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SEAL: Sealed-Bid Auction Without Auctioneers
Samiran Bag, Feng Hao, Siamak F. Shahandashti, and Indranil G. Ray

Abstract—We propose the first auctioneer-free sealed-bid auc-
tion protocol with a linear computation and communication
complexity O(c), c being the bit length of the bid price. Our
protocol, called Self-Enforcing Auction Lot (SEAL), operates
in a decentralized setting, where bidders jointly compute the
maximum bid while preserving the privacy of losing bids. In
our protocol, we do not require any secret channels between
participants. All operations are publicly verifiable; everyone
including third-party observers is able to verify the integrity of
the auction outcome. Upon learning the highest bid, the winner
comes forward with a proof to prove that she is the real winner.
Based on the proof, everyone is able to check if there is only one
winner or there is a tie. While our main protocol works with
the first-price sealed-bid, it can be easily extended to support
the second-price sealed-bid (also known as the Vickrey auction),
revealing only the winner and the second highest bid, while
keeping the highest bid and all other bids secret. To the best of
our knowledge, this work establishes to date the best computation
and communication complexity for sealed-bid auction schemes
without involving any auctioneer.

I. INTRODUCTION

Auction is a method of allocating scarce resources based on

competition. Goods or services are sold by offering them to

bidding, and the winner is the bidder who has the highest bid.

From the allocation of bandwidth spectrum to the sales of

antiques, painting and rare collectibles, auction has become

a prevailing practice in our society. It is also commonly

used by governments, e.g., long-term securities are sold in

weekly auctions conducted by the U.S. Treasury to finance

the borrowing needs of the government [1].

In general, there are two types of auctions: open cry and

sealed bid. In an open-cry auction, the price may be ascending

from a reserve price until there is only one bidder left, or

descending from a high price until the first bidder comes

forward willing to pay at that price. The former is often known

as “English auction” while the later “Dutch auction”. In a

sealed-bid auction, each bidder hands over a sealed envelope

containing their secret bid to an auctioneer. The auctioneer

opens all envelopes and declares the highest bidder as the

winner, while keeping losing bids secret. In the first-price

sealed-bid, the winner pays for the highest bid, but in the

second-price sealed-bid, the winner only needs to pay the

second highest bid. The second-price sealed-bid is also called

the Vickrey auction (named after William Vickrey).

There has been extensive research in auction theory to show

the inherent relations between various auction schemes [1].

In particular, the Dutch auction is shown to be strategically
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equivalent to the first-price sealed-bid auction based on game

theory. The English auction is equivalent to the Vickrey

auction under the assumption that bidders evaluate the value of

the item in private. The Vickrey auction is extremely important

in auction theory, as it is strategy-proof. In other words, when

the evaluated values are all private, the best strategy for bidders

is to bid their true evaluation. William Vickrey first developed

the theory for this auction scheme and received a Nobel

prize in 1996. The scheme is thereafter named after him in

recognition of his ground-breaking contributions.

Unfortunately, the Vickrey auction is rarely used in prac-

tice [2]. This is largely due to two reasons, both of which

are related to the distrust on the auctioneer. First, a dishonest

auctioneer might surreptitiously substitute the second highest

price to one slightly below the top price to increase the

revenue. Second, a dishonest auctioneer might disclose the

losing bids to other parties, since the true evaluation of the

auction item is considered a commercial secret.

Since the early work in this field by Franklin and Reiter

in 1996 [3], many sealed-bid e-auction schemes have been

proposed [2], [4]–[10]. However, the past schemes generally

assume the role of an auctioneer (as in traditional sealed-bid

auctions). To mitigate the trust problem about the auctioneer,

researchers propose to apply threshold cryptography or multi-

party computation (MPC) techniques [10], [11] to distribute

the trust from a single auctioneer to two or several. However,

one can never rule out the possibility that the auctioneers may

collude all together to compromise the privacy of the bids [7].

In this paper, we propose to address the trust issue about the

auctioneer by removing the need for any auctioneer completely

from an auction system. We consider a totally decentralized

setting with public verifiability. In this setting, the auction is

run by the bidders themselves without involving any auction-

eer, and all operations are publicly verifiable without any secret

channels. Clearly, generic MPC techniques [12] that require

pairwise secret channels are unsuitable for our purpose. Our

setting is similar to the “bidder-resolved auction” proposed by

Brandt [2], [7], [13], [14]), but Brandt’s schemes also involve a

seller, who actively takes part in the protocol and is trusted not

to collude with bidders. Furthermore, Brandt’s schemes incur

an exponential system complexity O(2c) for computation and

bandwidth usage, c being the bit length of the bid price. No

sealed-bid auction scheme in the past has achieved the linear

system complexity O(c) in a decentralized setting.

Our contributions in this paper are summarized below.

• We propose the first decentralized sealed-bid auction

protocol with a linear computation and communication

complexity O(c), c being the bit length of the bid price.

Our protocol is publicly verifiable without involving

any auctioneer or requiring any secret channels between

bidders.



• We present security proofs to prove the correctness, and

privacy aspects of the protocol, as well as performing

analysis on the system complexity.

• We show how our first-prize sealed-bid auction scheme

can be extended to support second-prize sealed-bid auc-

tions (Vickrey auction) while maintaining the linear sys-

tem complexity.

II. PRELIMINARIES

A. Communication model

Sealed-bid auction can be considered a special instance of

a secure multiparty computation (MPC) problem, in which

participants jointly compute the highest bid without revealing

losing bids. In a typical MPC setting, the communication

model assumes that there exist pairwise secret and authenti-

cated channels between participants, in addition to an authenti-

cated public channel [8], [10], [15]. In the real-world example

of applying MPC to the Danish sugar beets auction, three

appointed auctioneers set up pairs of public and private key,

which were used to establish secure point-to-point channels

between the auctioneers [9]. The existence of secret channels

is not considered a problem in [9], since by design all farmers

are required to trust auctioneers – more specifically, trusting

that at least 2 out of the 3 auctioneers are honest.

In a decentralized setting without any auctioneer, we con-

sider it desirable to remove any secret channels, so all oper-

ations are publicly verifiable. This is especially important for

third-party observers (e.g., the seller) who are not involved

in the protocol, but still want to verify the integrity of the

auction process. Therefore, in our model, we only assume an

authenticated public channel available to all participants. Such

a channel can be realized using physical means or a public

bulletin board, as described in [6], [16], [17].

B. A Modified Anonymous Veto Protocol

A basic building block in our auction protocol is a primitive

that securely computes the logical-OR of binary inputs without

revealing each individual bit. We choose to modify Hao-

Zieliński’s Anonymous Veto network (AV-net) protocol [18]

for our purpose. This protocol is chosen for its optimal effi-

ciency in terms of the number of rounds, the computation and

the communication bandwidth. However, we need to modify

the original scheme to make it applicable to our system.

The modified AV-net protocol works as follows. Assume a

group of n voters who wish to find out if there is one voter

who would like to veto a motion. In other words, they wish

to securely compute the logical-OR function of a number of

input bits, each bit coming from a separate entity. Let G be a

group of p elements in which the Decisional Diffie-Hellman

problem is assumed to be intractable. Let g be a random

generator of G. All computations in G are modular operations

with respect to a prime modulus q, but we omit the mod q
notation for simplicity. Each voter Vi holds a secret bit

vi ∈ {0, 1}, and they compute the logical-OR
∨n

i=1 vi in

two rounds. For any two integers a and b, where a < b, we

denote by [a, b], the set: {a, a+ 1, . . . , b}.

Round I: Each voter Vi : i ∈ [1, n] chooses two random

elements (xi, ri) ∈ Z
2
p and computes Xi = gxi , Ri = gri .

Vi posts (Xi, Ri) on the public bulletin board, together with

non-interactive zero-knowledge (NIZK) proofs [19], [20]

to prove the knowledge of xi and ri, respectively, using

Schnorr’s signature [18].

