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—— Abstract

The node search game against a lazy (or, respectively, agile) invisible robber has been introduced as
a search-game analogue of the treewidth parameter (and, respectively, pathwidth). In the connected
variants of the above two games, we additionally demand that, at each moment of the search,
the clean territories are connected. The connected search game against an agile and invisible
robber has been extensively examined. The monotone variant (where we also demand that the
clean territories are progressively increasing) of this game, corresponds to the graph parameter
of connected pathwidth. It is known that the price of connectivty to search for an agile robber is
bounded by 2, that is the connected pathwidth of a graph is at most twice (plus some constant) its
pathwidth. In this paper, we investigate the connected search game against a lazy robber. A lazy
robber moves only when the searchers’ strategy threatens the location that he currently occupies.
We introduce two alternative graph-theoretic formulations of this game, one in terms of connected
tree decompositions, and one in terms of (connected) layouts, leading to the graph parameter of
connected treewidth. We observe that connected treewidth parameter is closed under contractions
and prove that for every k > 2, the set of contraction obstructions of the class of graphs with
connected treewidth at most k is infinite. Our main result is a complete characterization of the
obstruction set for £k = 2. One may observe that, so far, only a few complete obstruction sets are
explicitly known for contraction closed graph classes. We finally show that, in contrast to the agile
robber game, the price of connectivity is unbounded.
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1 Introduction

A graph-search game is opposing a group of searchers and a robber that are moving in turn
on a graph. A search strategy is a sequence of moves of the searchers that eventually leads
to the capture of the robber. The cost of a search strategy is the maximum number of
searchers simultaneously present on the graph during the search strategy. The search number
of a graph is defined as the minimum cost of a search strategy. Different rules imposed
on the search strategy and the moves of the robber define different searching games. The
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study of graph searching parameters is an active field of graph theory as several important
graph parameters have their search-game analogues that provide useful insights. For related
surveys, see [2,3,10,21, 38].

One of the most classic graph-search games is the one of node-search introduced by
Kirousis and Papadimitriou [31,32]. In this version, both the searchers and the robber
occupy vertices of the graph. One searcher can move at a time. The capture of the robber
happens when some searcher and the robber simultaneously occupy the same vertex and
that the robber cannot escape along a path free of a searcher. In this paper we consider
monotone search strategies against an invisible robber. Being invisible implies that the search
strategy has to be independent of the moves of the robber. A search strategy is monotone
if it prevents the robber from moving to vertices that have been already occupied by the
searchers, implying that the robber territory is never increasing. The robber territory is the
set of vertices that can be reached from the robber position by a path free of searcher.

Agility and laziness. A robber can be lazy or agile. A lazy robber resides on a vertex as
long as a searcher is not placed on that vertex, while an agile robber may move whenever he
wants to. The distinction between a lazy and an agile robber was introduced for the first time
in [13]. Motivated by established links with well-studied graph theoretical parameters, there
is an extensive amount of research on the different variants of the search game depending
on the monotonicity constraint and on the laziness or agility of the robber. In particular,
the monotone search number of a graph G against an agile (resp. lazy) robber is equal
to the pathwidth (resp. treewidth) of G [13,31,32,36,42]. Also, it was proven that the
non-monotone variants are equal to their monotone counterparts [8,9,20,34,42].

The connectivity issue. In both search games described above, no constraint (apart from
the monotonicity, which in this context, as mentioned before, is no restriction) is ruling the
move of a searcher. That is, a searcher can move arbitrarily far away from his/her original
position. For this reason, such search games have been called “helicopter search games” (as
suggested in [42]). From the application view point, this teleportation ability is not always
realistic. In some settings (like cave exploration), it is natural to constrain the search to be
connected. That is, the clean territory induces a connected subgraph! at each step of the
search (see [24] for an example).

This inspired the question on the “price of connectivity”, asking whether there is some
universal constant ¢ such that the connected search number is no more than ¢ times its
non-connected counterpart. In its original form, this question was asked in [5] for the
agile variant and, in the same paper, it was answered affirmatively for the case of trees (see
also [6,16-19,22,37] for related results). Later, it was proved for all graphs by Dereniowski [14],
who suggested a connected counterpart of pathwidth, called connected pathwidth, that is
equivalent to the monotone connected agile search number. Then it was proved that this
parameter is always upper bounded by twice the pathwidth plus one.

