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
Abstract— Since age is the most significant risk factor 

for the development of Alzheimer’s disease (AD), it is 
important to understand the effect of normal ageing on 
brain network characteristics before we can accurately 
diagnose the condition based on information derived from 
resting state electroencephalogram (EEG) recordings, 
aiming to detect brain network disruption. This paper 
proposes a novel brain functional connectivity imaging 
method, particularly targeting the contribution of nonlinear 
dynamics of functional connectivity, on distinguishing 
participants with AD from healthy controls (HC). We 
describe a parametric method established upon a Nonlinear 
Finite Impulse Response model, and a revised orthogonal 
least squares algorithm used to estimate the linear, 
nonlinear and combined connectivity between any two EEG 
channels without fitting a full model. This approach, where 
linear and non-linear interactions and their spatial 
distribution and dynamics can be estimated independently, 
offered us the means to dissect the dynamic brain network 
disruption in AD from a new perspective and to gain some 
insight into the dynamic behaviour of brain networks in two 
age groups (above and below 70) with normal cognitive 
function. Although linear and stationary connectivity 
dominates the classification contributions, quantitative 
results have demonstrated that nonlinear and dynamic 
connectivity can significantly improve the classification 

Copyright (c) 2019 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must 
be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org. The paper was submitted on 27/06/2019. We 
thank Neurocare for purchasing the EEG equipment used in this work. 
This is a summary of independent research supported by BRC and 
carried out at the National Institute for Health Research (NIHR) Sheffield 
Clinical Research Facility. The views expressed are those of the authors 
and not necessarily those of the BRC, NHS, the NIHR, or the 
Department of Health. This work was supported in part by the Liaoning 
Science and Technology Plan Project under Grant 20180550047, in part 
by the Shenyang Science and Technology Plan Project under Grant 18-
013-0-58, and in part by the Liaoning Provincial Department of 
Education Research Funding Project (QN2019010). This work was also 
supported in part by the Lloyd’s Register Foundation under Grant 
number GA\100113, National Science Foundation Program of China 
(61601029), Zhejiang Provincial Natural Science Foundation 
(LZ19F010001). (Corresponding author: Liangyu Chen; *Yifan Zhao and 
Yitian Zhao are co-first authors.)

accuracy, barring the group of participants below the age 
of 70, for resting state EEG recorded during eyes open. The 
developed approach is generic and can be used as a 
powerful tool to examine brain network characteristics and 
disruption in a user friendly and systematic way. 

Index Terms— Alzheimer’s disease, dementia, 
visualisation, System identification, Machine learning 

I. Introduction 

LECTROENCEPHALOGRAPHY (EEG) is commonly 

used in everyday clinical practice mainly for providing 

evidence for the diagnosis, classification and management of 

patients with epilepsy but also other various brain disorders 

(e.g. dementia). When compared with other methods that 

provide information about anatomical structures like magnetic 

resonance imaging (MRI), computerised tomography (CT) and 

functional MRI (fMRI), EEG offers ultra-high time resolution 

[1], which is critical to understand brain function. Synchronous 

networks form and dissipate in the range of 100-300ms which 

is thought to be the meaningful operational brain temporal scale 

[2]. EEG is economical, non-invasive, easy to administer and 

widely available in most hospitals. On the other hand, fMRI is 

costly, requires highly trained staff, a significant number of 

Yifan. Zhao and P. Durongbhan are with the School of Aerospace, 
Transport and Manufacturing, Cranfield University, Cranfield, UK (email: 
yifan.zhao@cranfield.ac.uk; pholpatd@gmail.com). 

L. Chen is with the Department of Neurosurgery, Shengjing Hospital 
of China Medical University, Shenyang, China (chenly@sj-hospital.org). 

Yitian Zhao is with the Cixi Institute of Biomedical Engineering, 
Ningbo Institute of Industrial Technology, Chinese Academy of 
Sciences, Ningbo, China (yitian.zhao@nimte.ac.cn). 

L. Jiang is with Department of Computer Science and Engineering, 
Southern University of Science and Technology, Shenzhen, China 
(liuj@sustech.edu.cn). 

S. Billings is with the Department of Automatic Control and Systems 
Engineering, University of Sheffield, Sheffield, UK 
(s.billings@sheffield.ac.uk). 

P. Zis, Z. Unwin, M. De Marco, A. Venneri, D. J. Blackburn and P. G. 
Sarrigiannis are with the Department of Neurosciences, Sheffield 
Teaching Hospitals, NHS Foundation Trust, Royal Hallamshire Hospital, 
Sheffield  UK (takiszis@gmail.com;Zoe.Unwin@sth.nhs.uk; 
m.demarco@shef.ac.uk;a.venneri@shef.ac.uk;d.blackburn@shef.ac.u
k;p.sarrigiannis@shef.ac.uk). 

Imaging of nonlinear and dynamic functional 
brain connectivity based on EEG recordings 

with the application on the diagnosis of 
Alzheimer's disease 

Yifan Zhao*, Senior Member, IEEE, Yitian Zhao*, Pholpat Durongbhan, Liangyu Chen, Jiang 
Liu, S. A. Billings, Panagiotis Zis, Zoe C. Unwin, Matteo De Marco, Annalena Venneri, Daniel 

J. Blackburn, and Ptolemaios G. Sarrigiannis 

E



First Author et al.: Title 1 

patients experience symptoms of anxiety and claustrophobia, 

while it is also very sensitive to head movements. The latter, 

can be troublesome in patients with dementia where high levels 

of anxiety and restlessness are commonplace. Additionally, 

EEG directly measures brain electrical activity, thought to 

underpin cognitive functions, with far greater temporal 

resolution than fMRI which in return offers a very high spatial 

resolution, through measuring metabolic neuronal traces as a 

surrogate measure of their activity [3]. Empirical interpretation 

of the EEG is largely based on recognising abnormal 

frequencies in specific biological states (e.g. wakefulness 

versus sleep [4]), the spatio-temporal and morphological (e.g. 

