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Abstract

Background and Objective The extrapolation of estimated hazard functions can be an important part of cost-effectiveness 

analyses. Given limited follow-up time in the sample data, it may be expected that the uncertainty in estimates of hazards 

increases the further into the future they are extrapolated. The objective of this study was to illustrate how the choice of para-

metric survival model impacts on estimates of uncertainty about extrapolated hazard functions and lifetime mean survival.

Methods We examined seven commonly used parametric survival models and described analytical expressions and approxi-

mation methods (delta and multivariate normal) for estimating uncertainty. We illustrate the multivariate normal method 

using case studies based on four representative hypothetical datasets reflecting hazard functions commonly encountered 

in clinical practice (constant, increasing, decreasing, or unimodal), along with a hypothetical cost-effectiveness analysis.

Results Depending on the survival model chosen, the uncertainty in extrapolated hazard functions could be constant, 

increasing or decreasing over time for the case studies. Estimates of uncertainty in mean survival showed a large variation 

(up to sevenfold) for each case study. The magnitude of uncertainty in estimates of cost effectiveness, as measured using the 

incremental cost per quality-adjusted life-year gained, varied threefold across plausible models. Differences in estimates of 

uncertainty were observed even when models provided near-identical point estimates.

Conclusions Survival model choice can have a significant impact on estimates of uncertainty of extrapolated hazard functions, 

mean survival and cost effectiveness, even when point estimates were similar. We provide good practice recommendations 

for analysts and decision makers, emphasizing the importance of considering the plausibility of estimates of uncertainty in 

the extrapolated period as a complementary part of the model selection process.

Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s4027 3-019-00853 -x) contains 

supplementary material, which is available to authorized users.
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1 Introduction

Estimates of lifetime mean survival are often a key compo-

nent of cost-effectiveness analyses, as they typically quantify 

the benefits of new treatments. Cost-effectiveness analyses 

play an important role in reimbursement decisions [1]. 

Clinical trials typically have a shorter follow-up period then 

the time horizon required in a cost-effectiveness analysis. 

Hence, extrapolation of hazard functions is often required 

to estimate lifetime mean survival. This may be achieved 

by fitting commonly applied parametric survival models (as 

described in Sect. 2.1) to sample data. The National Insti-

tute for Health and Care Excellence Decision Support Unit 

Technical Support Document 14 describes different para-

metric survival models and suggestions for how to choose 

between them, highlighting the importance of considering 

uncertainty [2].

Extrapolation introduces additional uncertainty that does 

not occur for within-sample prediction. This is due to the 

absence of data to calibrate model estimates or validate 

their plausibility. For example, an exponential distribu-

tion may provide an adequate fit to the observed data. By 

definition, the suitability of the exponential model for the 

extrapolated period cannot be assessed from the observed 
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Key Points for Decision Makers 

Guidance is available on choosing between parametric 

survival models used in a cost-effectiveness analysis. 

However, this does not consider the impact of model 

choice on uncertainty in extrapolated hazard functions 

and lifetime mean survival. Intuitively, we might expect 

that this uncertainty increases the further into the future 

we extrapolate.

We illustrate, using seven commonly applied paramet-

ric survival models and four hypothetical datasets, that 

the choice of survival model can have a marked impact 

on resulting estimates of uncertainty about the hazard 

function, lifetime mean survival and cost effectiveness. 

Estimates of uncertainty about extrapolated hazard func-

tions could increase, decrease or be constant depending 

on the model used.

We provide recommendations on how the clinical plausi-

bility of estimates of uncertainty about hazard functions 

and estimates of cost effectiveness should be used as part 

of the model selection process.

methods (delta and multivariate normal approach) for when 

exact analytical solutions are not tractable. We then create 

four representative hypothetical datasets, reflecting hazard 

functions commonly encountered in clinical practice for use 

in case studies, to illustrate the impact of model choice on 

estimates of uncertainty. We used one of these datasets to 

perform a hypothetical cost-effectiveness analysis. Section 3 

presents the results of the case studies and the cost-effective-

ness analysis. In Sect. 4, we provide recommendations on 

how to use the impact of survival model choice on estimates 

of uncertainty as part of the model selection process. We 

focus on extrapolating a single arm of a trial.

2  Methods

2.1  Commonly Applied Parametric Survival Models

For this study, we considered seven commonly applied par-

ametric survival models: exponential, Weibull, Gompertz, 

gamma, log-logistic, log-normal and generalised gamma dis-

tributions. With the exception of the Gompertz distribution, 

these models all belong to the generalised F family of distri-

butions [5, 6]. We originally also considered the generalised 

F model, but do not include it here, as the model estimation 

procedure did not always converge under the default settings 

[see Appendix 2 of the Electronic Supplementary Material 

(ESM) for more details]. The different survival models make 

different assumptions about their underlying hazard func-

tions over time: an exponential distribution assumes a con-

stant hazard; Weibull, Gompertz and gamma distributions 

allow for monotonically increasing or decreasing hazards 

over time; log-normal and log-logistic distributions allow 

the hazard function to be unimodal (also monotonically 

decreasing for the log-logistic) [6]. The generalised gamma 

distribution is the most flexible of the commonly applied 

models. It can model hazards that are constant, monotonic 

(increasing or decreasing), bathtub or arc shaped [7].