! Interestingly, the motivating story of one of the foundational articles on graph searching, authored by
Torrence Parsons [39] in 1976, was inspired by an earlier article of Breisch in Southwestern Cavers
Journal [11] proposing a “speleotopological” approach for the problem of finding an explorer lost in
a system of dark caves. It is worth to stress that this setting neglected the natural connectivity
requirement.
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1.1 OQur contributions

Connected treewidth. In this paper, we study the (monotone) connected search against a
lazy robber. Our first contribution is to establish the parameter by giving two alternative
definitions: one in terms of connected tree decompositions and one in terms of connected
layouts. Intuitively, a tree-decomposition (T, F) is connected? if it can be rooted at some
node r in a way that for every node u, the subgraph G,,, induced by the subset V,, of vertices
appearing in some bag on the path in T between r and w, is connected. We observe that this
is a natural extension of the concept of connected pathwidth proposed by [14]. Our layout
definition is a variant of the classic layout definition of [13] with the restriction that now
we only consider layouts where every prefix induces a connected graph. Our equivalence,
proven in Section 3, indicates that monotone connected search against a lazy robber can be
seen as a natural way to define a connected version of treewidth. We also stress that the
non-monotone variant of this game corresponds to an different parameter, as proved in [24].
Yet another way to define “connected” treewidth is to consider tree decompositions where
for every t € Vp, the bag X; induces a connected subgraph of G. We refer to this variant
bag-connected treewidth (while the one we define in this paper can be called prefiz-connected
treewidth). Bag-connected treewidth was introduced independently by Jégou and Terrioux
in [27], in the context of solving Constraint Satisfaction Problems (CSPs)(see [26,28]) and,
in a combinatorial context, by Diestel and Miiller in [15] who revealed interesting relations
with graph-geometric parameters such as the geodesic cycle number, graph hyperbolicity
(see also [25]).

Contraction Obstructions. We say that a graph H is a contraction of G, denoted by H =< G,
if a graph isomorphic to H can be obtained from G by a series of edge contractions. We also
say that H is a minor of G if H is a contraction of a subgraph of G. We define the minor
obstructions (contraction obstructions, respectively) of a graph class G, denoted by obs<(G)
(obs<(G), respectively), as the set of all minor (contraction, respectively) minimal graphs
that do not belong to G. It is easy to see that when G is minor (contraction, respectively)
closed, then obs<(G) (obs<(G), respectively) provides a complete characterization of a minor
closed (contraction, respectivelly) class G: a graph belongs to G if and only if it excludes all
graphs in obs<(G) (respectively obs<(G)) as minors (contractions, respectively). Moreover,
in the case of the minor relation, we know from the theorem of Roberston and Seymour
[40] that the set obs<(G) is always finite and therefore the aforementioned characterization
provides a finite characterization of any minor closed class in terms or forbidden minors.
To identify (or even to compute) obs<(G) for different instantiations of minor closed graph
classes is an interesting topic in graph theory (see [1,35]). For instance, if 7} is the class of
graphs with treewidth at most k, then obs<(7) is known for every k < 3 [4] and remains
unknown for k > 3 (see [41] for some partial results for the case where k = 4). Similarly, if Py
is the class of graphs with pathwidth at most &, then obs<(Py) is known for k < 2 [30] and
remains unknown for k£ > 2. Bounds for the size of the graphs in obs<(7;) and obs<(Py)
have been proved in [33].

Unfortunately, the landscape is more obscure for the contraction relation as contraction
obstruction sets are not finite in general. Contraction obstruction sets are only known for
a few contraction closed classes. For instance, the contraction obstruction set for planar

2 We also want to point out that alternative notions of connected tree-decomposition have been con-
sidered, see for example [23] and [15,27] for two different definitions. We believe that the parameter
correspondence we establish is a strong argument in favour of our definition proposal.
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Figure 1 A graph G € 75 such G —wv ¢ 75 and G —v ¢ T5.

graphs is described in [12]. A more elaborate example of a finite contraction obstruction
set was identified in [7], containing 177 connected graphs, for the class of graphs whose
connected mixed search number (for an agile and invisible robber) is at most 2. Another
class characterized by an infinite set of contraction obstructions is discussed in [29].