Round II: Each voter Vi : i ∈ [1, n] computes

Yi =
∏i−1

j=1 Xj/
∏n

j=i+1 Xj . Vi also computes an encrypted

ballot bi and posts it on the bulletin board together with a

NIZK proof to show bi is well-formed.

bi =

{

Y xi

i if vi = 0
Rxi

i if vi = 1

The NIZK proof in the second round is to prove the following

statement: (bi = Y xi

i ) ∨ (bi = Rxi

i ). Note that the first term is

equivalent to proving {Xi, Yi, bi = Y xi

i } is a DDH tuple and

the second term equivalent to proving {Xi, Ri, bi = Rxi

i } is a

DDH tuple. Thus, the NIZK proof on the well-formedness of

bi is a disjunctive proof of two sub-statements. More details

on the zero-knowledge proofs can be found in the Appendix.

After the second round, everyone can compute B =
∏n

i=1 bi
after fetching the ballots bi : i ∈ [1, n] from the bulletin board.

It is easy to see that if every input is 0, B = 1; otherwise, if

at least one input is 1, B 6= 1 with overwhelming probability

(i.e., B is a random element in G). Hence, the logical-OR of

all input bits has been securely computed by all participants

without revealing the value of each individual bit. The key

element in this protocol is the fact that
∏

i Y
xi

i = 1, i.e., the

random factors xi are all canceled out. For a proof of this fact,

the reader is referred to [18].

Our modified veto protocol differs from Hao-Zieliński’s AV-

net protocol [18] in that we use two random variables, xi and

ri, while AV-net only uses one. This requires more computa-

tion from each participant, but the (asymptotic) computation

and communication complexity remains the same as AV-net.

In AV-net, the ‘1’ vote (or the ‘veto’ vote) is encoded by

raising a pre-defined generator to the power of a random

variable, while in the modified veto protocol, the ‘1’ vote

is encoded by raising a random generator to the power of

a pre-defined exponent (namely, xi). This modification allows

us to effectively integrate the veto protocol into the e-auction

scheme as some zero-knowledge proofs will require proving

the equality of the exponents. This should become clear after

we explain the details of the a-auction scheme in the next

section. In the rest of the paper, we will simply refer to the

modified anonymous veto protocol as the “veto protocol”.

C. Intuition Behind the Scheme

First, we explain the high-level intuition of the protocol.

Assume there are n bidders denoted as Vi, i ∈ [1, n]. The

binary representation of each bid contains c bits.1 For any

bid price pi, i ∈ [1, n], let pi1||pi2|| . . . ||pic be the binary

representation of pi, with || denoting concatenation.

1The bid may fall in a sub-range of [0, 2c−1]. We do not consider this detail
since we are mainly concerned with the system complexity of the protocol.
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The protocol has two phases. In the first phase, every bidder

Vi commits their bid pi on a public bulletin board. In the

second phase, all bidders jointly compute the maximum bid

bit-by-bit, starting from the most significant bit.

As an example, we start from the most significant bit

position on the left, as shown in Figure 1. We denote this

starting position as j = 1. We use the modified anonymous

veto protocol as a basic building block to compute the logical

OR of the input bits without revealing individual bits. Now

every bidder Vi uses a bit dij (j = 1) as the input to this veto

protocol, with a NIZK proof to prove that dij = pij without

revealing the committed bit. All bidders are able to compute

the logical OR of all dij bits for the first bit position (j = 1).

Tj = d1j ∨ d2j ∨ . . . ∨ dnj (1)

At each iteration for j = 1, 2, . . ., when the logical OR

result Tj is 1, we call this bit position a deciding position;

otherwise, we call it a non-deciding position. We use
←−
j to

denote the deciding position that immediately precedes the

jth bit position (
←−
j will always return a valid bit position in

the context of our protocol after the first deciding position is

past).

The first deciding position is called a junction (see Figure 1).

This is where Tj = 1 (j = 1, 2, . . .) for the first time. After

this junction, bidders still use the veto protocol to compute

the logical OR of the input bits, but the rule for specifying

the input bit is different. Instead of using a bit that must be

the same as the committed bit, each bidder uses the bit dij =

pij ∧ d
i
←−
j

, where
←−
j denotes the previous deciding position

before j. In addition, each bidder provides a zero-knowledge

proof to prove the following statement.

(

dij = pij AND d
i
←−
j
= 1

)

OR
(

dij = 0 AND d
i
←−
j
= 0

)

(2)

The zero-knowledge proof statement in Equation 2 is the

key to our auction protocol. Essentially, it enforces the fol-

lowing behavior: at each deciding bit position, if the bidder

Vi’s committed bit in the corresponding position is 0, it means

Vi has lost, hence in all subsequent bit positions, Vi is enforced

to use 0 as the input to the veto protocol. However, the bidders

do not need to reveal whether they have already lost or they

are still in the race. Losing bidders simply follow through the

rest auction procedure so no information about their bids will

be revealed. The guarantee of the privacy for the losing bids

provides an incentive for losing bidders to follow through the

rest of the process. In practice, bidders often pay a deposit and

get it refunded after showing that they have honestly followed

the auction rules. This gives another incentive for all bidders

to complete the whole auction protocol. At the end of the

auction, every bidder, as well as any observer, can compute

the maximum bid, but without learning losing bids. In the next

section, we will explain details of building a secure sealed-bid

auction scheme based on this intuition.

III. OUR MAIN PROTOCOL

A. Requirements

Our main protocol is called Self-Enforcing Auction Lot2.

We design the protocol to fulfill the following requirements.

1) Public verifiability. All operations in the auction process

are publicly verifiable. No secret channels are required

between participants. Only an authenticated public chan-

nel is available to all participants (which can be realized

by using a public bulletin board as in [8], [16], [17]).

2) Correctness. The protocol is guaranteed to output the

highest bid with proofs that everyone is able to verify.

3) Losing-bid privacy. While the protocol outputs the high-

est bid, the privacy of losing bids should be preserved,

as we formally define below.

In the generic definition of input privacy in MPC, each

participant is limited to learn nothing more than their own

input and the output of the function [12]. Based on this,

we define inclusive-privacy for sealed-bid auction, in which

participants perform a secure computation of a max function.

We call it “inclusive” as the function includes inputs pi from

all participants, i ∈ [1, n].

Definition 1 (Inclusive-privacy): In an auction protocol

that satisfies inclusive-privacy, each bidder Vi learns nothing

more than their own input and the output of the function

fmax(p1, . . . , pn).

We slightly modify the above definition by excluding the

bidder’s own input from the inputs of the function and intro-

duce exclusive-privacy as defined below. Here we consider a

more general case where a set of bidders may collude together.

Let C be a set of colluding bidders and H be the rest of the

bidders, i.e. C ∪ H = [1, n]. Let θ be the size of H and

hi ∈ H , i ∈ [1, θ]. At minimum, C contains only one bidder,

but in the general case, it may contain any number of bidders.

Definition 2 (Exclusive-privacy): In an auction protocol that

satisfies exclusive-privacy, C learns nothing more than their

own input and the output of the function fmax(ph1
, . . . , phθ

).

The generic definition of privacy (namely, inclusive-privacy)

is commonly used in the past MPC literature, whereas we

consider the latter definition of privacy, i.e. exclusive-privacy

in the publicly verifiable setting. Protocols that use general

MPC techniques have been shown to be able to satisfy the

strong notion of inclusive-privacy, but this relies on several

important assumptions [12]. First of all, the privacy of inputs

depends on pairwise secret channels between participants,

which however do not exist in our setting. Second, normally

the majority of the participants are assumed to be honest. In

our case, we consider the vast majority of participants (up

to n − 2) may be dishonest; in the extreme case, as long

as there is at least another honest bidder in H , the bidder’s

privacy should still be preserved (if all bidders except one are

dishonest, the privacy guarantee for the remaining bid would

not be meaningful since dishonest bidders can trivially find

out the bid by supplying zeros as their own inputs). In such a

2In the auction terminology, a “lot” is an item or set of items for sale.
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Fig. 1: Example of an execution of our protocol, starting with three bids: 10, 9, and 7, and calculating the maximum bid, i.e.,

10, in five steps.

setting, general MPC protocols cannot assure any privacy of

inputs at all.

Therefore, although exclusive-privacy is a slightly weaker

notion of privacy, our protocol guarantees a much stronger

assurance of privacy in practice than general MPC protocols

in a setting where no pairwise secret channels exist and a vast

majority of participants may be compromised. We should also

highlight that even with an ideal MPC protocol (say based on a

simulated trusted third party) that provides inclusive-privacy,

colluding bidders can always find out the maximum of the

inputs of the non-colluding set by supplying 0s as their inputs.

