiscale. To understand how

the structures we observe ultimately give rise to biological function requires the development of

newmodels that integrate datasets collected at different spatial and temporal resolutions. For

example, the CellView visualisation tool, which is implemented within a game engine, uses the

latest GPU-based algorithms to construct and render enormous biological scenes (approximately

15 billion atoms) [39], such as an entire mycoplasma cell [40]. Modelling will also be required to

integrate imaging and informatics. The enormous data sizes required to comprehensively map

cellular components at an atomistic level (see S1 Supporting Information) implies that abstrac-

tion is essential. The challenge is therefore to capture the detail necessary to understand how a

single amino acid substitution can give rise to disease yet build a model that is computationally

tractable. Multiscale simulation tools capable of coupling different levels of chemical detail into

integrated models are therefore essential for bioscience model building [41]. Multiscale, integra-

tive modelling is one of the ‘grand challenges’ of computational chemistry and physics. In the

biosciences, it may transform the field into a fully quantitative discipline.

Organisation, structures, and skills

Evolution of research computing technologies and services

As imaging, informatics, and modelling become increasingly crucial in the biosciences, its

research computing (a discussion of the definition of research computing in this context is
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provided in S1 Supporting Information) tools will also evolve. All research continuously gen-

erates new and innovative techniques and technologies that disrupt existing approaches. Many

technology disruptors follow similar evolutionary paths over time, and there are models to

track and predict this. Fig 1 shows the well-established model put forward by Abernathy and

Utterback [42]. For any new technology, early efforts concentrate on establishing core capabili-

ties and features. As the technology matures, the feature set becomes both canonical and com-

moditised. Thus, development and operations effort shifts more towards usability and

efficiency.

Although improvements in usability and efficiency in the ‘transitional’ and ‘specific’ phases

do not necessarily push back the frontiers of research, such developments can massively

‘democratise’ a new approach, as is currently happening in cryo-EM (as demonstrated by the

increase in depositions to the EMDB discussed previously). Improvements in service delivery

often significantly reduce costs, reducing barriers to adoption and increasing uptake. When a

research computing tool set becomes entirely mainstream, increased standardisation for data

sharing and workflows further improve access and efficiency, enabling data to be combined in

new ways and providing novel insights and understanding.

Bioscience computation is following these trends. In the ‘fluid phase’, when a new algo-

rithm is first conceived (for example, for image processing, biomolecular modelling, or infor-

matics analysis) it will most likely be implemented by an individual research team. The focus is

on developing the core functionality of the software so that new biological questions can be

addressed. It is only when the computational tool has been validated that usability and sustain-

ability improve and the tool enters the ‘transitional phase’. A computational technology in the

‘specific phase’ is fully mature, often with so many users that the cost of providing it needs to

be considered at an institutional level. Examples include standard scientific software such as

Matlab and core infrastructure hardware (e.g., GPUs and computing blades).

Other aspects of research computing follow this evolutionary path too, with interesting con-

sequences. Research ‘grand challenges’, such as the development of the bespoke Anton chip

for biomolecular simulation, are located at the far left of Fig 1, as these involve highly innova-

tive (and often expensive) computational tools accessible to only a few researchers at their con-

ception. New techniques in the ‘fluid phase’ will most likely be funded by short-term academic

research grants, whereas technologies in the ‘specific phase’ often receive international,

national, or institutional support, mainly through professional information technology (IT)

services. This has a profound influence on the working cultures of computing experts

Fig 1. Evolution of research computing technologies, based on the Abernathy-Utterback curve. Innovations in the
fluid phase undergo churn, eventually yielding a dominant design. In the transitional phase, delivery processes become
more important than feature sets. Then, in the specific phase, the innovation is well established, and effort is mainly
devoted to efficient operation.