sharp waves, spikes etc.) characteristics of paroxysmal [5] or 

persistent discharges [6], reactivity to external stimuli and 

activation procedures (like a period of hyperventilation [7] or 

intermittent photic stimulation [8]). Despite being useful in 

many instances, these practical approaches to interpret EEGs 

leave buried within the recordings very important dynamic and 

nonlinear interactions between various brain network 

anatomical constituents. There is significant evidence of this 

undetected information, for many neurological conditions, 

including epilepsy, neurodegenerative dementias, 

neuropsychiatric and movement disorders and normal cognitive 

paradigms [9]–[11]. Although EEG has been extensively 

studied over the last 30 years, there is a lack of systematic 

approaches to establish and analyse brain connectivity 

exclusively based on EEG recordings due to the complexity and 

the non-stationary behaviour of the signals; for example in the 

case of high levels of artefact, nonlinear dynamics and the fact 

that it is a typical ill-posed inverse problem. 

There are three well-studied types of connection: anatomical, 

corresponding to white matter tracts between pairs of brain 

regions; functional, corresponding to magnitudes of temporal 

correlations in activity, and finally, effective connection 

representing direct or indirect causal influence of one region on 

another [12]. Most brain functions are performed not by single 

regions but by the combined coordinated activity of widely 

distributed brain networks. Several neurological and 

psychiatric disorders may be reflected in a breakdown of the 

ability of some brain regions to communicate effectively. This 

field was propelled forward when Watts and Strogatz [13] 

introduced the small-world network model, which described a 

network that provided regional specialisation with efficient 

global information transfer. Sporns et al. [14], Riviere et al.

[15], Lohmann et al. [16], Stam et al. [17], and Lynall et al. [18] 

all focused on the structural topology of brain networks and 

their interactions by viewing the brain as a well-connected 

system, comprised of various regions that interrelate with each 

other to produce complex behaviours. In terms of effective 

connection, Kiebel et al. [19]  presented a Dynamic Causal 

Modelling (DCM) for EEG and MEG, where a spatio-temporal 

neural mass mode was used to model the neuronal dynamics of 

each source. In combination with the Bayesian model 

comparison, it provides a useful way to test hypotheses about 

distributed processing in the brain. Studying brain functional 

connectivity is increasingly being recognised as an important 

approach for early diagnosis of many brain disorders (e.g. 

Alzheimer's disease) [20]. From the system engineering point 

of view, the brain is a typical Complex System, which features 

many measurable components, interacting simultaneously and 

nonlinearly with each other and their environments at multiple 

levels [21]. The conversion of these observed measurements 

into knowledge about a physical object or system without a pre-

known function model has been one of the most important 

inverse problems, where nonlinear system identification is one 

of the most significant methodologies. Such a pure data-driven 

approach is attractive for brain studies because it allows less 

dependency on experience and knowledge of how brain 

functions. Although many parametric and non-parametric 

methods have been developed and applied to understand brain 

functional connectivity, these usually have the following 

limitations: 

(1) Assumption that the connectivity is linear and stationary: 

Linear methods with assumptions about stationarity of the 

signals cannot sufficiently reveal and characterise hidden 

information of complex signals, commonly exhibiting dynamic 

and nonlinear behaviours. Brain network interactions are 

dynamic as phase synchronisation and phase scatter occur 

within the millisecond range (100-300ms) [2]. Additionally, 

nonlinearity is already introduced on the cellular level since the 

dynamical behaviour of individual neurones is governed by 

phenomena of  integration, threshold, and saturation [22]. 

Transient associations, usually highly nonlinear, among 

different brain regions have been observed, for example in 

epileptic patients when moving from a normal state to a seizure 

[10], [11]. Exploring this otherwise undetectable information 

within EEG signals, far beyond the capabilities of commonly 

available methods, is crucial to better understand brain function 

and diagnose diseases. 

(2) Dependence on rigorous assumptions and sufficiency of 

sampled data. For example, Granger causality [23] is one of the 

well-established methods to understand the interrelationship 

among EEG channels. However, this method and its extensions 

are model-based and require a known model structure before 

analysis and usually demand large number of samples to 

establish a full unbiased model [24]. This is far from 

straightforward when the underlying relationships in the system 

are nonlinear and dynamic and the measured observations are 

noisy because, unless a complete and full model which accounts 

for any potentially nonlinear noise effects is estimated, the 

results will be compromised. Nonparametric methods, such as 

entropy [25], tend to require larger data sets or averaging over 

many realizations to mitigate the effects of noise. The noise on 

the signals will usually be unknown prior to analysis but simple 

averaging methods will not work well if the noise is highly 

correlated and nonlinear, which may be expected if the 

relationships are also nonlinear. 

It is well recognised that the integrity of dynamically 

interacting widely distributed brain networks, supported by 

widespread anatomical interconnections, is a prerequisite for 

normal brain function and that neurodegenerative conditions, to 

include the dementias, are associated with distinct patterns of 

brain network disruption [26]. Since age is considered the most 

significant risk factor for the development of AD [27], resting 
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state EEG recordings have been increasingly used to study and 

define the effect of normal ageing on brain network 

characteristics [28] and to distinguish it from pathological 

ageing and specifically AD. A variety of electrophysiological 

features to include the power and distribution of specific 

frequency bands, functional connectivity and signal complexity 

has been applied to reveal the electrophysiological mechanisms 

underlying AD [29] which to our knowledge remain still not 

fully elucidated.  