Hence, the difference between the two notions is subtle. As

we will explain in Section III-C, allowing a bidder to find out

the maximum of the other bids can prove crucially useful in

the context of an auction system, especially in constructing an

efficient Vickrey auction scheme and in detecting a tie. In the

following section, we will present a decentralized first-price

sealed-bid auction protocol that guarantees exclusive-privacy,

and in the meanwhile achieves a linear system complexity with

respect to the bit length of the bid.

B. Protocol

Let G = 〈g〉 be the same group mentioned in Section II-B.

Our protocol has c iterations, c being the number of bits in

the binary representation of bid-prices. The bid price by Vi is

expressed in the binary form as: pi = pi1||pi2|| . . . ||pic, where

pij ∈ {0, 1}, with pi1 being the most significant bit and pic
the least significant bit.

a) Commit: In the Commit phase, bidders commit their

bids to the public bulletin board. Each bidder Vi computes c
commitments, each one for a bit of pij , for j ∈ [1, c]. In order

to do this, Vi selects random αij , βij ∈R Zp, j ∈ [1, c] and

computes c individual commitments for c distinct bits of pij
as χi = {εij : j ∈ [1, c]}, where :

εij = 〈g
αijβijgpij , gαij , gβij 〉, j ∈ [1, c]

If the Decisional Diffie Hellman assumption holds true in

G, (gαij , gβij , gαijβij )
c
≈ (gαij , gβij , gαijβijg) [21], where

c
≈

denotes computational indistinguishability. Hence, the com-

mitment would not reveal the value of the committed bit pij ,

for all i ∈ [1, n], j ∈ [1, c]. Each bidder Vi posts a NIZK proof

of well formedness of each committed bit in the form of εij .

The NIZK proof shows pij is either 0 or 1 without revealing

which one. The construction of this one-of-two NIZK proof

can be found in [22] and it is also elaborated in the Appendix.

In the second phase, bidders jointly compute the maximum

bid without revealing other bids. This proceeds in two stages

as indicated in Figure 1.

b) Stage 1: Bidders start from the most significant

bit position j = 1, and move to the less significant bit

positions bit-by-bit until they reach a junction where the

logical-OR computation at that bit position is 1 for the first

time (see an example of the junction in Figure 1). In the jth

bit position, bidders apply the two-round anonymous veto

protocol described in Section II-B with private binary inputs

dij , for i ∈ [1, n], with a zero-knowledge proof to prove that

the input bit is the same as the committed one, i.e., dij = pij .

Round 1: Each bidder Vi, i ∈ [1, n] selects two private

keys xij , rij ∈ Zp, stores the private keys and publishes the

corresponding public keys Pubij = (Xij , Rij) = (gxij , grij )
on the bulletin board. The bidder Vi also publishes NIZK

proofs of knowledge of xij = logg Xij and rij = logg Rij

(See the Appendix for the construction of this NIZK proof).

Round 2: Each bidder Vi, i ∈ [1, n] computes a cryptogram

bij =







Y
xij

ij = gxijyij if pij = 0 ( 0-cryptogram);

R
xij

ij = gxijrij if pij = 1 ( 1-cryptogram).

where Yij = gyij =
∏i−1

k=1 g
xkj/

∏n
k=i+1 g

xkj =

g
∑i−1

k=1
xkj−

∑n
k=i+1

xkj . Vi also computes a proof πij of

well-formedness of bij . Vi posts bij and πij on the bulletin

board.

Here, bij is an encrypted ciphertext of dij , and πij is

4



the NIZK proof that serves to prove dij = pij without

revealing the committed bit. Effectively, πij is a proof of the

following logical statement.

(dij = 0 ∧ pij = 0) ∨ (dij = 1 ∧ pij = 1)

The public parameters are Xij = gxij , Yij = gyij , Rij = grij .

Let us assume εij = 〈cij , Aij , Bij〉. If dij = 0, (Xij , Yij , bij)
and (Aij , Bij , cij) are two DDH tuples. Also if dij = 1,

(Xij , Rij , bij) and (Aij , Bij , (cij/g)) are two DDH tuples as

well. So we have to prove a statement that is a logical-OR of

a pair logical-AND sub-statements such that each of the two

sub-statements is logical-AND of two DDH tuples. Thus, the

above statement is equivalent to the following statement (see

[23], [24] and the appendix for the construction of this type

of NIZK proof):
((bij = gxijyij ∧Xij = gxij ∧Yij = gyij )∧(cij = gαijβij ∧

Aij = gαij ∧ Bij = gβij )) ∨ ((bij = gxijrij ∧ Xij = gxij ∧
Rij = grij ) ∧ (cij = gαijβijg ∧Aij = gαij ∧Bij = gβij ))

After the two rounds, all the bidders verify that the NIZK

proofs are correct, and then compute the logical-OR of the

input bits dij for the jth position: Tj =
∨n

i=1 dij . This logical-

OR computation is realized by multiplying bij , i ∈ [1, n]
and comparing the result against 1 (see the veto protocol in

Section II-B). If Tj = 0, all bidders remain in Stage 1, and

move on to compute the logical-OR of the next bit position.

However, if Tj = 1, this means the junction is reached, and

all bidders move to Stage 2.
c) Stage 2: Stage 2 is almost the same as Stage 1,

except that dij is defined differently. Instead of using a

bit that must be the same as the committed one, every

bidder now uses dij = pij ∧ d
i
←−
j

where d
i
←−
j

is the bit

that the bidder used in the previous deciding bit position.

For the completeness, we describe the full details of

Stage 2 below. Assume this stage starts from the jth position,

and iterates towards the lest significant bit position until j = c.

Round 1: Each bidder Vi, i ∈ [1, n] selects two private

keys xij , rij ∈ Zp, stores the private keys and publishes the

corresponding public keys Pubij = (Xij , Rij) = (gxij , grij )
on the bulletin board. The bidder Vi also publishes NIZK

proofs of knowledge of xij = logg Xij and rij = logg Rij .

Round 2: each bidder Vi, i ∈ [1, n] chooses a bit

dij = pij ∧ d
i
←−
j

and computes a cryptogram of dij .

bij =







Y
xij

ij = gxijyij if pij ∧ d
i
←−
j
= 0; ( 0-cryptogram)

R
xij

ij = gxijrij if pij ∧ d
i
←−
j
= 1. ( 1-cryptogram)

where Yij = gyij =
∏i−1

k=1 g
xkj/

∏n
k=i+1 g

xkj =

g
∑i−1

k=1
xkj−

∑n
k=i+1

xkj . Vi also computes a proof πij of well-

formedness of bij . Vi posts bij and πij on the bulletin board.
The NIZK proof πij is a proof of the following logical

statement:

(dij = 1 ∧ (pij ∧ d
i
←−
j
) = 1) ∨ (dij = 0 ∧ (pij ∧ d

i
←−
j
) = 0)

This is equivalent to proving the following logical statement.

(dij = 1∧pij = 1∧d
i
←−
j
= 1)∨(dij = 0∧pij = 0∧d

i
←−
j
= 1)∨

(dij = 0 ∧ d
i
←−
j
= 0).

Let us assume εij = 〈cij , Aij , Bij〉. We express the above

logical statement in terms of the ciphertexts.

(bij = gxijrij ∧ cij = gαijβij · g ∧ b
i
←−
j
= gxi

←−
j
r
i
←−
j )

∨ (bij = gxijyij ∧ cij = gαijβij ∧ b
i
←−
j
= gxi

←−
j
r
i
←−
j )

∨ (bij = gxijyij ∧ b
i
←−
j
= gxi

←−
j
y
i
←−
j )

(3)

The public parameters are Xij = gxij , Yij = gyij , Rij =
grij , Aij = gαij and Bij = gβij , X

i
←−
j

= gxi
←−
j , Y

i
←−
j

=

gyi
←−
j , R

i
←−
j
= gri

←−
j . Notice that if dij = 1, pij = 1 and d

i
←−
j
=

1, (Xij , Rij , bij), (Aij , Bij , cij/g) and (X
i
←−
j
, R

i
←−
j
, b

i
←−
j
) are

three DDH tuples. Also if dij = 0, pij = 0 and d
i
←−
j

= 1,

(Xij , Yij , bij), (Aij , Bij , cij) and (X
i
←−
j
, R

i
←−
j
, b

i
←−
j
) are three

DDH tuples as well. Lastly, if dij = 0 and d
i
←−
j

= 0,

(Xij , Yij , bij) and (X
i
←−
j
, Y

i
←−
j
, b

i
←−
j
) are two DDH tuples.