https://doi.org/10.1371/journal.pcbi.1006958.g001
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supporting technology at each of the various phases, as academic research and IT services

have different priorities and career structures (see S1 Supporting Information for a compar-

ison between research computing and enterprise IT). Most attrition occurs in the ‘transi-

tional phase’. Research groups rarely possess the expertise to transform an academic code

into widely usable software. Therefore, new types of research computing experts are needed

to meet the growing demand for good scientific software, and such roles are becoming part

of the basic fabric of a research-intensive institution [43]. Software developers and systems

administrators responsible for research computing hardware are necessarily clustered

around the intersection of the two curves in Fig 1. The dynamic nature of the evolution of

technology necessitates a fully integrated approach between innovative research teams

working on the left of the curve (‘fluid phase’) and operational IT teams working on the

right (‘specific phase’). This is particularly vital for the biosciences because research com-

puting needs to evolve rapidly to keep up with experimental data production. For example,

academic bioscience software can be brought to a broader user base by exploiting the mod-

ern software development processes of enterprise IT. Conversely, academic research often

stretches IT capabilities and drives innovation to meet those challenges. Close collaboration

with researchers will enable professional IT services to anticipate future problems based on

the experience of the early adopters if both sides are willing to learn and adapt. The relation-

ship needs to be bidirectional so that future service provision is informed and relevant, with

biological researchers and IT professionals working as partners to reach new and innovative

solutions together. Only this collaborative approach is capable of providing bioscientists

with the computing tools and skills that they increasingly need with the urgency required to

keep pace with experimental advances.

Building computational skills for the biosciences

Software engineers understand the importance of making software easy to use, thus reducing

training requirements. However, much of the biosciences software, such as NAMD for MD

simulations [44], is extremely sophisticated, so expert knowledge is needed to exploit its full

potential. As the quantity and complexity of bioscience data grow, researchers also need to

write software of their own. Consequently, python and other high-level programming lan-

guages have grown in popularity, and many software packages such as Visual Molecular

Dynamics (VMD) [45] provide an internal scripting language for advanced users. Although

PhD students and postdocs rely on software development, principal investigators (PIs) may

not always be so aware of its intrinsic value because research computing tools are evolving so

fast it can be challenging for academic teaching staff (and managers of industrial research

teams) to keep up with developments. The consequence of this is that grant applications to

improve software usability are often outperformed by standard proposals that address a spe-

cific biological research question.

We propose that the research community will require some or all of the following three ele-

ments of computational knowledge (ranked by sophistication):

1. An understanding of hardware so that systems and software can be configured most effec-

tively and data can be transferred across the network efficiently and securely

2. Practical skills in programming or use of high-level utilities such as databases so that raw

data can be processed before importing into specialist research software

3. An understanding of the software applications used by their research community in general

and with specialist knowledge of the software required for their current research project
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Currently, much application-specific software training is delivered by the research commu-

nities themselves. Many of the world-class computational bioscience facilities, such as EMBL–

EBI, are also centres of excellence for training [2], which brings biological researchers into

continual contact with software developers and is key to providing usable and relevant compu-

tational tools. Much of this activity is funded by research councils that understand that sup-

porting communities to develop good software is critical to their science. Less experienced

researchers need training from world experts to use these packages robustly, which implies an

understanding of the underlying science, an awareness of the potential pitfalls, and the knowl-

edge of the limitations and significant sources of error. However, the growing demand for soft-

ware applications training now requires this to be provided by local institutions.

Researchers who are developing code need additional software development skills, such as

understanding how to use code repositories and how to design robust test suites. It is currently

unlikely that a biosciences researcher will acquire these skills during an undergraduate degree.

Consequently, research students and postdocs need to find training at their institution, attend

an external course, or draw upon the experience of their local research team. In the United

Kingdom, the Software Sustainability Institute (SSI) boasts that it has ‘trained over 5,000 new

learners in the basics of software engineering’ [46], which potentially has a massive scientific

impact given the high proportion of researchers who require software for their research. As

partners of the US Software Carpentry Foundation, the SSI join with a global network of insti-

tutions with a staggering diversity of scientific interests, including a strong representation

from data-intensive bioscience disciplines [47]. Ensuring that research-intensive organisations

provide up-to-date research computing training is essential.