Let k € N. By 7,¢, we denote the class of all (connected) graphs with connected treewidth
at most k. We observe that 7 is not minor closed: removing a vertex or an edge (see e.g., the
graph G of Figure 1) may increase the connected treewidth. Therefore, no characterization
via minor obstruction exists. However, in this paper we observe that 7;° is contraction closed,
for every k, and it is a challenging problem to identify Oy := obs<(7,¢) for distinct values
of k, especially since we have no guarantee that this set is finite. Moreover, in case Oy is
infinite, we are essentially looking for a finite canonical description of this set.

Our second contribution is the complete identification of Oy. As a preliminary part of
our results, in Subsection 4.1, we prove general properties of Oy, for every k. These are later
used to identify Oy. In Section 5, that is the most technical part of this paper, we prove that
05 is an infinite set that can be canonically described by a sequence of gluing operations.

Price of connectivity. We give, for every k > 2, an infinite subset of obs<(7,%) consisting
of graphs of treewidth 2, i.e., graphs in T3 (see Section 4.2). Consequently, the price of con-
nectivity on treewidth is unbounded and this makes a sharp contrast with the corresponding
result on pathwidth. To conclude, for monotone search, the price of connectivity is bounded
when we are searching for an agile robber while this price goes to infinity when the robber is
lazy. This latter contribution provides a simpler construction of a result from [24] that the
cost of connectivity can be log n, where n is the number of vertices.

2 Preliminaries

2.1 Standard definitions

Sequences. Given a finite set U, a sequence o over U is a bijection o : U — [|U|]. For
x € U, o(z) =i if z is at the i-th position in o and we denote o; = 0=1(i). For x,y € U,
if o(z) < o(y), we write © <, y. We define the sets oo, = {r € U | o(z) < i} and
o<; ={x € U | o(x) <i}. Alternatively, we denote a sequence by o = (o1,...,0y).

Graphs. The graphs we consider are undirected are simple. We use standard notations.
For a subset S of vertices, G[S] denotes the subgraph induced by S. A separator is a subset
S of vertices such that G \ S = G[V \ S] contains more connected components than G. A
connected component H of G\ S is a full S-component of G if No(V(H)) =S. We denote
by C(G, S) the set of all full S-connected components of G and by F(G, S) the set containing
every induced subgraph G[S U C] with C' € C(G, S). The set of cut vertices of a graph G is
denoted C(G).
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Contracting an edge e = zy € E(G) yields the graph G/e obtained by removing x and y

from G, introducing a new vertex and making it adjacent with all vertices in Ng({z, y})\{z, y}.
If F is a subset of edges of G, then G/F is the graph obtained by contracting the edges of F'.

We say that a graph H is a contraction of G, denoted by H =< G, if a graph isomorphic to H
can be obtained by a series of edge contractions.

A tree-decomposition of a graph G = (V, E) is a pair (T, F) where T = (Vp, Er) is
a tree and F = {X; C V |t € Vr} such that : 1) U;cy,. X¢ = V; 2) for every edge
e € E, there exists a node t € T such that e C X;; and 3) for every vertex x € V, the
set {t € Vp | € X;} induces a connected subgraph of T. We refer to Vr as the set of
nodes of T and the sets of F as the bags of (T, F). The width of a tree-decomposition
(T, F) is width(T, F) = max {|X| — 1 | X € F} and the tree-width of a graph G is tw(G) =
min {width(T, F) | (T, F) is a tree-decomposition of G'}.

Rooted graphs. A g-rooted graph (with ¢ € N) is a pair G = (G,R) where G is a graph
and R is a sequence over a subset R of ¢ vertices of G, called roots. A rooted graph is any
g-rooted graph, where ¢ > 0. We treat every graph G as the O-rooted graph (G, ()). The
rooted graph (G,R) is connected if either G is connected or if every connected component of
G contains at least one vertex from R. It is biconnected if adding an edge between every pair
of root vertices yields a biconnected graph. Gluing two g-rooted graphs (G1,R;) and (G2, Rs)
results in the graph (G1,Ry) @ (G2, R2) obtained by identifying the vertex Ry (i) with Ro (%)
for every i € [q]. The operation of gluing k > copies of a rooted graph K is denoted by k x K
and is defined in the obvious way (keep always in mind that the result is a graph). A rooted
graph H = (H, T) is a contraction of a rooted graph G = (G,R), denoted H < G if a rooted
graph isomorphic to (H,T) can be obtained after a series of edge contractions on G, under

the constraint that no path between two vertices of R can be contracted to a single vertex.