So we have to prove a statement that is a logical-OR of

three logical-AND sub-statements. In each of the three sub-

statements, we essentially prove the items form valid DDH

tuples such that each of the three sub-statements is a logical-

AND of two/three statements in the form of DDH tuples. The

construction of a NIZK proof for the above statement can be

found in [23], [24]. It is also described in the Appendix.

After the second round, all bidders, as well as anyone

else with a read access to the bulletin board, can check all

NIZK proofs, and compute Tj =
∨n

i=1 dij based on the veto

protocol described in Section II-B. The bidders follow the

same procedure to iterate through the rest of bit positions. The

logical-OR output from each of the c bit positions constitutes

the binary representation of the highest bid, i.e. the highest

bid is T1||T2|| · · · ||Tc in binary format. Once, the highest bid

is computed, the winning bidder Vw can come forward and

prove that she is indeed the real winner either by opening

her commitments {εwj : j ∈ [1, c]} or by revealing the

randomness xwκ = logg Xwκ used in the last deciding bit

position allowing everyone else to decipher the cryptogram

submitted by her in the iteration corresponding to the last

deciding bit position. It is easy to see that only the winner(s)

would submit 1-cryptogram(s) in the iteration corresponding

to the last deciding bit position. Based on xwk, everyone is

able to verify if there is only one winner of if there is a tie.

C. Extension to Vickrey auction

Our main protocol is described for the first-price sealed-bid

auction. A straightforward way to extend it to support second-

price sealed-bid (i.e., Vickrey auction) works as follows. The

protocol is first run to identify the highest bid and the winner,

and then run the second time with the winner excluded to

compute the second-highest bid. The bidder who commits the

second-highest bid remains anonymous. The winner pays the

second-highest bid in the end. (Imagine an MPC protocol on

the max function that satisfies the generic inclusive privacy in

Definition 1, this would naturally be the method of extension

to support the second-price sealed-bid auction.) However, the

highest bid will be revealed, which is not strictly necessary,

and may cause some privacy concerns.

We describe a more efficient and privacy-preserving method

to support the Vickrey auction. In this method, the bit iterations
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will only need to be run once and the highest bid remains

secret. This method is only possible because it builds on the

exclusive privacy in Definition 2. As we will show in the

proof of Theorem 2, at each jth bit iteration, every bidder

Vk learns nothing more than
∨

i∈[1,n]\k dij . Therefore, at each

bit iteration, the bidder who remains a winner can learn if she

is the only winner in the race. Thus, if the bidder finds that

she has submitted the sole one bit in that bit iteration and thus

has become a confirmed winner, she declares herself as the

winner and steps aside to let other bidders continue. Those

losing bidders reset the output of that winning iteration to be

0 and make it a non deciding iteration. Losing bidders then

continue executing the rest of the steps as specified in the main

protocol. This would reveal the next highest bid, while hiding

the c− j least significant bits of the highest bid.

IV. ANALYSIS OF THE SEAL PROTOCOL

In this section, we present security proofs to prove the cor-

rectness and the privacy aspects of our protocol. We will focus

on the main protocol for the first-prize sealed bid. The same

proofs apply to the second-prize sealed bid straightforwardly.

A. Correctness

The following theorem proves that our scheme is correct

and it yields the highest bid price of the winner.

Theorem 1: The e-auction scheme discussed above is cor-

rect.

Proof: Let us assume the c bits output by the protocol are

last[1 → c]. We need to show that last[j] = pwj for all

j ∈ [1, c], where pw is the winning bid of the winning bidder

Vw. Let m be the last iteration of Stage 1. Hence, according to

the protocol
∨n

i=1 pim = 1 and for all j ∈ [1,m−1], last[j] =
∨n

i=1 pij = 0. This essentially means that last[j] = pwj for

j ∈ [1,m].
Now, after iteration m the algorithm shifts from Stage 1 to

Stage 2. In Stage 2, all cryptograms generated by a bidder

Vi correspond to the logical-AND of the bit at the current

position (dij) and the value of the bit d
i
←−
j

submitted in the

most recent deciding iteration
←−
j such that last[

←−
j ] = 1 and

for all t ∈ [
←−
j + 1, j − 1], last[t] = 0. Thus, we need to

prove that in any iteration j in Stage 2 if
∨n

i=1 dij = 1, then

pwj = 1 and if
∨n

i=1 dij = 0, then pwj = 0. We prove it

by method of induction. Without loss of generality, we may

assume that last[t] = pwt, ∀t ∈ [1, j−1]. So, we need to prove

that last[j] = pwj . Now, last[j] =
∨n

i=1 dij =
∨n

i=1 pij ∧

d
i
←−
j
= pwj ∧dw←−j ∨

(

∨

i∈[1,n]\{w} pij ∧ d
i
←−
j

)

. But, according

to our assumption, d
w
←−
j

= 1. Thus, last[j] =
∨n

i=1 dij =
∨n

i=1 pij∧di←−j = pwj∨
(

∨

i∈[1,n]\{w} pij ∧ d
i
←−
j

)

. If pwj = 1,

last[j] = pwj trivially holds. We shall have to prove that

(pwj = 0) =⇒
(

∨

i∈[1,n]\{w} pij ∧ d
i
←−
j

)

= 0. If the above

statement does not hold then there will be at least one bidder

Vη, η ∈ [1, n] \ {w}, such that pηj = d
η
←−
j
= p

η
←−
j
= 1. This

essentially means that pηt = last[t] = pwt for all t ∈ [1, j−1]
and pηj = 1, pwj = 0. This means that the bid price pη of Vη

is higher than that of Vw. This is a contradiction as according

to our assumption Vw is the highest bidder and hence pw ≥ pη .

So, we conclude that the scheme is correct and it yields the

maximum bid price, that is last[j] = pwj , ∀j ∈ [1, c]. �

B. Privacy of losing bids

In this section, we prove that our protocol satisfies the

exclusive privacy requirement in Definition 2. More specif-

ically, when the colluding set do not contain the winner,

they will learn nothing more than their own inputs and the

highest bid; in this case, the definitions of inclusive privacy

and exclusive privacy are equivalent. When the colluding set

contain the winner, they will learn no more than the highest

bid of the non-colluding set under the Decision Diffie-Hellman

(DDH) assumption [21]; they learn the highest bid of the non-

colluding set only in the worse case that the winner is decided

at the last bit iteration (Theorem 2).

Assumption 1 (DDH Assumption [21]): Given g, ga, gb and

a challenge Ω ∈ {gab, R}, where R
$
← G, it is computationally

hard to find whether Ω = gab or Ω = R.

Lemma 1: Let G be a group in which the DDH assumption

holds. Given g, ga, gb, gc and a challenge Ω ∈ {gab, gbc}, it is

computationally hard to find whether Ω = gab or Ω = gbc.

Proof: Let R be a random element in G. Based on the DDH

assumption, (g, ga, gb, gc, gab)
c
≈ (g, ga, gb, gc, R). Similarly,

(g, ga, gb, gc, gac)
c
≈ (g, ga, gb, gc, R). Since computational

indistinguishability is an equivalence relation, the same is

also a transitive relation. Thus, we have (g, ga, gb, gc, gab)
c
≈

(g, ga, gb, gc, gac). �

Lemma 2: Based on the DDH assumption, given g, Sx =
{gxi : i ∈ [1, n]}, Sy = {Yi : i ∈ [1, n]}, Yi = gyi =
∏i−1

j=1 g
xj/

∏n
j=i+1 g

xj , i ∈ [1, n], w, t ∈ [1, n], w 6= t, R =
{Ri = gri : i ∈ [1, n] \ {w, t}}, grw , grt , φ ⊆ {xi :
i ∈ [1, n] \ {w, t}} and a challenge Ω ∈ {A,B}, it is

computationally hard to find if Ω = A or Ω = B, where:

A =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtyt , . . . , gxnzn)

B =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtrt , . . . , gxnzn),

where zi is either yi or ri for i ∈ [1, n] \ {w, t}, and φ is

chosen by the attacker.