Bioscience computation in the cloud

The cloud has the potential to revolutionise research in the biosciences. The porting of biosci-

ences software onto GPUs combined with secure, on-demand access to such hardware in the

cloud now provides the opportunity to embed biomolecular modelling and data analytics in

far more areas of discovery. The need for good biosciences software, and for people with the

skills to write and use it, is therefore set to explode. Although in the future cloud providers

may well see commercial value in installing and testing software with a sufficiently large user

base, currently cloud computing devolves the responsibility for installing and testing software

and choosing the associated hardware platform from centralised facilities to the user. Bioscien-

tists will need additional computational expertise, particularly in DevOps/ResOps (see S1 Sup-

porting Information) and support to benefit. Current financial models for cloud-based

computing also charge for data ingress/egress, which may slow uptake of applications such as

cryo-EM image processing, which is very data intensive. Added to this, the scale of data

involved is leading to the physical shipping of hard drives as the only currently practical way of

transferring data at this scale [48]. Upgraded network infrastructure and new cost models

would therefore be required to remove these roadblocks.

A surge in demand for better simulations and data analytics due to uptake in the cloud will

change the HPC landscape needed to support research and will push development towards

ever-more-sophisticated models, beyond the limit of standard cloud computing. The most

challenging biosimulations, for example, require tightly coupled, massively parallel resources,

relatively few of which are currently available in the public cloud. Microsoft Azure now offers

the ability to run large-scale parallel applications in the cloud as part of their cloud for research

e-infrastructure [49]. As the need for computation in the biosciences grows, these additional

resources will allow mature software applications to be run in the cloud, freeing up time on

national academic HPC for ‘capability’ (single large simulation) rather than ‘capacity’ (many
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small simulations) research. Research pioneers will continue to demand bespoke hardware

facilities until computations sufficiently sophisticated to answer their research questions run

efficiently without them. The complexity of biology implies that this will not occur in the fore-

seeable future. Therefore, universities, national supercomputing facilities, and the commercial

cloud providers will all be required to expand the boundaries of computation and to develop

the tools that will ultimately become standard as they become more mainstream.

An even more fundamental change in bioscience computation may arise from new ‘cloud

native’ working practices (e.g., the ResOps approach from the EBI [50]). Applications within

the cloud need to work independently of the hardware platform, have a higher tolerance for

failure, and be able to respond to changes in price. Software ‘containers’ allow for this, provid-

ing everything needed to run the code. Containers thus facilitate sharing and increased repro-

ducibility. As these technologies evolve, the community will need to continue to engage with

these new computational tools.

Discussion

Embedding computational thinking within bioscience culture

In molecular biology, materials science, and increasingly, social sciences and humanities, com-

putation has become an essential part of the experimental pipeline. The integrity of results

relies on both the software and the way the user employs it. Researchers therefore need a deep

understanding of the computational aspects of their experiments and the science underlying

these tools. Concerns about researchers’ use of software and our readiness to believe the

answers it provides are not new in the biosciences [51] and have been reawakened in the light

of increasing levels of automation in macromolecular crystallography, which encourages reli-

ance on ‘magical black boxes’ [52]. The discussion will intensify as machine learning algo-

rithms enter scientific workflows. We must keep questioning how our computational tools are

solving a particular problem for us rather than focusing only on the broader research agenda.

Scientifically correct and user-friendly community software is essential to the productivity

of researchers. However, software developers face a completely different design challenge to

engineers building software platforms for automation of tasks such as payroll or goods deliv-

ery, in which complexity must be hidden from users. In research software, the package should

communicate the full range of options in an intuitive manner, inform users of the choice of

defaults, and provide easy access to detailed explanations of input variables, with caveats,

through links to online manuals, tutorials, and research papers. Wherever possible, informa-

tive error checking and validation procedures should be built into the workflow. These must

give understandable and practical advice or risk being ignored by users. Creating software that

engages users appropriately is an enormous challenge, but the benefits can be dramatic. This is

amply shown in the rapid increase in cryo-EM structure depositions, which have been enabled

in part by rapid improvements in software functionality and ease of use [53][54][55]. The

architectural equivalent of software platforms for organisations is a transport hub, such as a

railway station or an airport, where providing the most efficient route to the final destination

is critical. For research software, the design principles should mimic those of professional

library services, in which engagement, exploration, and education are paramount.