Table 1 describes the characteristics of seven commonly 

used survival models, including the survival function S(t) , 

hazard function h(t) and cumulative hazard function H(t) . 

These three functions are all related via the equation:

We focus on the hazard function because it provides 

insights into the natural history of a disease along with any 

time-varying responses to treatment [8]. We also consider 

the survival function because this is a clinically important 

statistic.

(1)H(t) = ∫
t

0

h(u)du = − ln (S(t)).

data. External evidence, such as clinical opinion, may be 

used to support the plausibility of extrapolated estimates. 

However, even if the exponential distribution is deemed suit-

able, there remains uncertainty that the model parameter 

estimated from the observed data will be the same in the 

future. Hence, there is extrapolation uncertainty in both the 

suitability of the chosen model and the suitability of the 

estimated parameters. As such, there is often an expecta-

tion amongst analysts and decision makers that uncertainty 

about estimates of hazard functions (as quantified by their 

variance) should increase over the extrapolation period. The 

effect of this extrapolation uncertainty is recognised in the 

time-series literature, with extrapolations being associated 

with greater uncertainty than within-sample estimates [3, 

4]. To our knowledge, there has been little consideration of 

whether the use of commonly applied parametric survival 

models adequately reflects extrapolation uncertainty.

Our study had two aims. The first was to illustrate the 

impact of model choice on estimates of uncertainty about 

extrapolated hazard functions, estimates of lifetime mean 

survival and estimates of cost effectiveness. The second 

aim was to raise awareness of this impact when producing 

and critiquing survival models. We begin Sect. 2 by show-

ing how to derive estimates of uncertainty of extrapolated 

hazard functions and the estimated lifetime mean sur-

vival using both analytical expressions and approximation 
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2.2  Estimating Uncertainty About Hazard 
and Survival Estimates

In this section, we describe how to quantify the uncertainty 

in the hazard and survival functions and uncertainty in esti-

mates such as mean survival time. For illustration, we take 

a frequentist perspective and estimate parameters using 

maximum likelihood. Ideally, exact analytic expressions 

of variance would be available for the estimates of interest 

(hazard and survival functions, and mean survival time). 

However, as these are estimates of non-linear functions of 

model parameters, approximation methods are required.

Exact analytical expressions are available for the exponen-

tial model. The maximum likelihood estimate of the model 

parameter � is:

(2)�̂ =

∑

�
i

∑

t
i

=

N
e

∑

t
i

,

where the subscript i denotes an individual, �
i
= 1 for an 

event and zero otherwise, t
i
 represents the observed times 

and N
e
 represents the number of events. As described in 

Collet [6], the variance of the estimated hazard function is 

the variance of the estimated model parameter �̂, given by:

From Eq. 3, the variance of the hazard function is constant 

with respect to time, which means that the uncertainty does 

not ‘fan out’ over time. Thus, for the exponential model, 

uncertainty about the hazard function depends only upon the 

sample data that are used to estimate � and does not depend 

on whether we are considering the observed or unobserved 

period.

Estimates of uncertainty about the exponential survival 

function can be derived from the hazard function by using 

(3)Var

�

ĥ(t)

�

= Var

�

�̂

�

=

∑

�
i

�
∑

t
i

�2
=

�

�̂

�2

N
e

.

Table 1  Overview of seven commonly used survival models and their characteristics (t ≥ 0)

� is the cumulative standard normal distribution; � (t; �) = ∫ t

0

x
�−1e−xdx

� (�)
 , and e denotes the exponential function. Allowing 𝜃 < 0 for the Gompertz 

implies that the survival function will never equal 0

Model (parameters) Survival function S(t) Cumulative hazard 

function H(t)

Hazard function h(t) Possible shapes 

of the hazard 

function

Exponential 𝜆 > 0 e(−�t) �t � Constant

Weibull 𝜆 > 0, 𝛾 > 0 e(−�t
� ) �t

� ��t
�−1 Constant

Increasing 

monotonically

Decreasing 

monotonically

Lognormal � ∈ (−∞,∞), 

𝜎 > 0
1 −�

(

log t−�

�

)

− ln
(

1 −�

(

log (t)−�

�

))

1

�

√

2�
t
−1e

�

−
(log t−�)2

2�2

�

∕S(t) Increasing then 

decreasing

Log-logistic𝛼 > 0, 𝛽 > 0 1

1+(�t)� − ln

(

1

1+(�t)
�

)

��(�t)
�−1

1+(�t)�
Decreasing 

monotonically

Increasing then 

decreasing

Gamma 𝜆 > 0, 𝛽 > 0 1 − �
[

�−2e−� t; �−2
]