Proof: We show that if there exists an adversary A′, against

the statement of Lemma 2, she can be used to construct

another adversary A against Assumption 1. A works as

follows:

A receives as input g, ga, gb, gc and a challenge

Ω ∈ {gab, gac}. Then she lets A′ select random

x1, x2, . . . , xw−1, xw+1, . . . , xt−1, xt+1, . . . , xn, r ∈R Zp.

Then she sets Xi = gxi for i ∈ [1, n] \ {w, t} and

Xw = gxw = gb, Xt = gxt = ga, that is she implicitly sets

xw = b and xt = a. She also computes

Yi =
i−1
∏

j=1

Xj/
n
∏

j=i+1

Xj , ∀i ∈ [1, n] \ {w, t}
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She sets ωi ∈R {Y
xi

i , Rxi

i }, ∀i ∈ [1, n] \ {w, t}, and

ωw =(Xw)
rw ,

ωt =

w−1
∏

i=1

(Xt)
xi

t−1
∏

i=w+1

(Xt)
xi/

n
∏

i=t+1

(Xt)
xiΩ.

If Ω = gab, then

ωt =

w−1
∏

i=1

(Xt)
xi ∗

t−1
∏

i=w+1

(Xt)
xi/

n
∏

i=t+1

(Xt)
xi ∗ gab

=

t−1
∏

i=1

(Xt)
xi/

n
∏

i=t+1

(Xt)
xi .

Let, ω = (g, φ, ω1, ω2, . . . , ωn). Hence, if Ω = gab,

ω =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtyt , . . . , gxnzn)

=A,

where xw = b and xt = a. Alternatively, if Ω = gac, then

ωt =

w−1
∏

i=1

(Xt)
xi ∗

t−1
∏

i=w+1

(Xt)
xi/

n
∏

i=t+1

(Xt)
xi ∗ gac

=(gxt)c+
∑w−1

i=1
xi+

∑t−1

i=w+1
xi−

∑n
i=t+1

xi

=gxtrt ,

where rt = c+
∑w−1

i=1 xi+
∑t−1

i=w+1 xi−
∑n

i=t+1 xi or grt =

gc ∗ g
∑w−1

i=1
xi+

∑t−1

i=w+1
xi−

∑n
i=t+1

xi . Thus, if Ω = gac,

ω =(g, φ, gx1z1 , gx2z2 , . . . , gxw−1zw−1 , gxwrw , gxw+1zw+1 , . . . ,

gxtrt , . . . , gxnzn)

=B.

Now, A can send Sx = {Xi : i ∈ [1, n]}, grw , grt and ω to A′.
A′ will identify ω as either A or B. If ω = A, then Ω = gab.

Else if ω = B, then Ω = gac. Thus, with the help of A′, we

can construct an adversary A that can break Assumption 1.

Hence, the lemma holds.

�

Lemma 3: Let C be a set of colluding bidders and H be

the set of honest bidders. C ∪ H = [1, n]. Let θ = |H|. Let

us assume dhij is the bit corresponding to the cryptogram

submitted in iteration j by Vhi
for hi ∈ H, i ∈ [1, θ] and

dcij is the bit corresponding to the cryptogram submitted in

iteration j by Vci for ci ∈ C, i ∈ [1, n − θ]. The colluding

bidders learn nothing more than
∨θ

i=1 dhij .

Proof: In an iteration j ∈ [1, c], if Kj =
∨θ

i=1 dhij = 0,

the colluding bidders will obviously learn that dhij = 0 for

all hi ∈ H, i ∈ [1, θ]. We shall have to prove that when Kj =
∨θ

i=1 dhij = 1, the colluding bidders will not learn any other

information. In order for proving this fact it is sufficient to

show that

1) the colluding bidders will not be able to distinguish

between the two cases where Kj =
∨θ

i=1 dhij = 1,

but the number of bidders who submitted 1-cryptogram

is different.

2) if two honest bidders who submitted different bits ex-

change their inputs, then this cannot be detected by the

adversary.

We choose two scenarios in which a particular honest bidder

submits different cryptograms: i.e in one scenario the bidder

submits a 0-cryptogram and in the other one she submits a 1-

cryptogram. We show that if the value of Kj is 1 in both the

scenarios, then the two scenarios will be indistinguishable to

the adversary (colluding bidders). Once we prove these results,

they could be easily extended to show that the statement of the

above lemma holds. Let us assume that the public keys used

by the colluding bidders are (Xci , Rci) = (gxci , grci ), ci ∈
C, i ∈ [1, |C|]. Similarly, the public keys of the honest bidders

will be (Xhi
, Rhi

), hi ∈ H, i ∈ [1, θ]. The cryptograms of

the colluding bidders will be gxci
zci , where zci ∈ {yci , rci}.

Let, φ = {xci : i ∈ [1, |C|]}. Now, let us assume that one

honest bidder Vhw
has submitted a 1-cryptogram in the form:

gxhw rhw . As such we need to show that the colluding bidders

will not be able to find whether or not there is another bidder

Vht
, ht ∈ H, t ∈ [1, θ] who also submitted a 1-cryptogram.

If Vht
submitted a 1-cryptogram, then her cryptogram will be

this: bht
= gxhw rhw , and if she submitted a 0 cryptogram, her

cryptogram should look like this: b′ht
= gxht

yht , where the

notations bear usual meanings as they do in the paper. Now,

according to Lemma 2, no adversary can distinguish between

A and B, where

A =(φ, b1, b2, . . . , bhw
, . . . , bht

, . . . , bn)

B =(φ, b1, b2, . . . , bhw
, . . . , b′ht

, . . . , bn).

Hence, the colluding bidders will not be able to distinguish

between two cases where the value of Kj =
∨θ

i=1 dhij is

1, but the number of bidders Vhi
, hi ∈ H who submitted 1-

cryptogram in iteration j is different.

Let us assume bhe
= gxherhe and b′he

= gxheyhe for e ∈
{w, t}. Now, observe that

B =(φ, b1, b2, . . . , bhw
, . . . , b′ht

, . . . , bn)
c
≈(φ, b1, b2, . . . , bhw

, . . . , bht
, . . . , bn)

c
≈(φ, b1, b2, . . . , b

′
hw

, . . . , bht
, . . . , bn).

Hence, the colluding adversary will not be able to distinguish

between two cases where a pair of honest bidders exchange

the value of their submitted bits whose values are complement

to each other. This way anyone can prove that as long as at

least one bidder submits a 1-cryptogram in any iteration, the

colluding bidders will not be able to distinguish between the

set of all possible cryptograms corresponding to all possible

values of the bits submitted by honest bidders. What the

colluding bidders learn is the logical-OR of all bits submitted

by all honest bidders which is given by Kj =
∨θ

i=1 dhij ,

j ∈ [1, c].
�

Theorem 2: The proposed e-auction scheme satisfies the

exclusive-privacy in Definition 2.

Proof: Based on Lemma 3, at each bit iteration the colluding

set learn nothing more than Kj =
∨θ

i=1 dhij , j ∈ [1, c]. Here

dhij is the bit submitted by Vhi
at the jth iteration; it is equal

to the actual bid value bhij only if the bidder Vhi
remains

7



in the race (she will have to submit 0 if she has lost in the

race as enforced by the ZKP in Eq. 2). Assume the winner is

decided at the βth iteration, 1 ≤ β ≤ c. If the colluding set

do not contain the winner, the bit value Kj that they learn is

the same as the jth most significant bit in the highest bid. In

other words, they learn nothing more than the highest bid of all

bidders. However, if the colluding set contain the winner, they

can learn K1||K2|| . . . ||Kβ , which are the β most significant

bits of the maximum bid of the non-colluding set H . The

colluding set will learn the maximum bid of the non-colluding

set in the worse case when β = c (namely, the winner is only

decided in the last bit iteration). Hence, the result. �

V. EFFICIENCY OF THE SCHEME

First, we discuss the computation overhead of our protocol.