The open-data movement improves scientific reproducibility, enables the efficient use and

reuse of valuable research data, and shares detailed experimental protocols. The advent of elec-

tronic laboratory notebooks combined with software containers and cloud services could mas-

sively enable large-scale sharing of bioscience computational tools. Every published computational

experiment should be archived (e.g., using a software container) into an executable workflow,

which could then be rerun locally by a separate team, who would have the freedom to reanalyse
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the data using a different approach. This external validation will improve scientific rigor, as com-

monmistakes will be identified, corrected, and then avoided in the future. Moreover, by being

interactive, these archives would be engaging and educational and enable large-scale collaborative

bioscience projects across multiple international sites.

A subtle and informed discussion is necessary on what ‘open data’ means. Providing public

access to datasets for a decade following the completion of a research project is challenging.

Many experimental and computational projects now create volumes of data vastly greater than

what was envisaged when the 10-year standard was created, and such datasets may be beyond

the limit that is practical to curate. Examples are particle physics experiments, cryo-EM data-

sets, biomolecular simulations, X-ray free-electron lasers (XFELS) (see S1 Supporting Informa-

tion), and supercomputer simulations for cosmology. However, it is also clear that

preservation of raw datasets can enable invaluable new insights, such as the extraction of

dynamic information from cryo-EM [56]. The effectiveness of open-data policies in practice

will depend critically on curation because reuse is impossible if the data cannot be found, and

protocols will be unreproducible unless they are clearly explained. Data can be much easier to

preserve than executable software, which can have hidden dependencies in both software and

hardware that are not recorded and may be difficult to recreate. This is a problem that research

computing and curation experts need to resolve.

Predictions for the future

Given the above, we make the following predictions on the future of research computing in

the biosciences (see Table 1).

Surveying the current landscape and anticipated future directions leads us to the following

three requirements to secure the future of research computing in the biosciences:

1. Investment in the e-infrastructure environment: The analysis, curation, and sharing of data

will require robust and sustained investment in networking, data storage, HPC, software,

support, and people at the local, national, and international levels.

2. Importance of collaborative research communities: Communities are vital. They ensure the

interoperability of datasets and software. They define ‘grand challenge’ problems that

require collaboration. They deliver bespoke training and share expertise. Communities

advocate and influence, securing the investment necessary.

3. Computation is an integral part of the scientific method: The understanding gained from

experimental biology arises from computation, either through analysis, modelling, or both.

Computational thinking needs to be embedded within the culture of biology, creating a

research computing landscape that is resilient enough to accommodate a continual flow of

disruptive methodology and analysis.

Conclusions

The integration of large-scale computing into the scientific method within many more areas of

the biosciences requires investment into a broad ecosystem of research computing. We have

focused on the exciting biological discoveries that can be made through the widespread uptake

of computation to illustrate that undertaking this challenge is necessary and timely and will

ultimately transform the biological sciences. Researchers, academics, institutions, learned soci-

eties, funders, and enterprise IT professionals need to discuss the scientific and organisational

issues to ensure that there are sufficient resources and flexibility to accommodate this influx of
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novel technology and the people who support it. The closer integration between research com-

puting and enterprise IT needed to deliver computational tools to an increasingly varied com-

munity of researchers requires that institutions recognise the contribution that supportive IT

service provision makes to research. The success of any research computing initiative in the

biosciences will be judged by the novelty and depth of the biological questions it answers;

therefore, performance metrics for people, projects, and processes should be designed to sup-

port research.