− ln (S(t)) �� t
�−1

e
−�t

� (�)S(t)

Constant

Increasing 

monotonically

Decreasing 

monotonically

Generalised gamma 

𝜆 ∈ (−∞,∞), 𝛽 > 0, 𝜎 > 0
⎧⎪⎨⎪⎩

1 − 𝛤

�
𝜆−2

�
e−𝛽 t

� 𝜆

𝜎 ; 𝜆−2

�
if 𝜆 > 0

𝛤

�
𝜆−2

�
e−𝛽 t

� 𝜆

𝜎 ; 𝜆−2

�
if 𝜆 < 0

− ln (S(t)) |�|

�t� (�−2)
��

−2
e
−�∕S(t),

where � = �−2
(

e
−�

t

)�∕�

Constant

Increasing 

monotonically

Decreasing 

monotonically

Bathtub

Arc-shaped

Gompertz 

𝜆 > 0, 𝜃 ∈ (−∞,∞)
e

{

−

�

�

(

e
�t
− 1

)

}

�

�

(

e
�t
− 1

)

�e
�t Constant

Increasing 

monotonically

Decreasing 

monotonically
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the relationship in Eq. 1. For the exponential model, the 

estimate of mean survival �̂  is given by:

A confidence interval for the estimated mean survival 

may be derived via the delta method:

Exact analytical expressions of variance (for hazard 

and survival functions) are not available for the other six 

commonly used parametric survival models. Two different 

approximation methods are commonly used to estimate vari-

ances of a function: the delta method [9] and the multivariate 

normal method [10].

The delta method estimates the variance of a function 

based on a linear approximation of the function [6]. The 

delta method may be used whenever the derivative of a func-

tion can be calculated. This includes all of the commonly 

used parametric survival functions in Table 1. To illustrate 

its use, we use the delta method to estimate the variance of 

the hazard function for both the exponential and Weibull 

models in Appendix 1 of the ESM. For the exponential 

model, applying the delta method gives the same equation 

for variance in the hazard as Eq. 3.

The multivariate normal method assumes that the esti-

mated model parameters �̂  follow a multivariate normal 

distribution: N
(

�̂, Var

[

�̂

])

 , where Var

(

�̂

)

 is estimated dur-

ing model fitting. For example, �̂ =

(

�̂, �̂
)

 for the Weibull 

model, and Var

(

�̂

)

 is the estimated variance-covariance 

matrix. Parameter samples are drawn from the normal dis-

tribution and used to generate sample estimates of both the 

hazard and survival functions using the formulas in Table 1. 

Variances and confidence intervals are then derived from 

these sample estimates. The multivariate normal method has 

been shown to provide similar estimates of uncertainty to 

the delta method [10]. Its main advantage over the delta 

method is that it is easier to implement as it avoids calculat-

ing derivatives.

The multivariate normal approximation is a Monte Carlo 

simulation-based method. If B Monte Carlo parameter sam-

ples are drawn from N
(

�̂, Var

[

�̂

])

 , with a single sample 

denoted as �
b
 ( b = 1,… , B ), then the variance of a function 

of the parameters, Var(g(�)) , is approximated as:

(4)�̂ =

1

�̂
=

∑

t
i

N
e

.

(5)
Var

(

�̂
)

≈
1

(

�̂
)4

Var

(

�̂
)

=
1

(

�̂
)2

N
e

.

(6)Var(g(�)) ≈
1

B

B
∑

b=1

[

g
(

�b

)

− g
(

�̂

)]2

.

As this is a simulation-based method, it is not possible 

to derive analytic expressions for specific models, as in the 

case of the delta method for the Weibull in Appendix 1 of 

the ESM. Both the delta method and the multivariate normal 

approximation are used in common statistical software; the 

former in STATA and the latter in the flexsurv package in 

R [11, 12].

2.3  Case Study: Datasets

We created four representative datasets to illustrate the 

impact of model choice on uncertainty in the estimated 

hazard and survival functions and mean survival. We gen-

erated all four datasets to have a sample size of 400, and 

mean survival of 0.9 years. We generated a dataset with a 

maximum follow-up of 1 year; any individuals who had not 

experienced an event by then were censored at 1 year. We 

applied no other censoring when creating the datasets. Each 

dataset may be viewed as describing outcomes for a single 

arm of a clinical trial, and was designed to represent differ-

ent common hazard patterns:

1. A constant hazard, based on 400 Monte Carlo samples 

from an exponential distribution.

2. A monotonically increasing hazard, based on 200 Monte 

Carlo samples from a Weibull distribution and 200 

Monte Carlo samples from a gamma distribution.

3. A monotonically decreasing hazard, based on 200 Monte 

Carlo samples from a Weibull distribution and 200 

Monte Carlo samples from a gamma distribution.

4. A unimodal hazard, based on 200 Monte Carlo samples 

from a log-logistic distribution and 200 Monte Carlo 

samples from a log-normal distribution.