Since exponentiation is the costliest operation in our scheme,

we measure the computation cost in terms of the number of

exponentiations performed by a single entity. During the setup

phase, each bidder generates commitments to each of the c bits

of its bid-price. Each commitment requires 3 exponentiations.

Hence, the total number of exponentiations required is 3c.
In order for generating NIZK proof of well-formedness of

the commitments, the bidder needs to do 8c exponentiations.

In every iteration of Stage 1, a bidder generates a pair

of keys, publishes the public key and a cryptogram which

encrypts a single bit. Computation of the public key requires

2 exponentiations. Also, the computation of the cryptogram

requires 1 exponentiation. The zero knowledge proofs in Stage

1 require 14 exponentiations. Thus for one each iteration of

Stage 1 a bidder needs to do 17 exponentiations. If there

are τ iterations of Stage 1, then each bidder will need to

perform 17τ exponentiations. Similar to Stage 1, in Stage

2, each bidder will need to perform 3 exponentiations in

order to generate the keys and the cryptogram in an iteration.

Again, computation of the NIZK proofs requires at most 30

exponentiations in every iteration of Stage 2. Hence, each

bidder needs to perform 33 exponentiations per iteration of

Stage 2. Since, the sum of all iterations of Stage 1 and Stage

2 is c, the total number of iterations of Stage 2 is c − τ .

Thus, each bidders performs 33(c− τ) exponentiations in all

the c − τ iterations of Stage 2. Therefore, the total number

of exponentiations done by a single bidder during all the

3 phases (Setup, Stage 1 and Stage 2) is 44c − 16τ . The

verifier needs to perform 48c − 16τ exponentiations in order

to check all the NIZK proofs generated by a single bidder

during the auction process. Table I shows a break-down of the

computation overhead on a bidder and a verifier.

During the setup phase a bidder generates c commitments

corresponding to c bits of the bid-price. Each commitment

is a 3-tuple. The bidder also generates NIZK proof of well-

formedness of the c commitments. Each of such proof consists

of 14 elements. Thus during the setup phase each bidder

generates information of size 17c. During one iteration of

Stage 1, a bidder publishes a key of size 2, a cryptogram

of size 1 and three NIZK proofs of total size 20. Hence, for

τ iterations of Stage 1, the total bandwidth consumed is 23τ .

During one iteration of Stage 2, a bidder generates a key of

size 2, a cryptogram of size 1, three NIZK proofs of total size

equal to 33. So, for c−τ iterations, the total space complexity

turns out to be 36(c−τ). In aggregate, each bidder generates a

total of 53c−13τ units of data. The verifier needs to download

all the data generated by n distinct bidders for examining the

authenticity of the NIZK proofs. Hence, the communication

overhead on the verifier is n times that of a common bidder.

Table II shows a break-down of the communication overhead

on a bidder and a verifier.

Based on Table I and II, we can conclude that with respect

to the bit length c of the bid price, our protocol incurs a

linear complexity O(c) for both the computational load and

the bandwidth usage. The computation per bidder remains

roughly unchanged with the number of participants n, although

the verification cost increases linearly with more participants.

Assuming that every bidder is also a verifier, responsible for

checking every other bidder’s ZKPs, our protocol incurs a

linear computational and communication complexity O(n),
with respect to the number of participants n. These are the

best possible system complexities that one may hope for.

In practice, the verification of the ZKPs may be centrally

performed by the public bulletin board before the data is

published and every observer is able to check at any time.

This can alleviate each bidder’s task in verifying the ZKPs.

We have implemented the SEAL auction scheme using Java

on a Linux platform. The experiment was done on an Asus A

Series Core i3 laptop (2.10 GHz with 4 GB RAM). We have

plotted four graphs on the basis of the data obtained from

this experiment. Figure 2a depicts the average time needed to

generate the parameters in one iteration of Stage 1 and Stage

2 for different values of c, i.e., the bit-length of the maximum

bid-price. Here we have fixed the number of bidders n at

10. Figure 2b shows the average time needed to generate the

parameters in one iteration of Stage 1 and Stage 2 for different

values of n, the number of bidders. Here, we have fixed the

value of c at 10. Figure 2c depicts the average time needed to

generate the c commitments by one bidder for different values

of c with n = 10. Figure 2d depicts the average time needed to

generate the commitments by one bidder for different values

of n with c = 10.

It can be observed from Figure 2a and 2b that the time

required to finish one iteration in Stage 1 and Stage 2 remains

almost the same irrespective of the number of bidders or the

value of c. In other words, if there are a iterations of Stage 1

and c−a iterations of Stage 2, then the total time to complete

all the c iterations will be a · t1 + (c − a) · t2, where t1 and

t2 are the time required to complete exactly one iteration at

Stage 1 and 2 respectively. So, the time to execute all the c
iterations will be upper-bounded by the the time to complete

c iterations of Stage 2. Figure 2c shows that the time taken

to generate all the commitments for all the c bits of one bid-

price also increases linearly with the increase of the value of c
when the number of bidders is constant. Additionally, Figure

2d shows that the time to compute the commitments for all the

c bits of the bid-price of one bidder does not depend on the

number of bidders. We therefore conclude that the overall time

required to finish the auction protocol per bidder (including

the time to generate commitments and the time to execute c
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Setup Stage 1 Stage 2

Entity Commitment ZKP Key Cryptogram ZKP Key Cryptogram ZKP Total

Bidder 3c 8c 2τ τ 14τ 2(c− τ) (c− τ) 30(c− τ) 44c− 16τ

Verifier - 12nc - - 20nτ - - 36n(c− τ) 48nc− 16nτ

TABLE I: The number of exponentiations in computational load. Here, c is the length of the binary representation of a bid-price.

n is the total number of bidders and τ is the number of iterations of Stage 1.

Setup Stage 1 Stage 2

Entity Commitment ZKP Key Cryptogram ZKP Key Cryptogram ZKP Total

Bidder 3c 14c 2τ τ 20τ 2(c− τ) (c− τ) 33(c− τ) 53c− 13τ

Verifier 3nc 14nc 2nτ nτ 20nτ 2n(c− τ) n(c− τ) 33n(c− τ) 53nc− 13nτ

TABLE II: Communication bandwidth (in total number of G and Zp elements). Here, c is the length of the binary representation

of a bid-price. n is the total number of bidders and τ is the number of iterations of Stage 1.

iterations of the main protocol) is linear in the bit length c
of the highest bid-price irrespective of the number of bidders.

This corroborates the theoretical analysis in Table I. Obviously,

the communication bandwidth per bidder scales linearly with

the bit length of the bid price as well given the constant size

of the message sent at each bit iteration for both Stage 1 and

2 (see Table II).

VI. RELATED WORK

Sealed-bid e-auction can be regarded as an instance of se-

cure multiparty computation (MPC) on a max function, where

participants jointly compute the maximum of a set of inputs

while preserving the privacy of other input values. Generic

MPC techniques generally require pairwise secret channels

between the participants, in addition to an authenticated public

channel [12]. However, pairwise secret channels are difficult

to realize among bidders who are mutually distrustful. In ad-

dition, generic MPC techniques suffer from various efficiency

issues [14]. For these reasons, although inspiring in theory,

they are not directly applicable to build a decentralized sealed-

bid e-auction scheme. In the following, we will review main

e-auction schemes in the literature.

Since the early work by Franklin and Reiter in

1996 [3], researchers have proposed many sealed-bid e-auction

schemes [2]–[4], [6]–[10], [16], [17], [25], [26]. Most of these

schemes involve the role of an “auctioneer”, which mirrors

a similar role in traditional auctions. Hence, the mainstream

research in this field focuses on applying cryptography to

distribute trust on the “auctioneer”. In general, there are two

main approaches.