If a vertex v € V(H) results from the contraction of an edge incident to a root vertex of R,
then v is a root vertex of T.

Tree vertex separation. A layout o of a rooted graph G = (G, R) is a sequence over V(G)
such that for every 1 < j < |R|, 071(j) € R. We denote by £(G) the set of all layouts of
G. For every i € [n], the supporting set of position i is the set S,(i) = {z € V(G) | o(x) <
i and there exists a (x, 0;)-path whose internal vertices belong to o~;}. The so-called tree
vertez separation number of a rooted graph G is defined as tvs(G) = min {tcost(G,0) | o €
L(G)}, where tcost(G, o) = max{|S,(i)| | i € [n]}.

Search strategies against a lazy robber. A search strategy on a graph G is a sequence
S =(S1,...,85,), with r € N, over the sets of subsets of vertices of V(G) where |S;]| = 1 and
for all ¢ € [r — 1], the symmetric difference of S; and S;1;1 has cardinality one. Notice that the
difference between two consecutive set either corresponds to a placement or to the removal of

a searcher on some vertex v. The cost of a search strategy S is cost(S) = max{|S;| | i € [r]}.

For a search strategy S against a lazy robber, we define the sequence of robber spaces as
the sequence Fs = (Fi,..., F,) where:
FL=V(G)\ 5.
For ¢ € [2,7], let F; = (F;—1 — S;) U{v € V —S; : there is a path from a vertex
u € F;_1N(S; — Si—1) to v whose vertices except u belong to V — S;}.
The complementary sequence Fs = (Fy,...,F,) is the sequence of clean spaces. We say

that the search strategy S is complete, if F,. = 0; monotone, if for each i € [r — 1], F;41 C F;.

We define Ins(G) as the minimum cost of a complete (or, alternativaly, cop-win) monotone
search strategy on G against a lazy robber.

7:5
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3 Parameter equivalences

» Proposition 1 ([13,42]). For any graph G, we have tw(G) = tvs(G) = Ins(G) — 1.

To prove a result similar to the above well-known theorem, we adapt the definitions of graph

search, tree decomposition, layouts and the associated parameters to the connected setting?.
A (monotone and complete) search strategy S = (S1,...,S,) of a graph G is connected if
at every step i € [r] the clean space F'; is connected. We define the parameter mclns(G)
as the minimum cost of a monotone, complete and connected strategy on G against a
lazy robber.
A tree-decomposition (T, F) of a graph G is connected if there exists a node r € V(7))
such that for every node u € V(T'), the subgraph G[V,] is connected, where V,, contains
all the vertices that belong to some bag X; associated with a node t in the u, r-path in
T. We then define the connected treewidth ctw(G) as the minimum width of a connected
tree-decomposition. Figure 2 provides an example where the treewidth and the connected
treewidth of a graph differs.
A layout o of a graph G is connected if for every i € [n], the subgraph G[o<;] is connected.
We let £°(G) denote the set of connected layouts of G. We then define the connected tree
vertex separation parameter as ctvs(G) = min{tcost(G, o) | 0 € LY(G)}.

Figure 2 A series-parallel graph G with tw(G) = 2 and ctw(G) = 3. A connected tree-
decomposition of minimum width is given by the path-decomposition (P, F) where V(P) =
{xh. ...’L‘g} and F = {Xl = {1,&, b72}7X2 = {1,&’,()/72},)(3 = {1,2,0, d},X4 = {1,2,d, 3},X5 =
{1,2,3,c'}, X6 = {1,3,c,d'}, X7 = {1,3,e, f}, Xs = {1,3,¢€, f'}}, the root node being z1.