Revealing the spatial characteristics and the dynamic 

properties and type of disruption involving brain networks 

would be a step in the right direction, aiming to develop a 

diagnostic tool and a sensitive biomarker that can track disease 

progression. Oscillatory synchronisation between EEG 

recordings has been commonly estimated in previous studies 

with coherence [30], a linear method of measuring 

synchronisation although other methods of functional coupling, 

that allow detection of nonlinear interactions, like the 

synchronisation likelihood have been also implemented to 

study network disruption in dementia [31].  

When correctly applied and interpreted within the context of 

a system neuroscience framework, the imaging and study of 

brain functional connectivity can be a very powerful tool that 

has the potential to revolutionise our understanding of brain 

degradation or dysfunction in a user friendly and systematic 

way. To achieve this level of understanding, this paper 

introduces a new approach to estimate and visualise the brain 

functional connectivity based on EEG signals, without fitting a 

full model, focusing on nonlinear and dynamic interactions. 

The proposed approach is applied to understand the differences 

in brain functional connectivity between Healthy Controls (HC) 

and AD participants, divided in two separate age groups. A 

supervised machine learning approach is then employed to 

investigate how the nonlinearity and dynamics of functional 

connectivity contribute to the classification of AD and HC 

subjects. 

II. MATERIALS AND METHODS

A. Case selection 

Participants were HC or patients diagnosed with AD who had 

detailed neuropsychology testing and structural and functional 

(fMRI) scans. All subjects were recruited from Sheffield 

Teaching Hospitals NHS Trust memory clinic, and HCs were 

enrolled through opportunity sampling and word of mouth over 

a period of a year (February 2015-16). Twenty HCs (10<70y 

old, 11 females, 10>70y with a mean age of 67y+/-SD of 12y) 

and 20 AD cases (10 female, 16<70y and 4>70y, mean age 

64y+/-SD of 8y) were collected. Information regarding years of 

education, neuropsychology examinations and structural MRI 

findings are described in great detail in previously published 

work [9] and on Table A3 of Supplementary Material.  The 

NINCDS-ADRDA criteria [32] were used to diagnose AD, 

based on a consensus taking into account clinical history, 

neurological examination, neuropsychological scores and 

neuroradiological findings. This project was approved by the 

Yorkshire and the Humber (Leeds West) Research Ethics 

Committee (reference number 14/YH/1070) and informed 

consent was provided by all participants. 

B. EEG recordings 

A modified 10/10 overlapping a 10/20 international system 

of electrode placement was adopted. All recordings were 

undertaken with the XLTEK 128-channel headbox (Optima 

Medical LTD) at a sampling rate of 2K Hz (analogue low pass 

filter at 680Hz). An earlobe reference was used (jump cables 

were devised to combine the right and left earlobe electrodes; 

impedances where kept equal between sides). Thirty minutes, 

resting state, EEG recordings were acquired and distinct eyes 

open (EO) and eyes closed (EC) 5-minute epochs were obtained 

(throughout the recording period we encouraged all participants 

to rest and to try and keep their minds free of thought). They 

were readily prompted if their EEGs showed any signs of 

drowsiness. 

Table I categorises patients in 4 groups, based on their age 

group, either below or above 70. For each participant, data was 

collected for two separate physiological states: EO and EC. 

Time-locked video was recorded with the aforementioned 

XLTEK equipment (Optima Medical LTD). Bipolar 

derivations were used to revise all EEG data in this study and 

the following bipolar channels were available: F8-F4, F7-F3, 

F4-C4, F3-C3, F4-FZ, FZ-CZ, F3-FZ, T4-C4, T3-C3, C4-CZ, 

C3-CZ, CZ-PZ, C4-P4, C3-P3, T4-T6, T3-T5, P4-PZ, P3-PZ, 

T6-O2, T5-O1, P4-O2, P3-O1, O2-O1. Subsequently, both for 

EO and EC, 12 seconds in duration, artefact free epochs were 

selected for analysis. To avoid bias (i.e. empirical data 

interpretation and selection), the first 12s EO/EC epochs, 

isolated from each of the 40 participants with Spike 2 (version 

8) software, were used for data-processing and export. Slow 

EEG frequency artefacts, like those generated by eye blinking 

and movements, in the low delta and below ranges, were 

attenuated by applying to all data a time constant, τ=0.08s (high 
pass filter at 2 Hz). A notch filter was also applied to all 

channels. For this paper, the middle 4s section of this 12s data 

was selected for further connectivity analysis to avoid the 

boundary issue. 

C. Nonlinear functional connectivity estimation 

This paper proposes a revised orthogonal least squares 

(ROLS) algorithm to measure the connectivity between two 

EEG channels. OLS is an approach that has been used in 

nonlinear system identification where it searches through all 

possible candidate model terms to select the most effective ones 

to build the model [33]. The significance of each selected model 

term is measured by the Error Reduction Ratio (ERR) index 

which indicates how much of the change in the system 

response, in percentage, can be accounted for by including the 

TABLE I 

THE NUMBER OF SUBJECTS OF SIX STUDIED GROUPS

Group AD HC 

Below 70 EO 16 10 

Above 70 EO 4 10

Below 70 EC 16 10 

Above 70 EC 4 10 



First Author et al.: Title 1 

relevant model terms. This capability allows the computing of 

the contribution of linear and nonlinear terms independently 

without fitting the full nonlinear model, where parameter 

estimation and model validation are required.  

Considering a single input and single output (SISO) system 

with input time series {�(1),�(2), . . , �(�)} and time-varying 

output time series {�(1),�(2), . . ,�(�)}}, where � denotes the 

number of data points. To quantify and track the correlation of 

the input to the output, this paper uses a Nonlinear Finite 

Impulse Response (NFIR) model, also known as the Volterra 

Nonlinear Regressive with eXogenous (VNRX) Inputs model, 

to represent a SISO system. It can be expressed as �(�) = ���[����]� + �(�),    (1)

where  � (� = 1,2, … ) is a time index, � is an unknown linear 

or nonlinear mapping which links the system output � to the 

inputs;�(�) denotes the model residual. The symbol �[����]

denotes the current and past information of the input �, which 

can be expanded as �[����] = �⋃ �(� − �)����� �,    (2)

where �� is the maximal temporal lag to be considered for the 

input �.  