The first approach is to apply threshold cryptography, or

MPC techniques [10] to distribute the trust from a single

auctioneer to several auctioneers. Franklin et al. presented a

second-price sealed-bid auction scheme in [3]. In this scheme,

a number of servers play the role of the auctioneer, and they

apply Shamir’s secret sharing to split each bid among them-

selves so no single server sees all bids. However, if a sufficient

number of servers collude, the secrecy of all bids is lost. Sako

proposed a similar scheme based on threshold cryptography to

let auctioneers jointly decrypt submitted bids [4]. Kurosawa

and Ogata proposed a bit-slice approach for auctioneers to

determine the highest bid, bit by bit, assuming the majority

of the auctioneers are honest [17]. Their system involves m
bidders and n auctioneers. The auctioneers apply secure multi-

party computation on a bit-slice circuit, and decrypt the result

at each bit position using verifiable threshold decryption. The

threshold is set such that compromising the decryption requires

compromising at least the majority of the auctioneers. The

number of rounds required for threshold decryption is O(n·c),
c being the bit length of the bid and n being the number

of participants in the decryption process. The Kurosawa-

Ogata’s method, like many other works [3], [9]–[11], performs

encryption and decryption of bids as two separate phases. By

comparison, in our protocol, the encryption and decryption

operations are more integrated within the constant 2-round

Boolean-OR computation (veto protocol) at each bit iteration,

which results in O(c) rounds in total regardless of the number

of participants. Furthermore, our protocol is free from any

auctioneers. Bogetoft et al. proposed to apply secure MPC

to sealed-bid auction [9], [10]. Their solution was used in

Denmark for auction sales on sugar beets. In Bogetoft et al.’s

solution, the role of the auctioneer is played by three parties.

It is assumed that at least 2 parties must be honest. Cartlidge

et al. proposed an e-auction scheme for dark pools/markets

where all bids are encrypted under a global public key and

the decryption is performed by auctioneers using MPC [11].

They presented two implementations based on the SCALE-

MAMBA library: the first uses the SPDZ protocol [11] to

implement the role of “auctioneer” as two servers assuming

at least one is trustworthy; the second uses Shamir’s secret

sharing to implement the auctioneers as three servers assuming

at least one of them is trustworthy. In all these auctioneer-

based protocols, if auctioneers collude all together, they can

trivially break the privacy of sealed bids.

The second approach is to introduce more trusted third par-

ties in addition to auctioneers. Naor et al. presented a second-

price sealed auction scheme in [5]. This scheme uses two

different auction servers who communicate using an oblivious

transfer protocol. One server takes the role as an auctioneer

and the other as an auction issuer. The two servers are assumed

not to collude. However, the original Naor et al.’s scheme

has a weakness in which one of the two servers can cheat

to modify bids without detection. This weakness was later

addressed by Juels and Szydlo in [8], but the revised scheme

9
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Fig. 2: Time required by a bidder at different stages.

still requires the two servers must not collude. In [26], Abe and

Suzuki proposed an (M + 1)-st price sealed bid auction using

homomorphic encryption and the mix and match technique.

The scheme involves an auctioneer and a trusted authority, who

are assumed not to collude. In [27], Montengero et al. propose

a sealed-bid online auction scheme that employs an auctioneer

and a randomness server. The randomness server is trusted to

provide the randomness for the bidders in the protocol and

not to collude with the auctioneer. In [25], Lipmaa et al.

proposed Vickrey auction schemes that involve a seller and

an auction authority. The seller and the authority authority are

assumed not to collude. In [28], Galal and Youssef proposed

a Vickrey auction system by using the Intel SGX enclave as a

trusted hardware device to compute the winner. Here, the SGX

enclave essentially plays the role as an auctioneer. Similar

solutions based on trusted computing are presented in [29].

Brandt was among the first to argue that neither of the

above approaches is desirable due to the involvement of trusted

auctioneers or third parties. He proposed the notion of “bidder-

resolved auction” and a concrete auctioneer-free solution in [7]

by applying secret sharing techniques. Follow-up works by

Brandt, with improvement in efficiency, are published in [2],

[13], [14]. In all these “bidder-resolved auction” schemes, a

seller is actively involved in the protocol and is assumed not

to collude with bidders. However, as pointed out by Dreier

et al. [30], if the seller colludes with a subset of bidders in

Brandt’s bidder-resolved auctions schemes, they can learn the

bids of other participants. Another major limitation in Brandt’s

schemes is that they incur exponential computational and

communication complexities O(2c), where c is the bit length

of the bid price. Motivated by Brandt’s initial 2002 scheme [7],

Wu et al. remove the seller and propose a decentralized sealed-

bid auction scheme based on a general socialist millionaire

protocol. However, a critical downside of their system is that

the computational load and the bandwidth usage per bidder

is exponential O(2c) with respect to the bit length of the bid

price, which makes their scheme less than practical.

VII. CONCLUSION

In this paper, we propose a publicly verifiable sealed bid

auction scheme that does not require any auctioneer and

has a linear system complexity in terms of computation and

communication with respect to the bit length of the bid.

The bidders execute the protocol themselves and compute

the highest bid while preserving the privacy of losing bids.

Furthermore, our protocol does not require any secret channels

and all operations are publicly verifiable. Overall, our work

removes the dependence on any auctioneer and drastically

reduces the system complexity associated with existing state-

of-the-art auction schemes. This brings secure e-auction much

closer to practice.
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[9] P. Bogetoft, I. Damgård, T. P. Jakobsen, K. Nielsen, J. Pagter, and T. Toft,
“A practical implementation of secure auctions based on multiparty
integer computation,” in Financial Cryptography, vol. 4107. Springer,
2006, pp. 142–147.

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
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APPENDIX

NIZK proof systems used in this paper

In this section we show how the various non-interactive

zero knowledge proofs [19], [20], [24] essential for the imple-

mentation of our proposed auction scheme can be constructed.

Following [18], we propose to include the unique user identity

(i.e., the index i of each participant) into the hash function

when generating the challenge using the Fiat-Shamir transfor-

mation [31]. The inclusion of the user identity is to prevent the

replay of a ZKP by a different party (say back to the sender).

We have provided construction of four different NIZK

proofs. The first proof is for showing the well-formedness

of each commitment posted by the bidders during the setup

phase. This proof allows a bidder to show that the commit-

ments provided by her indeed correspond to bits, rather than

anything else. The second proof shows that the bidder knows

the part of the secret key that will allow her to compute

the cryptogram. This NIZK proof is provided by the bidder

during the key generation sub-phase of Stage 1 and Stage 2.

The last two NIZK proofs are generated by bidders during

each iteration of Stage 1 and Stage 2 and they show the

well-formedness of the cryptograms issued by the bidders.

Examples of first two types of NIZK proofs can be found in

[22], [24], [32]. We provide the construction of NIZK proofs

for cryptogram well-formedness in the following sections.

Construction of this type of NIZK proofs can also be found

in [23].

Well-formedness of Commitments: Each commitment of our

scheme is of the form ε = 〈gαβgv, gα, gβ〉, where v is the

committed bit. The bidder has to provide c commitments, each

for exactly one of the c bits in the binary representation of the

bid-price of that bidder. The construction of the NIZK proof

of well-formedness of the commitment is as follows:

First, given gα and gβ , the bidder needs to prove knowledge

of α = logg(g
α) and β = logg(g

β) using Schnorr’s signa-

ture [18] (See next subsection on well-formedness of public

keys). Then the statement that the prover (bidder) needs to

show is that ε is well formed for v ∈ {0, 1}, that is:

σ ≡ ( φ = gαβ ∧ A = gα ∧ B ≡ gβ )

∨ ( φ = gαβg ∧ A = gα ∧ B = gβ ).
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Note that only one of the statement can be true. Let us assume

that the first statement is correct, that is (φ = gαβ ∧ A =
gα∧B = gβ). So, the prover needs to provide a real proof for

this statement and a simulated proof for the other statement

(φ = gαβg ∧ A = gα ∧ B = gβ). The prover selects random

r1 ∈R Zp and computes following commitments:

ε11 = gr1 , ε12 = (gβ)r1 .

The prover then chooses random ch2, ρ2 ∈R Zp and computes

commitments:

ε21 = gρ2(gα)ch2 , ε22 = (gβ)ρ2(φ/g)ch2 .