For datasets 2–4, we used a mixture of distributions to 

avoid the dataset’s characteristics being driven by a single 

model.

Our intention was not to perform a simulation study. Sim-

ulation studies are useful tools for quantitatively evaluating 

the performance of statistical methods under certain sce-

narios [13]. In contrast, the aim of this study was to explore 

the qualitative behaviour of interval estimates arising from 

different survival models, and how these depend on model 

choice.

2.4  Case Study: Model Fitting and Analysis

We analysed the datasets assuming no knowledge of the 

distributions from which they were generated. We followed 

standard modelling practice by producing visual summaries 

of the data as part of an exploratory data analysis [14, 15]. 

We used two approaches to visualise the empirical hazard 

function: (1) smooth estimates of the empirical hazard over 
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time based on kernel density smoothing, and (2) unsmoothed 

estimates using piecewise time periods. We used the func-

tions muhaz and pehaz from the muhaz package [16] in R 

to generate the smoothed and unsmoothed versions, respec-

tively (the number of piecewise time periods was 25 based 

on default options). The advantage of examining both of 

these empirical estimates of the hazard function is that the 

smoothed estimates are expected to capture the underlying 

shape of the hazard function represented by the sample data, 

whilst the unsmoothed versions highlight the variability in 

the data.

We fitted each of the models in Table 1 to each of the four 

datasets using the flexsurv package in R [12]. We then used 

each of the seven models to extrapolate hazard and survival 

functions for a lifetime. We used the multivariate normal 

method (the default approach in the flexsurv package) to 

generate 95% confidence intervals for the estimated hazard 

and survival functions. We used visual goodness of fit to 

identify a candidate set of plausible extrapolation models. 

We calculated estimates of mean survival and the uncer-

tainty in these estimates for the candidate models, as these 

are an important summary measure in cost-effectiveness 

analyses.

We also performed a hypothetical cost-effectiveness anal-

ysis. This used the increasing hazards dataset (to reflect the 

impact of ageing), and a two-state “well”, “dead” Markov 

model, with utility values of 1 and 0, respectively. We used 

hazard estimates from the candidate models to represent out-

comes for a control treatment, assuming it would cost £100 

every 2 weeks. We also assumed the intervention treatment 

would have a hazard ratio of 0.75 (applied directly to the 

hazard estimates) and cost an additional £100 every 2 weeks. 

We used a lifetime horizon of 10 years, with weekly cycles. 

The cost-effectiveness measure used was the incremental 

cost per quality-adjusted life-years gained. The probabilistic 

sensitivity analysis used 1000 samples.

3  Results

Figure 1 provides the characteristics of the four representa-

tive datasets, showing the Kaplan–Meier survival function 

for each dataset, and the smooth and piecewise estimators 

of the hazard function. Figure 1 also includes 95% confi-

dence intervals: for the survival functions these are based on 

Greenwood’s formula [6] and for the hazard estimates these 

are obtained via bootstrapping, as analytical formulae are 

not available. Figure 1 demonstrates that the characteristics 

of the datasets are as expected.

Figure 2 provides the seven model-based estimates of 

the hazard function with 95% confidence intervals. As the 

hazard function is bounded below by zero, confidence inter-

vals cannot fan out indefinitely. Instead, the logarithm of the 

hazard (which is not bounded) is displayed. Table 2 provides 

estimates for selected time periods. The exponential distri-

bution assumes a constant hazard at all time-points. Hence, 

it only provides a good visual fit to the flat hazard dataset 

(see Fig. 2, first column). We also observed a poor visual fit 

for the Gompertz model for both the unimodal and decreas-

ing hazard datasets. For the decreasing hazard dataset, we 

also observed a poor fit for the log-normal and log-logistic 

models.

Of the remaining candidate models, the width of confi-

dence intervals always decreased during the extrapolated 

phase for the log-logistic model. For all other models, there 

was an increase in the interval width, although this was 

generally slight for both the log-normal and the gamma 

distributions. For the flat hazard dataset, all seven models 

provide visually good fits to the observed data. The expo-

nential, Weibull and Gamma models all extrapolate a (near) 

constant hazard, whilst the remaining models extrapolate a 

decreasing hazard. If external evidence or clinical opinion 

was available to inform the likely long-term behaviour of 

the hazard (constant or decreasing), this could be used to 

reduce the set of candidate models to at most three or four 

models. The choice between the remaining models may then 

be informed by the behaviour of the extrapolated hazard. For 

example, of the constant hazard extrapolations, estimates of 

uncertainty from the Weibull model are the closest to reflect-

ing increasing uncertainty over time. If it is not possible to 

choose between constant and decreasing hazard models, then 

the Gompertz model may be preferred as the only model for 

which the uncertainty in extrapolations includes the possibil-

ity of both constant and decreasing hazards. Similar remarks 

hold for the other datasets. For example, given the variety 

in the plausible long-term extrapolations arising from the 

increasing hazards dataset, all of the models appear to under-

estimate extrapolation uncertainty, with the potential excep-

tion of the generalised gamma.