If the system is time-invariant, a commonly employed 

implementation to specify the function � in Eq. (1) is a 

polynomial function, which can be expressed as � = �� + ∑ ���� + ����� , (3)

where �� is the m�� model term selected from a candidate term 

set constructed from all input vectors. Note that ��, in general, 

can be linear or nonlinear. The constant  �� is the coefficient of 

each term; � is the total number of model terms.  

If the model order is set as �, the candidate term set, denoted 

by �, can be expressed � = �� ∪ �� ∪ …∪ �� ∪ …∪ �� ,    (4)

where �� is the linear term set, expressed as  �� = ⋃ �(� − �)����� (5)

and �� is the 2nd order nonlinear term set, expressed as �� = ⋃ ⋃ �(� − ��)�(� − ��)
������������� (6)

and ��  is the ��� order nonlinear term set, expressed as �� = ⋃ ⋃ …⋃ ∏ �(� − ��)�������������������������� .    (7)

If the inputs and output of a system are observable, the model 

represented by Eq. (3) can then be identified based on the 

principle of least square errors. Equation (3) is re-written as � = �Θ,    (8)

where 

� = � �(1)�(2)⋮�(�)

� ,� = ⎣⎢⎢
⎡��(1)��(2)⋮��(�)⎦⎥⎥

⎤ , Θ = � �(1)�(2)⋮�(�)

� (9)

and ��(�) = ���(�),��(�), … , ��(�)�. ��, ��,…,��  are the 

model terms selected from the candidate term set, written as Eq. 

(4). Matrix � can be decomposed as � = � × � where 

� = ���(1) ��(1) … ��(1)��(2) ��(2) … ��(2)⋮ ⋱ ⋱ ⋮��(�) ��(�) … ��(�)

� (10)

and � = {���} is an upper triangular matrix with unity diagonal 

elements. Equation (8) is then rewritten as � = ��,  (11)

where � = �Θ = [�� �� … ��]�. Equation (11) is now 

ready to represent the relation between Y and G.  

The importance of each model term to the variation of the 

system output is then estimated. Initially, set values ��� = 0 for � ≠ � (� then becomes an identity matrix), so ��(�) = ��(�), 

and calculate �� as �� =
∑ ��(�)�(�)����∑ ���(�)���� .  (12)

For � = 2,3, … ,�, set ��� = 1 and then calculate ��� =
∑ ��(�)��(�)����∑ ���(�)���� ,  (13)

where � = 1,2, … , � − 1. Next, the algorithm calculates ��(�) = ��(�) − ∑ �����(�)
������ (14)

and  �� =
∑ ��(�)�(�)����∑ ���(�)���� .  (15)

The ERR value for each term ��  is finally defined as ���� =
���� ∑ ���(�)����∑ ��(�)���� .   (16)

Values of ERR range from 0% to 100%. The larger the value 

of ERR, the higher the dependence between this term and the 

output. To stop the search procedure and determine the number 

of significant terms �, a criterion called Penalised Error-to-

Signal Ratio (PESR) is used [34]. It can be written as ����� =
������� �� (1 − ∑ �������� ) (17)

This criterion is introduced to monitor the search procedure, 

where � denotes the index of the selected terms. The search 

procedure stops when �����  achieves a local minimum. In 

this paper, the value of � was chosen as 8. 

To calculate the contribution of the input to the output, the 

sum of ERR of all selected terms, denoted by ����, is 

calculated by ���� = ∑ �������� . (18)

Note � is the number of the selected terms, not the number of 

total candidate terms. The value of ���� (0 ≤ ���� ≤ 1) 

describes the percentage explained by the identified model to 
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the system output. If the considered inputs can fully explain 

the variation of the system output, the value of ���� is equal 

to 100%. 

The linearity of connectivity is represented by the sum of 

ERR of the terms that are linear, and it can be computed by ����(�,�) =
∑ (����)|��∈��)���� ���� .  (19)

The nonlinearity of connectivity is represented by the sum of 

ERR of the terms that are nonlinear, and it can be computed by ����(�,�) =
∑ (����|��∉��)���� ���� .  (20)

Considering the estimated ���� and ���� being the 

measurement of bidirectional functional connectivity between 

two signals, with 23 channels used in this study, there are 253 

possible combinations (����) when any 2 channels are paired 

together. These were organised in a pairwise manner by taking 

the first channel in the list (F8-F4) and pairing it with every 

other channel according to their order (F8-F4:F7-F3, F8-F4:F4-

C4, F8-F4:F3-C3 …). The process was subsequently repeated 

for all other channels to the end of the list. However, since each 

channel is bipolar in nature, any pair with common electrode 

locations (such as F8-F4 and F4-C4) is neglected as this could 

lead to misleadingly high false correlation between the pair. 

There are 46 channel pairs that have this characteristic. A total 

of 207 channel pairs is therefore analysed in this paper. 

D. Functional connectivity dynamics estimation 

Dynamic Range of Connectivity (DRC) is introduced in this 

research to describe the dynamics of functional connectivity 

across multiple epochs (5 mini-epochs per participant both for 

EC and EO states). This was estimated both for linear and 

nonlinear connectivity in every EEG recording. DRC is based 

on the more commonly known “dynamic range” which is 

defined as the ratio between the largest and smallest values of 

that signal. DRC in this study is also based upon this definition. 

However, given the nature of the ERR estimates used in this 

study, some elements in the series of 5 values from 5 epochs 

can have 0 and would render the value of that series’ DRC 

infinitely large. To address this issue, in the case where the 

smallest element is 0, while the largest value is not, DRC is 

calculated using the second-smallest non-zero element instead. 