Let us now state the main theorem of this section.
» Theorem 2. For every connected graph G, we have ctw(G) = ctvs(G) = mclns(G) — 1.

We stress that if in the proof above we use connected path decompositions instead of
connected tree decompositions, we obtain the counterpart of Theorem 2 linking the connected
path-width of a graph to the connected search number against an agile robber and to a
parameter called connected path vertex separation number.

4  General properties of obstructions

A graph class G is closed under contraction, if every graph H, that is a contraction of a
member G of G, also belongs to G. Assume G is closed under contraction, then a graph G
is a contraction obstruction to G, if G ¢ G but H € G for every H < G. Similarly, a graph
parameter k(-) is closed under contraction if for every pair of graphs H and G such that
H <G, k(H) < k(G).

3 These definitions naturally extend to rooted graphs.
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The following lemma, stated in terms of rooted graphs, proves that the parameters ctw(-),
mclns(-) and ctvs(-) are closed under contraction.

» Lemma 3. Let (G1,R1) and (G2, R2) be two q-rooted graphs such that (G1,R1) = (G2, R2).
Then CtVS(Gl7 Rl) < CtVS(G27 Rg)

4.1 Non-biconnected obstructions

We extend the notion of obstruction sets to rooted graphs in the natural manner. For
every ¢ > 1, we let O,E:q) denoted the set containing every ¢-rooted graph G = (G,R),
where ctvs(G) > k and for every proper contraction G’ of G, ctvs(G',R’) < k. We can
prove that an obstruction contains at most one cut vertex, meaning that knowing the set of
biconnected obstructions and of 1-rooted obstructions will be enough to describe the full set
of obstructions.

We now introduce some concepts on graphs. A vertex subset S C V(G) is a separator
if G\ S= G[V \ S] contains more connected components than G. A connected component
H of G\ S is a full S-component of G if Ng(V(H)) = S. We denote by C(G, S) the set
of all full S-connected components of G. We denote by F(G,S) the set containing every
induced subgraph G[S U C] with C € C(G,S). A separator S is a minimal separator if
|F(G,S)| > 2. A minimal separator S is a minimal (x,y)-separator if x and y belong to
different full S-components. A vertex z € V(G) is a cut-vertez if {x} is a separator. The set
of cut vertices of a graph G is denoted C(G). A graph G is biconnected if it is connected
and C(G) = 0. A biconnected component of a graph is any biconnected subgraph of G that
is vertex-maximal. Let z € C(G) be a cut vertex of G. The pair (G, z) is called a s-pair.
If Z € F(G,{z}), then the 1-rooted graph (Z, (z)) is a 1-component of the s-pair (G,x).
Similarly, if {z,y} is a minimal separator of G, then the triple (G, z,y) is called a s-triple.
A 2-rooted graph (H, (z,y)) is a 2-component of the s-triple (G,x,y) if {z,y} is a minimal
separator of G and H € F(G, {z,y}).

A vertex v of a graph G is called k-simplicial if it has degree at most k and its neighborhood
induces a complete subgraph. The proof of the next lemma is presented in Section 4 of the
(attached) full version.

» Lemma 4. For every k > 1 and every connected graph G, G € Oy is not biconnected iff G
contains exactly one cut verter and G € {A® B| A,B € (’),(Cl)}.

The proof of Lemma 4 is a consequence of Lemma 3 and the next two Lemmas .
» Lemma 5. If a connected graph G contains a k-simplicial vertex v, then G ¢ O.

Proof. (sketch) The argument simply follows from the observation that G’ = G — v is a
contraction of G and that extending a connected layout ¢’ of G’ by adding v as the last
vertex yields a connected layout o of G such that tcost(G, o) = tcost(G’, o’). <

» Lemma 6. Let G be a connected graph. If G € Oy and contains a cut vertex v, then the
s-pair (G,v) contains exactly two 1-components and v is the unique cut vertex of G.

Proof. (sketch) Suppose that v is a cut vertex of G € Oy and that Cy,Cy,Cy are dis-
tinct connected components of the graph G — v. It follows from Lemma 3 that for every
i €{0,1,2},ctvs(G[C; U Clit1ymod 3 U {v}]) < k, which implies that for every i € {0,1,2},
ctvs(G[C; U {v}],{v}) < k or ctvs(G[C(it1)moa 3 U {v}],{v}) < k. Using the connected
layouts that certifies these later inequalities, one can build a connected layout ¢ of G such
that tcost(G, o) < k, a contradiction to the fact that G € Oy.