Figure 3 provides graphs of the estimated survival func-

tions over time and 95% confidence intervals on the logit 

scale to make them unbounded. It is easier to interpret the 

long-term behaviour of the models from the hazard plots 

(for example, from the survival plots, it is not clear which 

models are extrapolating a constant hazard for the flat hazard 

dataset). The visual lack of fit of the models is also gener-

ally easier to interpret from the hazard plots. Note that when 

using the Gompertz distribution with a decreasing hazard, 

the extrapolated survival function will not reach zero (that is, 

it estimates that a proportion of individuals will never die).

Figure 4 displays estimates of lifetime mean survival for 

the candidate models. The results demonstrate that model 

choice influences not only the point estimates of mean sur-

vival but also the uncertainty about these estimates. For 

the flat hazard dataset, the estimated standard error in the 

mean survival arising from the Gompertz model (0.36) is 
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Fig. 1  Visualisation of the 

Kaplan–Meier survival function 

estimate (with 95% confi-

dence interval) and empirical 

hazard estimates in the observed 

12-month period
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almost seven times larger than the estimate arising from the 

exponential model (0.05), and about three times larger than 

the estimates from the log-logistic and log-normal models 

(0.12 and 0.13, respectively), which provide similar point 

estimates of mean survival. For the increasing hazard data-

set, this difference in the estimate of uncertainty is reversed, 

with estimated standard errors from the log-logistic and log-

normal models (both 0.04) being almost twice those from 

the Gompertz model (0.02).

Appendix 2 of the ESM provides the summary cost-effec-

tiveness results. There was substantial variation in the esti-

mates of the mean incremental cost-effectiveness ratios from 

the six candidate models (from £18,500 to £29,600, both per 

quality-adjusted life-year) and their associated uncertainty, 

with the widths of the confidence intervals ranging over 

threefold, from £4400 to £14,500. Even when models pro-

vided near-identical point estimates (£29,500 and £29,600 

for the Weibull and generalised gamma, respectively), there 

remained large variation in the width of confidence intervals 

(£8400 and £14,500 respectively). For any given model, the 

expected value of information, which quantifies how much 

it would be worth spending on further research to reduce 

uncertainty in the cost-effectiveness results, was very small 

for a number of willingness-to-pay values. Appendix 2 of the 

ESM displays the results for a willingness to pay of £20,000 

per quality-adjusted life-year gained. At this level, the fund-

ing decision would be yes for the log-normal and log-logistic 

models, but no for the remaining models. Despite this, the 

expected value of information per person was £0 for the 

gamma, Weibull and Gompertz models, and between £0.09 

and £2.04 for the remaining models. This suggests that 

extrapolation uncertainty is not appropriately captured, as 

reducing this uncertainty could change the choice of survival 

model and hence the funding decision. Appendix 2 of the 

ESM provides further remarks.

Collectively, these results demonstrate that the effects of 

model choice on uncertainty in both the hazard functions and 

lifetime mean survival may be substantial, even for models 

that provide similar point estimates. Hence, analysts could 

under- or over-estimate the uncertainty in mean survival and 

hence measures of cost effectiveness unless they carefully 

consider model selection, in terms of both the model fit dur-

ing the observed period and quantifying the uncertainty dur-

ing the extrapolation period.
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Fig. 2  Visualisation of the estimated hazard (and 95% confidence 

interval) in the observed and extrapolated periods for seven com-

monly used statistical time-to-event models studied in four hypotheti-

cal datasets. The dotted line shows the observed (smoothed) hazard 

and the vertical dashed line denotes the end of the observed time 

period
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4  Discussion

To our knowledge, this is the first study to examine sys-

tematically the properties of seven different commonly used 

parametric survival models in terms of the uncertainty in 

estimates of extrapolated hazard and survival functions. We 

have provided exact analytical expressions for the expo-

nential model and described the use of the delta method 

and the multivariate normal method for obtaining approxi-

mate expressions. Using the four hypothetical datasets, we 

Table 2  Estimates of the hazard and its standard error for seven commonly used statistical time-to-event models studies in four hypothetical 

datasets

Gen. Gamma generalised gamma

Dataset and 

model

Time period (years)

0.5 1 1.5 2 2.5 3 3.5 4

Flat hazard

 Empirical 

(smooth)

1.09 (0.35) 0.93 (1.11)

 Exponential 1.16 (0.14) 1.16 (0.14) 1.16 (0.14) 1.16 (0.14) 1.16 (0.14) 1.16 (0.14) 1.16 (0.14) 1.16 (0.14)

 Weibull 1.14 (0.16) 1.11 (0.21) 1.09 (0.24) 1.08 (0.27) 1.07 (0.28) 1.06 (0.30) 1.05 (0.31) 1.05 (0.33)

 Gompertz 1.12 (0.14) 0.93 (0.27) 0.77 (0.38) 0.64 (0.47) 0.53 (0.53) 0.44 (0.58) 0.36 (0.61) 0.30 (0.64)