More broadly, growth in cheap, online public access to personalised biological datasets,

such as genome sequencing [60], microbiome analysis [61], and biometrics collected from

wearable sensor technologies (e.g., fitness trackers and social media apps to record diet), along

with the classification of personalised data characterised as the ‘quantified self’ [62], will fur-

ther fuel the omics revolution. These innovations will define the research questions asked by

biologists, not only in response to public demand but also from legislators trying to regulate

these new industries. In July 2014, the European Commission led a consultation on medical

devices and mobile health (mHealth) apps and proposed a code of conduct [63]. In parallel,

manufacturers are in the process of marketing smart technology–enabled medical devices to

allow healthcare providers access to patient data, including remote monitoring and cloud-

Table 1. Predictions for the future of biocomputation.

Predictions Impact on biosciences

Massive growth in bioscience research
computing

More data; more computing power; more algorithms; more
applications; and more insight and knowledge generated. Progress can
only accelerate research and improve reproducibility and consistency.

Commoditisation of research
computing

As tools go from being fluid to translational to specific, they will
become commoditised. Standard hardware models (such as GPUs) will
become more pervasive, and software reuse will happen more through
containers and cloud applications.

Data and process standardisation As data, workflow, and processing standards mature, they will yield
platforms that give the best computing power and value for money for
well-established research tasks (as has happened for genome
sequencing, for example).

Specialisation of research computing in
bioscience research

Specialisation in the biosciences, such as innovative microscopy or
XFELs, will continue to accelerate. Knowledge of the underpinning
computational tools will be essential for researchers in these fields.

Data analysis at speed The increase in data production in the biosciences means that the
ability to analyse and compress data as they are generated will become
ever more important.

Multiscale visualisation and modelling
tools

The multiresolution nature of bioimaging data requires multiscale
modelling and visualisation tools to understand how structure connects
to biological function.

Rise of commercial comp biotech
services

Commercial services will step in to provide bioscience computation in a
similar manner to the emergence of gene-sequencing services.

New ethical issues emerge We will become increasingly coupled to computation, through
wearable sensor technologies, virtual reality, and implantable devices.
The long-term consequences for society will require a broad
interdisciplinary base to assess, e.g., neuroscience, genomics,
psychology, physiology, and computer science.

Growth in visualisation and ‘citizen
science’

As bioscience software matures, focus will shift from functionality to
visualisation tools for best exploring the data [39], which will include
virtual reality [57]. Such rich computational experiences will engage a
wide public audience with bioscience research, as is already happening
for bioimaging [58][59].

Abbreviations: GPU, graphical processing unit; XFEL, X-ray free-electron laser.

https://doi.org/10.1371/journal.pcbi.1006958.t001
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based data-sharing systems. Although the outcomes are too revolutionary to be foreseen, with-

out doubt, computational tools will be vital to the analysis and interpretation of individuals’

data. As the world becomes ever more technologically empowered, we must remember to

engage mindfully with computation and the answers that it produces to make certain that we

are informed more often than we are misled.

Understanding the molecular choreography that allows cells to work, how this is affected by

a disease, and our relationships with other living organisms will influence societal attitudes to

health and lifestyle, medicine, and our impact on the environment. The imaging revolution,

combined with informatics, physical modelling, and visualisation, will lead to profound new

insights. The aim of ‘cellular cartography’ is to chart out the whole atlas of the cell, in which all

structural and omics information is unified within a single multidimensional, multiscale

computational framework [57]. Realising this ambition will place computation at the very cen-

tre of biological research and will, therefore, drive a massive uptake of computational tools and

skills by bioscientists.

Supporting information

S1 Supporting Information. This contains two case studies that quantify the future

computational needs (e.g., networking, compute, and storage) of key areas of structural

biology. The first, ‘Quantitative estimates for the computational requirements of single particle

cryo-EM studies’, focuses on imaging, and the second, ‘Data storage sizes for an atomistic map

of C. elegans’, focuses on computer modelling and simulation, including a discussion of coarse

graining. The final appendix, ‘Research Computing, Enterprise IT and bioscience computation

support’, compares the approaches of IT services and research computing and describes how

they can work together to support bioscientists.

(PDF)
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