77
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So removing a cut vertex in G leaves exactly two connected components. Suppose that
there exist two cut vertices « and y and let C,, (resp. Cy) be the connected component of
G — x not containing y (resp. of G —y not containing ). Then applying arguments similar as
the ones above to the subgraphs G, = [C, U{z}], G, = G[C,U{y}] and Gy, = G—(C,UC,)
allows to show the existence of a connected layout o of G such that tcost(G,o0) < k, a
contradiction to the fact that G € Oy. |

4.2 On the price of connectivity

We next examine the question of the price of connectivity for connected treewidth. Let
us recall that it is known that the connected pathwidth is a most twice the pathwidth
of a graph. Concerning treewidth, as a consequence of Proposition 1 and of the proof of
Proposition 7 below, we know that there exists graphs of treewidth at most 4 with abritrary
large connected treewidth. Moreover increasing the connected treewidth by one requires to
double the number of vertices.

» Proposition 7 ([24]). For any ng, there is n > ng and an n-vertex graph G such that
mclns(G) € Q(mins(G) - logn).

We strengthen the theorem above by proving that this result also holds when restricting
to series-parallel graphs (that are biconnected graphs of treewidth at most two). Our
construction yields to way more simpler graphs than in [24]. The proof of the next result is
in Section 6 of the full version.

» Theorem 8 (Corollary 2 in the full version). For every k € N, the obstruction set obs(7,°)
contains infinitely many series-parallel graphs.

To prove Theorem 8, we construct an infinite family of series-parallel graphs with
arbitrarily large connected treewidth. For k > 2, we define the family O, = {A®B | A,B ¢
Vi } where Y is the family of 1-rooted graphs Y = (Yj, (r)) that can be constructed as
follows: take any tree T}, rooted at vertex r, such that the distance between every leaf and r
is k and every non-leaf vertex has at least two children; add an apexr vertex z universal to
the leaves of T}; if r has only two neighbors, these neighbors may or may not be adjacent to
each another.

Figure 3 A graph H=Y ® Y’ € Oy with Y = (Y, (r)) € Vs and Y’ = (Y, (r)) € Vs.

Theorem Theorem 8 is based on the following lemma.

» Lemma 9. For every k > 2, Q) C obs< (7).
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Proof. (sketch) We first observe that every l-rooted graph Y = (Y,(r)) € )i can be
constructed from two (or more) graphs Y7 = (Y1, (r1)) € Yx—1 and Yo = (Y2, (ro)) € Vik—1
by identifying their apex vertices and adding a root vertex r adjacent to the roots r1 and ry
of Y, and Y3 (see Figure 3). For any Y;, = (Yi, (r)) € Vi, we define the 2-rooted graphs
Y](f) = (Y, (r, z)) where z is the apex vertex of Y. The proof relies on the following claims,
that for every k > 2: (a) ctvs(Yg)) =k, (b) ctvs(Yy) > k, and (c) for every edge e of Y,
ctvs((Yi /e, (r))) < k.

Let us sketch the argument of the second claim. Consider a connected layout o € L¢(Y},)
and suppose that o; = z. By the connectivity of o, the induced subgraph Yj[o<;] contains
a path P from the root 7 to the apex z. Observe that P contains exactly k + 2 vertices
r,Va,...Vk4+1, 2 and that Yy contains k + 1 internally vertex disjoint paths from the apex z
to r,va,...vg+1. It follows that the supporting set S, (i) contains at least k + 1 vertices.

From the second and the third claims we conclude that every Y = (Yi, (r)) € Mk
belongs to the set O} of 1-rooted obstructions of 7,°. By Lemma 4, we conclude that
Ok C obs< (7). <

5 The obstruction set O,

Thanks to Lemma 4, the non-biconnected parts of Oy can be determined if we identify the
1-rooted obstruction set Oél). To that aim, let us first define the family Bél) = {Y, Ju{Y® |
k > 2]} where Y = (k x RY, () (see Figure 4). It is not difficult to check that these

graphs are 1-rooted obstructions.
: Yy
Z
y T T T x
R Y Y Y

"
x

xT (2)

Y Ry Ri{ Yz T

Figure 4 The rooted graphs R.y, RY, Ry, Y, Yf), Yf), and Y.