 Gamma 1.15 (0.16) 1.14 (0.19) 1.13 (0.21) 1.13 (0.22) 1.13 (0.22) 1.13 (0.23) 1.13 (0.23) 1.12 (0.23)

 Log-logistic 1.14 (0.17) 0.82 (0.13) 0.62 (0.09) 0.50 (0.07) 0.42 (0.06) 0.36 (0.05) 0.31 (0.04) 0.28 (0.04)

 Log-normal 1.03 (0.14) 0.73 (0.11) 0.58 (0.09) 0.49 (0.08) 0.42 (0.07) 0.37 (0.06) 0.34 (0.06) 0.31 (0.05)

 Gen. Gamma 1.12 (0.16) 0.94 (0.21) 0.83 (0.26) 0.75 (0.28) 0.69 (0.29) 0.64 (0.30) 0.61 (0.31) 0.57 (0.32)

Increasing hazard

 Empirical 

(smooth)

0.80 (0.27) 2.73 (1.95)

 Exponential 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09)

 Weibull 0.72 (0.12) 3.01 (0.58) 6.94 (2.25) 12.53 (5.33) 19.83 (9.98) 28.86 (16.44) 39.63 (25.37) 52.15 (36.08)

 Gompertz 0.58 (0.10) 4.02 (0.84) 28.02 

(12.87)

195.31 

(144.58)

1361.3 

(1,497.7)

9488 (14,576) 66,130 

(137,480)

460,913 

(1,274,871)

 Gamma 0.85 (0.13) 2.30 (0.38) 3.18 (0.57) 3.71 (0.71) 4.06 (0.80) 4.30 (0.85) 4.48 (0.89) 4.62 (0.92)

 Log-logistic 0.79 (0.13) 2.28 (0.34) 2.18 (0.30) 1.78 (0.22) 1.46 (0.17) 1.23 (0.14) 1.06 (0.12) 0.93 (0.10)

 Log-normal 0.96 (0.14) 1.86 (0.29) 2.01 (0.36) 1.96 (0.36) 1.86 (0.35) 1.76 (0.33) 1.66 (0.32) 1.57 (0.30)

 Gen. Gamma 0.72 (0.13) 3.07 (0.78) 7.51 (7.56) 14.4 (35.33) 23.97 (113.17) 36.43 (260.86) 51.93 (330.16) 70.63 (370.34)

Decreasing hazard

 Empirical 

(smooth)

1.05 (0.45) 1.18 (2.10)

 Exponential 1.72 (0.20) 1.72 (0.20) 1.72 (0.20) 1.72 (0.20) 1.72 (0.20) 1.72 (0.20) 1.72 (0.20) 1.72 (0.20)

 Weibull 1.01 (0.15) 0.73 (0.13) 0.60 (0.12) 0.53 (0.11) 0.47 (0.10) 0.43 (0.10) 0.4 (0.09) 0.38 (0.09)

 Gompertz 1.14 (0.19) 0.36 (0.15) 0.11 (0.08) 0.04 (0.04) 0.01 (0.02) < 0.01 (0.01) < 0.01 (< 0.01) < 0.01 (< 0.01)

 Gamma 1.08 (0.16) 0.89 (0.15) 0.81 (0.15) 0.77 (0.15) 0.74 (0.15) 0.72 (0.15) 0.7 (0.15) 0.69 (0.15)

 Log-logistic 0.82 (0.12) 0.48 (0.07) 0.34 (0.05) 0.27 (0.04) 0.22 (0.03) 0.19 (0.02) 0.16 (0.02) 0.15 (0.02)

 Log-normal 0.68 (0.09) 0.40 (0.06) 0.29 (0.04) 0.23 (0.03) 0.19 (0.03) 0.17 (0.02) 0.15 (0.02) 0.13 (0.02)

 Gen. Gamma 1.04 (0.17) 0.80 (0.20) 0.68 (0.23) 0.62 (0.25) 0.57 (0.27) 0.53 (0.29) 0.51 (0.30) 0.48 (0.31)

Unimodal hazard

 Empirical 

(smooth)

1.33 (0.42) 1.41 (1.41)

 Exponential 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.12)

 Weibull 1.27 (0.16) 2.04 (0.38) 2.69 (0.67) 3.28 (0.96) 3.82 (1.28) 4.33 (1.60) 4.81 (1.92) 5.27 (2.24)

 Gompertz 1.09 (0.13) 2.26 (0.52) 4.69 (1.94) 9.73 (6.12) 20.17 (17.75) 41.81 (48.32) 86.68 (128.88) 179.69 (337.89)

 Gamma 1.36 (0.18) 1.88 (0.31) 2.13 (0.38) 2.28 (0.43) 2.38 (0.46) 2.45 (0.48) 2.50 (0.49) 2.54 (0.50)

 Log-logistic 1.47 (0.21) 1.52 (0.22) 1.23 (0.17) 0.99 (0.13) 0.82 (0.10) 0.70 (0.08) 0.60 (0.07) 0.53 (0.06)