For the case in which the maximum is the only non-zero 

element, DRC is defined as 1 to reflect the fact that the 

minimum and maximum of non-zero values are the same. 

However, for the case in which the series consists entirely of 0, 

DRC is defined as 0 to represent the lack of dynamics for that 

series. Transient associations among different brain regions 

have been reported [10], [11] for various brain-related disorder, 

but have not been fully explored. This paper investigates the 

difference of DRC within both linear and nonlinear associations 

among all EEG channels in HC and AD participants.  

E. Connectivity Visualisation 

A revised Circular Graph (RCG) is introduced in this paper 

to visualise the ERR based connectivity estimates. The 

visualisation functionality was developed based on the original 

code written by Kassebaum [35] and was modified to include 

additional features to fit this research. The visualisation 

function draws a circular plot where the channel names are 

placed on the circumference of a circle. The connectivity values 

between channels are drawn as lines connecting the two 

channels, with its width representing the strength of the 

connection between two channels. The RCG also plots a legend 

for the plot containing 5 lines of differing width, with their 

corresponding values in the lower right corner, as can be seen 

in Fig. 1. Plotting the values for every channel pair would 

overwhelm the readers with too much information at once. 

Thus, RCG performs a thresholding operation prior to plotting, 

with only values higher than a specified threshold being plotted 

for visualisation. The threshold is selected by looking at the 

max, mean, and STD of the values in all datasets within the 

same plot. 

To further improve the interpretability of the plot, the 

location of the channels is based on the location of the electrode 

channels used in the datasets. The central channels (CZ-PZ, FZ-

CZ), since plotting them directly in the middle of the circle 

would render the plot unreadable, are placed instead together at 

the top of the plot. The rest of the channels are, then, placed in 

order from the frontal to the occipital areas. A grey middle line 

Fig. 1. An example of the introduced Revised Circular Graph for 
visualising the brain functional connectivity with the legend in the right-
bottom corner. The user-specified threshold and maximum value for
this plot are 70 and 100 respectively. 

Fig. 2. The proposed RCG plot overlaid with EEG electrode locations
to highlight the real electrode locations and their corresponding
locations in the plot. 
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is also drawn to clearly mark the left-right hemisphere. To 

better illustrate this paradigm, an example plot, overlaid with 

electrode locations is shown in Fig. 2. 

F. Classification using Machine Learning 

The proposed classification using machine learning 

approaches based on features from ERR connectivity values, 

was developed as an add-on to the previously proposed 

dementia classification framework [36]. As already fine-tuned 

and implemented in the original framework, K-Nearest 

Neighbour (KNN) classification method where K=1 with 10-

fold cross-validation was used in this paper. Each value of 

classification accuracy in this paper was calculated through 

averaging 50 iterations of classifications. 

To capture the dynamics of functional connectivity of the 

data, the following procedures were done. For each dataset, the 

4s EEG record was equally divided into 5 mini-epochs, each of 

which is with a duration of 0.8s. For each epoch, the linear and 

nonlinear ERR values of each pair of electrodes, ���� and ����, were calculated based on Eq. (19) and Eq. (20) 

respectively. The combined ERR values, ����=���� +����, are also calculated. Therefore, 15 features were 

extracted (5 ���� values, 5 ����values, and 5 ���� values) 

from each bipolar pair. 

Arithmetic mean (Mean) and root-mean-square (RMS) of 

three types of connectivity for all five mini-epochs are used as 

two final features representing the average magnitude of 

functional connectivity for classification. In addition, statistical 

range (Range) and DRC are also produced for the same data, as 

two further final features for classification, representing the 

dynamics of functional connectivity. It should be noted that, in 

this paper, the number of features is kept consistently the same 

during comparisons to ensure unbiased outcomes. The 

following two analyses were conducted using the 

aforementioned features: 

Linear vs Nonlinear Component: The objective of this 

analysis is to inspect and quantify the impact of nonlinear 

connection on the classification accuracy. This impact was 

determined by comparison of classification performance of the 

linear features and the combined features, rather than the 

nonlinear features only (there are many elements with zero 

value in nonlinear features that affect the classification). Any 

improvement of performance using the combined features is 

contributed by the nonlinear component. Both Mean and RMS 

were used as features. 

Mean Magnitude vs DRC: It is well accepted that brain 

connections are dynamic and that functional connectivity is 

highly temporal in nature [37]. This analysis aims to investigate 

if the consideration of dynamics of connection can improve the 

performance of classification of AD and HC in the context of 

both linear and nonlinear components. It should be noted that 

the nonlinear connectivity is used directly to produce our 

estimates, as the elements with zero value have been neglected 

during DRC calculation. 

III. RESULTS

A. Functional connectivity magnitude in AD and HC 
Subjects 

In this study, strength of functional connectivity, represented 

by the linear and nonlinear ERR components, was obtained by 

averaging the 5 ERR values of a specified component (linear, 

nonlinear or combined) of each channel pair for each subject. 

These mean magnitudes were then averaged over all subjects in 

that group according to their label (AD/HC) to produce an 

average mean magnitude (AMM) value for each channel pair 

for a specific label. The resulting AMM values for linear and 

nonlinear components are plotted in Fig. 3 and Fig. 4 

respectively. 