It can be easily checked that the three biconnected graphs depicted in Figure 5 belong to
0. We define the set By = {K4, W1, Wo} U{A®B| A,B¢€ Bél)}.

A Y 2

Figure 5 From left to right, the graphs K4, W7, and Ws.

2-twin expansion. Let G = (G,R) be a rooted graph and let S C V(G). We say that S is
a 2-twin family of G if SNV (R) =0, |S| > 2 and there are two vertices a,b € V(G) such
that Vs € S, Ng(s) = {a,b}. We call the vertices a,b the bases of the 2-twin family S. We
say that a graph G’ = (G, R’) is a 2-twin expansion of G if R = R’ and G’ is obtained from
G by adding vertices such that each additional vertex is made adjacent with the base vertices
of some of the 2-twin families of G. Given a class of rooted graphs C we define its 2-twin
expansion texp(C) as the class of rooted graphs containing all 2-twin expansions of all the
graphs in C. We are now ready to state the main result of this section.
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» Theorem 10. A graph G belongs to Ty if and only if it does not contains a graph of
texp(B2) as a contraction, that is Oy = texp(Ba).

5.1 Some elements of the proof of Theorem 10

The set O is closed under twin expansion. We say that a rooted graph G is simplified
if all its 2-twin families have size 2. Given a rooted graph G we denote by G the unique
simplified rooted graph such that G € texp({G}). Given a set C of rooted graphs, we define
C ={G | G € C}. Observe that every graph of By is simplified.

» Lemma 11. A graph G belongs to Oy iff G belongs to Os.

The next lemma is the extension of Lemma 11 to 1-rooted obstructions. Its proof mainly
follows from Lemma 4.

» Lemma 12. Let H = (H, (v)) be a 1-rooted graph. Then H € Oél) if and only if H € Oél).

Simplified obstructions. We now identify sets of simplified graphs, 1-rooted graphs and
2-rooted graphs that are obstructions. Later, we prove that from these sets the full set of
obstructions to 75 can be constructed. The following Lemmas establish that the sets Bél)
and Bs build from the graphs of Figure 4 and Figure 5 are simplified obstructions.

» Lemma 13. If a 1-rooted graph G = (G, (x)) belongs to teXp(Bél)), then G € Oél). If a
graph G belongs to texp(Bs), then G belongs to Os.

Let us now turn to biconnected 2-rooted obstructions. We define the set 352) =
{R™ R™" K7~ ,K}"} of 2-rooted graphs depicted in Figure 6. We say that a bicon-
nected 2-rooted graph H = (H, (z,y)) is elementary if it is texp(B( )) free.

VEHAA -

+ Ty— Y 11/
R™Y K4

Figure 6 The 2-rooted graphs R*Y, R*¥* KV~ , K{" and R},.

» Lemma 14. The set of biconnected graphs in (9( ) s texp(B(Q))

Proof. (sketch) By considering a minimal counter-example, the proof first establishes that
every elementary biconnected 2-rooted graph belongs to 75. Then we check that for every
2-rooted graph G € texp(Bg)), ctw(G) > 3 but every contraction of G belongs to 7. <

Structure of obstructions. Let xy be an edge of a graph G. We say that xy is a separating
edge if the set {z,y} is a minimal separator. We say that xy is a marginal edge if there is a
vertex z such that both (G, z, z) and (G, y, z) are s-triples.

» Lemma 15. Let G be a graph in Oy. If G contains a separating edge xy, then either G
is isomorphic to Wy or G contains a cut-vertex r and the 1-component of the s-pair (G,r)
containing xy is isomorphic to Y.
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» Lemma 16. Let G € Oy be a graph without separating edge. If (G, z,y) is a s-triple, then

1. either every 2-component of (G,x,y) is elementary,

2. or there exists a non-elementary 2-component of (G, x,y), denoted by H= (H,{(z,y)),
such that G\ (V(H) \ {x,y}) cannot be contracted to £ x Ry, for any £ > 2.