 Log-normal 1.45 (0.19) 1.46 (0.23) 1.31 (0.22) 1.18 (0.20) 1.07 (0.19) 0.98 (0.17) 0.90 (0.16) 0.84 (0.15)

 Gen. Gamma 1.46 (0.19) 1.36 (0.31) 1.16 (0.39) 1.01 (0.43) 0.89 (0.44) 0.80 (0.44) 0.72 (0.44) 0.66 (0.43)
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illustrated how the choice of parametric survival model can 

strongly affect estimates of uncertainty about the hazard over 

the extrapolation period, and hence mean survival and cost-

effectiveness estimates. For each of the datasets considered, 

long-term uncertainty in the estimated hazard functions 

could be constant, increasing or decreasing, depending on 

the chosen model. We observed substantial differences in the 

estimated magnitude of uncertainty for estimates of the haz-

ard function, lifetime mean survival and cost-effectiveness 

estimates.

Our findings are generalisable and applicable to datasets 

beyond the four used in this study. We have covered a range 

of commonly observed hazard patterns. Results will be qual-

itatively the same for other datasets that have similar hazard 

patterns because of the underlying mathematics that defines 

the estimated variance in the hazard for a given model. The 

magnitude of estimates of uncertainty will vary depending 

on the actual dataset used, but we would expect, for exam-

ple, that the uncertainty in the hazard of a fitted generalised 

gamma model may fan out over time whereas that for a log-

logistic is likely to narrow over time.

There is existing guidance from the National Institute for 

Health and Care Excellence Decision Support Unit and in 

the literature on analysing and extrapolating survival data 

in cost-effectiveness analyses, which focus on commonly 

used parametric survival models [2, 17]. This guidance does 

not discuss the implications of survival model choice on 

estimates of uncertainty in model functions. A recent discus-

sion on methodological challenges noted that extrapolation 

involves methodological, structural and parameter uncer-

tainty, and that uncertainty increases as the extrapolated 

period increases [18]. Our study shows that survival model 

choice fundamentally influences the estimates of uncertainty 

in hazard, mean survival and cost effectiveness.

There were some limitations of this work. First, we only 

examined seven commonly used parametric survival models 

[2]. There are other models that could be applied, as well 

as more flexible models such as spline-based models and 

fractional polynomials [19–22]. Further research into the 

impact on extrapolation uncertainty of using these mod-

els would be beneficial. As noted, six of the seven mod-

els that we considered are nested members of the general-

ised F family [23]. In theory, it may be possible to fit the 

generalised F model and use significance testing to check 

if one of the nested models is to be preferred. There are 

two potential issues with this approach: first, we were not 

always able to obtain model estimates from the generalised 

F, secondly, some of the nested models occur as parameters 

tend to infinity: model testing in this case is not straight-

forward [24]. Another limitation is that we did not consider 
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Fig. 3  Visualisation of the estimated survival (and 95% confidence 

interval) in the observed and extrapolated periods for seven com-

monly used statistical time-to-event models studied in four hypotheti-

cal datasets. The dotted line indicates the observed survival and the 

vertical dashed line denotes the end of the observed time period
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using a piecewise modelling approach, which allows for the 

data-generating mechanism to be different over time [25]. 

However, it would not automatically ensure (as might be 

preferred) that uncertainty increases as the extrapolated hori-

zon increases: this depends on the chosen survival model. 

Additionally, fitting the extrapolating model to a subset of 

the sample data leads to a reduced sample size, and estimates 

of cost effectiveness can be sensitive to the choice of subset 

[26]. Further, we did not consider a dataset with multiple 

turning points in the hazard.

In practice, it is important that model choice involves 

input from clinical experts [2, 27]. This includes under-

standing both the underlying disease process (data-gener-

ating mechanism, or ‘true’ model) and how it evolves over 

time. The lack of data in the extrapolation period can create 

uncertainty in the appropriateness of using the fitted model 

for extrapolation. For example, Davies and colleagues 

[28] extrapolated survival estimates for two interventions 

from Weibull models fitted to 8 years of registry data. For 

one intervention, the model provided accurate predictions 

for the 8 years, but gave markedly inaccurate predictions 

when compared with a longer follow-up of the registry 

data to 16 years. This demonstrates that models that accu-

rately describe the observed data may not provide accurate 

extrapolations. Hence, it is important to reflect any external 

evidence (including clinical knowledge) about the possibility 

that the data-generating mechanism will remain the same in 

the future. It is likely that there will be uncertainties in any 

external evidence, thus it is unlikely that their use will fully 

remove the uncertainties associated with extrapolation.

The results of this study have implications for a health 

economic analysis. Failure to quantify appropriately uncer-

tainty about inputs, including survival functions, over the 

observed and extrapolated periods may lead to incorrect 

estimates of population mean costs and benefits, which may 

affect reimbursement decisions. As well as affecting esti-

mates of mean cost effectiveness from a probabilistic sensi-

tivity analysis, the choice of survival model will also affect 

the estimated probability that interventions are cost effec-

tive. The results of this study also suggest that the failure to 

adequately account for extrapolation uncertainty can lead to 

value of information estimates that are too low.