In Fig. 3, the linear AMM shows a similar pattern in terms of 

significant connections and corresponding strength for HC 

subjects among all eye states and age groups, except for the 

Below 70 EC group where there is high connectivity strength 

among the parietal, temporal, and occipital areas. Contrary to 

the HC subjects, the linear AMM of AD subjects shows no 

consistent patterns among age groups nor eye states. The AD 

subjects in below 70 EO and above 70 EC show visible increase 

in the number of significant connections and strength for linear 

components, while the AD subjects in below 70 EC and above 

70 EO data show similar patterns to HC subjects (Fig. 3).   

The nonlinear AMM, plotted in Fig. 4, shows that in the EO 

and EC data for the below 70 cohorts, HC subjects display 

slightly more nonlinear connectivity among more channel pairs 

than their AD counterpart, mainly for the EO state. However, 

for the above 70 EO and EC states, the reverse can be observed 

with AD subjects showing significantly higher nonlinear 

connectivity strength than HC subjects in nearly all channel 

pairs. Even though there is an increase in the average magnitude 

of nonlinear connectivity both for AD and HC subjects in the 

elderly group compared to the below 70 groups, the most 

significant increase is observed in the older AD group during 

EO.  

Furthermore, similar as in Fig. 3 for the above 70 HC cohort, 

it is shown in Fig. 4 that the nonlinear connectivity strength in 

HC subjects remains relatively consistent throughout all eye 

states, with only a small drop in the below 70 EC group. From 

both figures, it can be inferred that for the older participants, 

HC subjects display relatively consistent linear connectivity 

strength, for EO and EC states but nonlinear estimates appear 

fairly consistent both for younger and older HC participants for 

both eye states.  This contrasts with the significant changes seen 

for the linear levels of connectivity strength between EO and 

EC states in AD, involving both the younger and older age 

group, albeit moving in opposite directions (i.e. higher for EO 

for those <70 and higher for EC for >70). On the other hand, 

the nonlinear estimates for the AD, show consistent findings for 

EO and EC states for each age group but striking differences in 

strength of connectivity for the below and above 70 cohorts, the 

latter showing brain networks engaging in much higher levels 

of widespread nonlinear synchronisation. 
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B. Functional connectivity dynamics in AD and HC 
Subjects 

In a similar manner as the last section, the functional 

connectivity dynamics of both linear and nonlinear ERR 

components, represented by the DRC of each channel pair, was 

calculated for each subject and each channel pair. By averaging 

DRC for a particular channel pair but over all subjects with the 

same label (AD/HC) separately for EO and EC states, the 

resulting average DRC for each channel pair was obtained and 

plotted in Fig. 5 and Fig. 6 for linear and nonlinear associations, 

respectively.  

Inspection of Fig. 5 shows that the average DRC of linear 

connectivity does not differ significantly between AD and HC 

subjects between EO and EC states, more obvious for those 

above 70. However, significantly higher nonlinear dynamics 

can be observed in Fig. 6, for the above 70 AD cohort, in 

comparison to the HC group both for EO and EC states. For the 

below 70 groups, HCs show higher level and more widespread 

nonlinear dynamic variability for the EO state. It is also worth 

noting that many more electrode pairs exhibit dynamic 

nonlinear connectivity fluctuations in the EO versus the EC 

state. 

C. Classification of AD and HC subjects 

An overview of the average classification accuracy of the top 

10 channel pairs with the best classification performance for 

linear, nonlinear, and combined connectivity is displayed in 

Table II. It can be clearly observed that the linear connectivity 

plays the dominant role in classification. It also shows that, for 

the magnitude features (Mean and RMS), the nonlinear 

connectivity in isolation does not provide a clear change in 

classification accuracy compared to results from the linear 

connectivity, which may be caused by the large amount of zero 

values.  

However, results from the combined connectivity provide the 

best classification accuracy for all groups (up to 90% average 

accuracy). It should be noted that the number of features used 

for all three tests was the same to ensure unbiased results. It can 

be inferred that adding nonlinear components into the algorithm 

has an impact on the overall average classification accuracy, 

although the linear component has the dominant contribution. 

To elaborate on the impact of nonlinear components on the 

classification accuracy, two sets of test were conducted: the first 

one used Mean and RMS features of linear connectivity while 

Fig. 3. The RCG plots of the AMM values of the linear connectivity for 
all subjects in a group. The threshold for all plots is set as 0.3. 

Fig. 4. The RCG plots of the AMM values the nonlinear connectivity for 
all subjects in a group. The threshold for all plots is set as 0.04505. 

TABLE II 
THE AVERAGE CLASSIFICATION ACCURACY AMONG THE TOP 10 CHANNEL 

PAIRS WITH HIGHEST CLASSIFICATION ACCURACY IN EACH DATA SET FOR 

MEAN AND RMS FEATURES. (IN %, MEAN(SD)) 

Group 
Mean & RMS

Linear Nonlinear Combined 

Below 70 EO 78.42 (3.44) 78.77 (3.58) 80.33 (3.26) 

Above 70 EO 83.54 (3.28) 86.71 (5.57) 86.56 (4.04) 

Below 70 EC 72.00 (2.11) 74.35 (2.66) 74.5 (4.38)

Above 70 EC 88.54 (2.88) 80.98 (1.05) 90.5 (5.34) 
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the second, combined linear and nonlinear connectivity. The 

difference in classification accuracy for each channel pair 

between the two tests was determined. They were grouped 

according to whether the classification accuracy for the 

combined group had increased or decreased from their linear 

counterpart and the results are shown in Table III. Table III 

conclusively shows that when nonlinear components were 

considered in addition to the linear estimates, the classification 

power of the features is impacted both positively and negatively 

(>8% average change for all groups). However, this change 

varies across different eye states, with EO seeing slightly more 

changes to the average classification accuracy (>11% average 

change) than eyes closed state (>10% average change). 

Further analysis of individual changes in accuracy for each 

channel pair is illustrated in Fig. 7 where the minimum 

threshold for all plots is 20% and the maximum value is 50%. 

For the EO state, adding the nonlinear components induces 

stronger changes in the classification accuracy for channels 

pairs which are in different hemispheres. In contrast, strong 

changes for both age groups in EC state tend to occur to channel 

pairs in the same, left or right hemisphere. Additionally, the 

results for EC state in Fig. 7 shows that it is in line with the 

results in Table III where weaker changes can be observed in 

both age groups. 