From Lemma 15 and Lemma 16, we deduce a series of properties needed to understand
the role of marginal edges and to conclude the characterization of O,.

» Lemma 17. Let (G, z,y) be an s-triple of G € Oo. If (H,(z,%)) is a 2-component of
(G, z,y) that is isomorphic to RY, then z is a cut-vertex.

» Lemma 18. Let (G, x,y) be an s-triple of G € O,. If H is an elementary 2-component of
(G, z,y) without cut-vertex, then H is isomorphic to R,.

» Lemma 19. Let G = (G, (x)) € @él).

1. If (G, z,y) is a s-triple, then none of its 2-components is isomorphic to Ry,,.

2. If H = (H,{z,y)) is an elementary 2-component of an s-triple (G,xz,y), then H is
isomorphic to RY.

Biconnected obstructions. We now have all the ingredients for the proof of Theorem 10.
We start with the identification of the biconnected elements of Os.

» Lemma 20. No biconnected graph in Oy contains a marginal edge.

» Lemma 21. The biconnected graphs in Oy are the graphs Ky, Wi, and Ws.

Proof. (sketch) For a contradiction, we suppose that Oy contains a graph G distinct from
Ky, Wy, and Wy. From Lemma 15, G does not contain a separating edge. As it excludes K4
as a contraction, it contains a degree-two vertex a. Let x and y be the two neighbors of a and

let H = {Hy,...,H,} be the 2-components of the s-triple (G, z,y) with V(Hy) = {a, z, y}.

As G is biconnected, so is every 2-rooted graph in H. We next prove that exactly one of
the 2-rooted graphs in {H;,...,H,}, say Hy, is not elementary. Then by Lemma 18, every
H; € H distinct from H; is isomorphic to Ry,. As G is simplified, we have ¢ < 2. If ¢ = 2,
as Ho ® Hy = 2 x R, as H; is not elementary and as G does not contains a separating edge,
Lemma 16 leads to a contradiction. In the case ¢ = 1, it can be proved that H; contains a
cut vertex, implying the existence of a marginal edge in GG, a contradiction to Lemma 20. <«

Non-biconnected obstructions. The second part of the proof of Theorem 10 identifies the
non-biconnected elements of Os.

» Lemma 22. The non-biconnected graphs in Oy are the graphs in {A® B| A, B € Bél)}.

Proof. (sketch) From Lemma 4 and Lemma 13, it is enough to prove that (’)gl) - Bél). We

assume, towards a contradiction, that there is some 1-rooted graph G = (G, (r)) € @él) \Bél).

Observe that G is Bgl)-free and G is biconnected. From Lemma 15, we can assume that G
does not have separating edges. Let J = 2 x G. As the underlying graphs of the 2-rooted

graphs in B;l) are { Ky, Wy, Wy }-free, Lemma 4 implies that .J is Ba-free and thereby Ky-free.

It can easily be seen that r has more than two neighbors. Also one may consider a 2-tree T’
that contains G as a spanning subgraph and satisfies the following properties

(D1) If an edge is marginal in T then it is also marginal in G.

(D2) If an edge is simplicial in T then one of its endpoints have degree 2 in G.

(D3) If an edge is a separating edge of G, then it is also a separating edge in T'.
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Let z be a neighbor of r. Because of (D3), the edge e = rz is either a marginal or a simplicial
edge of T. We claim that e is marginal. Indeed, if e is simplicial, then from (D2) z has degree
2. Let w be the other neighbor of z. Notice that one of the 2-components of the s-triple
(G,r,w) is isomorphic to R, a contradition to Lemma 19. We now know that e = rz is
a marginal edge. Let ¢ be the base of e. cleanly (G,r,t) is an s-triple and tr ¢ F(G) as G
does not have separating edges. We denote by & = Uy, ..., U, the 2-components of (G, r,1).
Our next step is to prove that all 2-rooted graphs in U are simple. This, together with
Lemma 19 imply that all graphs in U/ are isomorphic to R’. This means that G contains
as a contraction some Yy) for some ¢ > 3. As each such Yy) belongs to Bél) we have a
contradiction. <
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