In Box 1, we outline a set of recommendations for ana-

lysts and decision makers who are involved in generating 

or critiquing extrapolations. These recommendations aim to 

complement existing guidance (2, 12). We emphasise that 

considering estimates of uncertainty is important as a com-

ponent of the extrapolation process.

An important implication for further methodological 

research is to develop methods on how to incorporate the 
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notion that interval estimates of hazard functions should ‘fan 

out’ during the extrapolated period. A general approach to 

characterising extrapolation uncertainty may be required to 

reflect that we have less knowledge about the data-generat-

ing mechanism in the future. A Bayesian approach would 

provide the ability to both incorporate external information 

and make probabilistic statements about the parameters of a 

survival model, taking into account the correlations between 

these parameters. This external information could include 

elicited beliefs from clinical experts about survival during 

the extrapolated period, or the plausibility of different mod-

els. Model discrepancy terms can be used to characterise 

uncertainty in model estimates [29]. An existing case study 

successfully demonstrated that it is possible to incorporate 

model discrepancy terms within the extrapolation period 

with the specific aim of inducing a fanning out of uncer-

tainty in hazard estimates [19]. Further research into this 

approach should consider how to elicit both discrepancy 

terms and parameters in survival models [30]. Another 

advantage of the Bayesian approach is that it removes the 

need to use a multivariate normal approximation for the joint 

distribution of parameters in a survival model.

Finally, for this work, we generated representative (hypo-

thetical) datasets, but we did not conduct a simulation study. 

This was intentional, as the representative datasets were suf-

ficient to highlight the impact of model choice on extrapola-

tion uncertainty. Further research could include a simulation 

study, to quantify the properties of survival models during 

the extrapolated period.

5  Conclusions

It is important for cost-effectiveness analyses to include 

realistic estimates of uncertainty about hazard functions 

and mean survival. This will improve both the accuracy of, 

and confidence in, reimbursement decisions. The choice of 

extrapolating model can have a large impact on estimates of 

uncertainty about hazard functions and lifetime mean sur-

vival. As such, consideration of the plausibility of estimates 

of uncertainty about hazard estimates in addition to point 

estimates of the hazard, particularly during the extrapolated 

period, should be informed by clinical knowledge as part 

of the model selection process. To support this, it is useful 

to visualise the observed and modelled hazard estimates as 

shown in the case study examples in this article. We provide 

seven new and specific recommendations for analysts and 

decision makers to follow when considering the uncertainty 

in the extrapolated period and the impact of parametric sur-

vival model choice.
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Box 1  Recommendations for analysts and decision makers considering extrapolations from survival models

1. Analysts fitting models to survival data for use in cost-effectiveness models should use input from clinical experts about the underlying 

disease process over the observed and extrapolated periods. Justification should be provided regarding the implied hazard function, and the 

assumption that the chosen survival model will be valid for the extrapolation period. Analysts should generate and examine the empirical 

hazard function to aid in the choice of model based on the sample data.

2. The plausibility of extrapolated hazard estimates is a key part of survival model selection, complementing within-sample goodness of fit. This 

assessment of plausibility should consider both point and interval (uncertainty) estimates. In general, extrapolations should be associated with 

uncertainty that increases over time, unless there are compelling arguments to the contrary.

3. In addition to considering the plausibility of extrapolated hazards, the impact on decision uncertainty should also be considered. This may 

be quantified by the uncertainty in estimates of both lifetime mean survival and cost effectiveness. If follow-up data are almost complete, then 

differences in estimates of uncertainty in the hazard function are less likely to be of importance.

4. Care should be taken when assuming that a single model for the hazard (and survival) function applies across all time points. Work to consider 

different models in different time periods should not only consider reflecting the point estimates of the hazard functions, but also consider the 

implications for uncertainty in these estimates.

5. When reporting results of survival analyses in journal articles or to HTA/reimbursement authorities, a structured analysis of uncertainty 

should be provided including reporting and visualisation of the uncertainty about hazard functions (as in Fig. 2) and survival functions (as in 

Fig. 3) and in the mean survival (as in Fig. 4).

6. Analysts and decision makers should use scenario analyses to quantify the sensitivity of estimates of cost effectiveness to survival model 

choice. If structural uncertainty exists (more than one model structure could be appropriate), then this should be reflected when calculating 

estimates of uncertainty in the base-case cost-effectiveness results. In the example provided here, this could suggest that the analyst uses the 

generalised gamma because the uncertainty in its estimates covers almost all of the other competing models (as detailed in Appendix 2 of the 

ESM).

7. If the use of commonly applied survival models does not adequately reflect individuals’ notions of uncertainty about hazard functions for the 

extrapolated period, analysts should consider alternative innovative approaches (see the main text for examples).
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