Focusing in isolation at the rate of change in classification 

accuracy (Fig. 7) reveals which areas/electrode pairs are 

influenced by the inclusion of nonlinear connectivity, but it 

does not provide insight into their actual classification accuracy 

values after those changes. The top 5 channel pairs that have the 

best classification accuracy in terms of linear and combined 

connectivity are listed in Table IV. The results suggest that the 

best performing classification accuracies for the combined 

features are generally better than their linear counterpart. For 

the below 70 EO group, a slight increase (up to 2%) of accuracy 

is observed; while for the below 70 EC group, an up to 8% boost 

can be observed. Using the combined features, the above 70 

cohorts obtain classification accuracy of up to 100% for 2 

channel pairs in the EC state and up to 93% in the EO state. 

Addressing the second analysis in Section 2.6, Table 5 shows 

a comparison of classification performance between dynamics 

and mean magnitude features for both linear and nonlinear 

connectivity. For the linear connectivity, no significant 

difference in classification was observed between mean 

magnitude and dynamics. However, for the nonlinear 

Fig. 5. The RCG plots of the average DRC of the linear connectivity for 
all subjects in a group. The threshold for all plots is set as 1.35. 

Fig. 6. The RCG plots of the average DRC of the nonlinear connectivity
for all subjects in a group. The threshold for all plots is set as 1.5.

TABLE III 
THE AVERAGE CLASSIFICATION ACCURACY AMONG ALL CHANNEL PAIRS IN 

EACH GROUP FOR LINEAR AND COMBINED MEAN AND RMS FEATURES. (IN 

%, MEAN(SD)) 

Dataset 
Linear vs Combined Mean & RMS 

Increase Decrease 

Below 70 EO +13.14 (8.93) -11.86 (8.56) 

Above 70 EO +12.99 (9.97) -12.68 (9.81) 

Below 70 EC +10.28 (8.00) -10. 40 (8.49)

Above 70 EC +10.77 (8.81) -10.13 (7.93) 
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connectivity, the dynamics features perform better than mean 

magnitude connectivity (up to 7% better) for all groups except 

for the above 70 EO group. 

IV. DISCUSSIONS

The high levels of linear synchronisation estimated with the 

AMM (Fig. 3) for EO, for the younger AD cohort, are a clear 

expression of network dysfunction, as it is common knowledge 

that healthy subjects typically exhibit a desynchronised EEG 

during periods of eyes open. This can be easily seen by 

comparing the age matched RCG findings for the HCs in the 

same figure; the differences between AD and HC are 

prominent. Noticeably, the DRC estimates, expressing the 

dynamic changes in the strength of synchronisation over time 

(Fig. 5) show, for the EO state for the same age group, very 

little variation in AD. Therefore, widely distributed networks 

appear “locked” in high levels of linear synchronisation. This 

observation confirms the validity of the concept suggesting a 

balanced and temporally precise pattern of synchronisation and 

desynchronisation is pertinent to cognitive functions [38]. On 

the other hand, in comparison to the AD group, the nonlinear 

synchronisation AMM estimates are more widespread in HCs 

for EO state below the age of 70 (Fig. 4). More importantly, the 

dynamic variability of nonlinear interactions, as expressed by 

the DRC, is also much higher and widely distributed for HCs 

for the same age group during EO. This suggests that a degree 

of nonlinear dynamic connectivity characterises brain network 

function of the younger group HC participants but there is no 

difference between EO and EC for the older cohort.  

It is of interest that on work we have previously undertaken 

on an entirely different neurological condition, a paroxysmal 

epileptic disorder, childhood absence epilepsy, significant 

dynamic changes in linear and nonlinear synchronisation occur 

while the patients remain vacant during their epileptic absences. 

This type of epilepsy is an ideal example of widely distributed 

linear ictal neuronal synchronisation, during which deep 

transient loss of consciousness occurs; the patients remain alert 

but deeply unresponsive. Ictal EEG data analysis shows widely 

distributed very high levels of linear synchronisation while 

cross frequency nonlinear interactions, involving high gamma 

and beta frequencies before the epileptic seizures, precipitate 

during the short lived paroxysmal epileptic attacks and reappear 

immediately after the cessation of the seizures.  At the same 

time linear synchronisation levels disintegrate and normal 

cognitive function re-emerges. Although this analogy may 

sound far-fetched, it gives an idea of how complex and dynamic 

can be the linear and non-linear brain network dynamics that 

underpin normal cognitive functions. It also implies that linear 

and nonlinear dimensions of synchronisation can exhibit 

counterintuitive shifts in opposite directions.  

This work provides the proof of principle that measuring in 

isolation the strength of linear synchronisation is not enough to 

describe the complex behaviour of brain network interactions. 

We provide evidence suggesting there are advantages from our 

approach where separate estimations of linear and nonlinear 

dimensions of synchronization, with their respective strength 

Fig. 7. The RCG plots of the change in classification accuracy from 
models trained with Mean and RMS of linear connectivity to models 
trained with Mean and RMS of combined connectivity.

TABLE IV 
THE TOP 5 CHANNEL PAIRS AND ITS CLASSIFICATION ACCURACY FOR EACH 

GROUP USING MEAN AND RMS FEATURES OF LINEAR AND COMBINED 

CONNECTIVITY. (IN %, *ACC DENOTES ACCURACY) 

Below 70 EO Below 70 EC 

Linear Combined Linear Combined 

Pair Acc Pair Acc Pair Acc Pair Acc 

T3-T5:

P4-PZ 
85.19 

F7-F3: 

T6-O2 
85.23 

C4-CZ:

O1-O2
76.92 

F4-C4:

P4-PZ 
85.23 

T4-C4:

P3-O1
81.54 

C3-P3:

P4-PZ
84.69 

F8-F4: 

O1-O2
74.42 

F4-FZ:

T5-O1
77.62 

CZ-PZ:

P3-O1
81.15 

F4-FZ:

T4-C4
84.15 

C4-P4:

C3-P3
72.88 

FZ-CZ:

T4-C4
77.38 

F7-F3: 

C4-CZ
80.58 

T3-C3:

P3-PZ 
81.00 

P4-PZ:

O1-O2
72.50 

T4-T6:

P4-PZ 
74.15 

C3-P3:

P4-PZ 
78.85 

C3-P3:

T3-T5 
80.38 

F8-F4: 

C3-P3 
71.15 

T4-C4:

C3-CZ
73.54 

Above 70 EO Above 70 EC
Linear Combined Linear Combined

Pair Acc Pair Acc Pair Acc Pair Acc

FZ-CZ:

T3-T5
86.79 

F7-F3: 

FZ-CZ
93.14 

F8-F4: 

C4-CZ
92.86 

C3-CZ:

O1-O2
100.00

F4-FZ:

O1-O2
86.79 

C4-CZ:

T3-T5 
92.86 

F3-C3:

P4-O2 
92.86 

F4-FZ:

P4-PZ 
100.00

T4-C4:

O1-O2
86.07 

C3-CZ:

P3-O1 
88.00 

F4-FZ:

T6-O2 
92.86 

F4-FZ:

T6-O2 
92.86 

P3-PZ:

O1-O2
86.07 

T3-C3:

C4-CZ
87.14 

F4-FZ:

C4-P4
87.86 

F3-FZ:

P4-O2
92.86 

F8-F4: 

F3-C3
85.71 

F8-F4: 

C4-P4
86.14 

F8-F4: 

C3-P3
87.14 

F3-C3:

T6-O2
86.86 
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and dynamic variations over time as well as their spatial 

distributions are determined. Noticeably, the latter can be very 

different for linear and nonlinear estimates. This 

comprehensive range of features we incorporate in this novel 

framework offers complementary information that sheds light 

on hidden dimensions of brain network behaviours in healthy 

aging and AD.    

The high levels of non-linear synchronisation observed for 

participants with AD above the age of 70, both for EO and EC 

states (Fig. 4) reveal that network dysfunction characteristics 

can be age related and future work in this area should consider 

analysing large numbers of age stratified cohorts. Our ERR 

method is a time domain approach, that does not provide 

information about the frequencies involved during those 

nonlinear cross-frequency interactions, which we suspect for 

the elderly patients with AD involve theta and delta bands, but 

this will be the aim of future studies.  

Changes attributed to brain maturation and development like 

the age-related background posterior slow wave (theta and 

delta) EEG activity, a well-known normal finding in clinical 

electroencephalography, referred to as “posterior slow waves of 

youth” merit some attention. These slow waves can be found 

interspersed with normal alpha rhythms until the age of 30 [39]. 

This is a good example of an age-related EEG change that can 

be easily appreciated on visual inspection of the data by a 

trained physician. More sophisticated quantitative EEG 

analysis with fractal dimension, an approach thought to be 

related to the complexity of EEG signal dynamics, has 

demonstrated significant change in the complexity of electrical 

neuronal activity throughout the lifespan, with a steady increase 

in young and middle-aged adults followed by a fall in the 

elderly [40]. In addition, previous work using various EEG 

features and a rigorous ML framework [36], estimated fairly 

reliably the participants chronological age exclusively based on 

brain electrical recordings. In this work we show that for linear 

synchronisation, HC participants below the age of 70 have clear 

differences in the strength of synchronisation between EO and 

EC states, stronger and more widespread in the posterior 

quadrant brain areas in the latter state. This network reactivity 

to eye opening is lost in the elderly HC group. In addition, the 

nonlinear estimates of DRC show higher variability in 

synchronisation with relatively wider spatial distribution only 

in the younger group during EO state. Of note, estimates of 

nonlinear functional connectivity show very little variation 

between EO and EC states in the elderly in the HC cohort. 

Equally, the strength of nonlinear synchronisation with AMM, 

remains consistent for EO and EC states both for the younger 

and older healthy participants. This observation suggests that 

this nonlinear approach produces state independent resting state 

EEG estimates of brain functional connectivity and that it could 

be applied on large EEG databases where the EO versus EC 

state is not known and data selection can easily become 

automated.  

V. CONCLUSIONS

This paper proposed a novel brain functional connectivity 

imaging technology, particularly aiming to determine the 

contribution of nonlinearity and dynamics, on distinguishing 

participants with AD from HC. The parametric method used in 

this work is established upon a NFIR model, and a revised 

orthogonal least square algorithm is proposed to estimate the 

linear, nonlinear and combined connectivity between any two 

EEG channels. This approach, where linear and non-linear 

associations and their spatial distribution and dynamics can be 

estimated independently, offered us the means to dissect the 

dynamic brain network disruption in AD from another angle 

and to get some insight into the effect of age in HCs. This 

algorithm does not require to establish an unbiased full model, 

which reduces the dependency on the number of sampling and 

model validation, which is attractive to understand a highly 

unknown complex system. A new parameter, called Dynamic 

Range Connectivity, is introduced to represent the dynamics of 

functional connectivity. A new functional connectivity 

visualisation method, the RCG, is also proposed to offer a 

visualisable conception and representation of linear and 

nonlinear associations and their dynamic changes between 

different brain regions during EO and EC states.  

Although the number of participants in this study is small, 

the spatial distribution and the linear and nonlinear dynamic 

behaviour of network disruption, revealed with the 

aforementioned approaches, gave us a glimpse into the 

complexity of brain network behaviours and spatial 

characteristics in health and AD, for participants younger and 

older than 70. Although this paper focuses on the application of 

this novel methodology on dementia, the developed approach is 

generic and can act as a powerful tool to better understand brain 

degeneration or dysfunction in a user friendly and systematic 

way. 
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