Let, ch be the grand challenge of the NIZK protocol. Now,

the bidder computes a response ρ1 = r1 − α · ch1, where

ch1 = ch− ch2. The verification equations are as below:

1) gρ1
?
= ε11

(gα)ch1

2) (gβ)ρ1
?
= ε12

(φ)ch1

3) gρ2
?
= ε21

(gα)ch2

4) (gβ)ρ2
?
= ε22

(φ/g)ch2

If all 4 relations hold then the proof is accepted. The proof

consists of 4 commitments, 2 challenges and 2 responses,

making the space complexity equal to 8. The prover needs

to do 6 exponentiations for generating the proof. The verifier

needs to do 8 exponentiations for verifying them. Again, in

order for showing knowledge of α and β, the prover needs to

do 2 exponentiation and the size of the two proofs will be 6

in total.

Well-formedness of public keys: In each iteration of Stage

1 as well as Stage 2, a bidder selects a random secret key of

the form (x, r) ∈ Z
2
p and publishes the corresponding public

key (X,R) = (gx, gr). The public key comes along with

an NIZK proof that proofs that given a public key (X,R),
the prover knows the discrete logarithm of X with respect

to g. We show how the prover (bidder) can provide NIZK

proof showing the knowledge of the discrete logarithm of

X . The prover generates random r̄ ∈ Zp and computes a

commitment ε = gr̄. Let ch be the random challenge of the

NIZK proof obtained through feeding the commitment and

all other available argument into a random oracle. The prover

generates a response ρ = r̄− ch · x. The verification equation

is: gρ
?
= ε

Xch . The prover needs to do just one exponentiation

for generating the proof that contains one challenge, one

commitment and one response, 3 parameters in total. The

verifier needs to do 2 exponentiations to verify the proof.

Similarly a NIZK proof can be constructed for proving the

knowledge of r = logg R.

NIZK proof of Stage 1: Here, we discuss the construction

of NIZK proofs of well-formedness of cryptograms mentioned

in Stage 1 of the e-auction scheme.

In iteration j, each bidder Vi constructs a NIZK proof πij

of well-formedness of bij . The proof πij proves the following

statement:

σ ≡
(

(bij = gxijyij ∧Xij = gxij ∧ Yij = gyij )

∧ (cij = gαijβij ∧Aij = gαij ∧Bij = gβij )
)

∨
(

(bij = gxijrij ∧Xij = gxij ∧Rij = grij )

∧ (cij = gαijβijg ∧Aij = gαij ∧Bij = gβij )
)

.

For ease of writing, we denote bij as B, xij as x, yij as y,

cij as C, αij as α, βij as β, Xij as X , Yij as Y , rij as r,

Aij as Ā, Bij as B̄ and Rij as R. Hence, σ can be rewritten

as

σ ≡
(

(B = gxy) ∧ (X = gx) ∧ (Y = gy)

∧ (c = gαβ) ∧ (Ā = gα) ∧ (B̄ = gβ)
)

∨
(

(B = gxr) ∧ (X = gx) ∧ (R = gr)

∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ = gβ)
)

.

This is a one-out-of-two statement. Hence, only one of the

two constituent sub-statements is true. That is, either (B =
gxy)∧ (X = gx)∧ (Y = gy)∧ (c = gαβ)∧ (Ā = gα)∧ (B̄ =
gβ)) is true or ((B = gxr) ∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ =
gβ)) is true but not both. We show how a NIZK proof can be

constructed when the first sub-statement is true, i.e. if (B =
gxy)∧ (X = gx)∧ (Y = gy)∧ (c = gαβ)∧ (Ā = gα)∧ (B̄ =
gβ)) is true. The bidder selects random r11, r12 ∈ Zp and

computes these commitments:

ε11 = gr11 , ε12 = gr12 , ε13 = (Y )r11 , ε14 = (B̄)r12

The bidder also selects random ρ21, ρ22 ∈ Zp and ch2 ∈ Zp

and computes ε21 = gρ21(X)ch2 , ε22 = gρ22(Ā)ch2 ,

ε23 = (R)ρ21(B)ch2 , ε24 = (B̄)ρ22(C/g)ch2 . Let,

the grand challenge of NIZK proof be ch. The

bidder computes ch1 = ch − ch2 and two responses

ρ11 = r11 − x · ch1, ρ12 = r12 − α · ch1.

The verification equations are as below:

1) gρ11
?
= ε11

(X)ch1

2) gρ12
?
= ε12

(Ā)ch1

3) (Y )ρ11
?
= ε13

Bch1

4) (B̄)ρ12
?
= ε14

Cch1

5) gρ21
?
= ε21

(X)ch2

6) gρ22
?
= ε22

(Ā)ch2

7) (R)ρ21
?
= ε23

Bch2

8) (B̄)ρ22
?
= ε24

(c/g)ch2

If the above 8 relations hold, the NIZK proof is

authentic. A bidder needs to do 12 exponentiations for

computing the above NIZK proof arguments. The proof

itself consists of 8 commitments, two challenges and 4

responses. Hence, the space complexity of the proof is 14.

Moreover, a verifier needs to do 16 exponentiations for

checking all the arguments of this NIZK proof. Similarly

a NIZK proof can be constructed if the second statement
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((B = gxr) ∧ (c = gαβg) ∧ (Ā = gα) ∧ (B̄ = gβ)) is true.

Here, we skip the construction due to space constraint.

NIZK proof of Stage 2: Now, we discuss the construction

of the NIZK proof π′ij of well-formedness of the cryptogram

bij of Stage 2.

The logical statement for which a NIZK proof is to be

constructed is the following:

σ ≡
(

(

(bij = gxijrij ) ∧ (Xij = gxij ) ∧ (Rij = grij )
)

∧
(

(bij′ = gxij′rij′ ) ∧ (Xij′ = gxij′ ) ∧ (Rij′ = grij′ )
)

∧
(

(cij = gαijβijg) ∧ (Aij = gαij ) ∧ (Bij = gβij )
)

)

∨
(

(

(bij = gxijyij ) ∧ (Xij = gxij ) ∧ (Yij = gyij )
)

∧
(

(bij′ = gxij′rij′ ) ∧ (Xij′ = gxij′ ) ∧ (Rij′ = grij′ )
)

∧
(

(cij = gαijβij ) ∧ (Aij = gαij ) ∧ (Bij = gβij )
)

)

∨
(

(

(bij = gxijyij ) ∧ (Xij = gxij ) ∧ (Yij = gyij )
)

∧
(

(bij′ = gxij′yij′ ) ∧ (Xij′ = gxij′ ) ∧ (Yij′ = gyij′ )
)

)

The above statement is a one-out-of-3 logical statement.

If a NIZK proof for the above statement can be constructed

each bidder will be able to show the well-formednss of her

cryptogram without revealing whether the cryptogram is

an encryption of 0 or 1. Again, the NIZK statement will

not reveal the state of the Wi variable for a bidder Vi.

Nonetheless, the NIZK proof will establish the fact that the

cryptogram provided by Vi is the correct encryption of the

logical-AND of pij and the value of Wi as of iteration j.

We denote bij as Bi, bij′ as Bj and cij as Ci for ease of

writing. We also write Rij as Ri, Rij′ as Rj , rij as ri, rij′
as rj , Xij′ as Xj , Xij as Xi, Yij′ as Yj , Yij as Yi, xij′ as

xj , xij as xi, yij′ as yj , yij as yi, Yij as Yi, Yij′ as Yj ,

yij as yi, yij′ as yj , Aij as A, Bij as B, αij as αi and βij

as βi. Hence, we can rewrite the above statement as following:

σ ≡ (((Bi = gxiri) ∧ (Xi = gxi) ∧ (Ri = gri)) ∧ ((Bj =
gxjrj ) ∧ (Xj = gxj ) ∧ (Rj = grj )) ∧ ((Ci = gαiβig) ∧ (A =
gαi) ∧ (B = gβi)))
∨ (((Bi = gxiyi) ∧ (Xi = gxi) ∧ (Yi = gyi)) ∧ ((Bj =
gxjrj ) ∧ (Xj = gxj ) ∧ (Rj = grj )) ∧ ((Ci = gαiβi) ∧ (A =
gαi) ∧ (B = gβi)))
∨ (((Bi = gxiyi) ∧ (Xi = gxi) ∧ (Yi = gyi)) ∧ ((Bj =
gxjyj ) ∧ (Xj = gxj ) ∧ (Yj = gyj )))

The above statement is a 1-out-of-3 statement. So, exactly

one of the three constituent sub-statements has to be true. We

show how this could be done for each of the three cases below.

a) Case 1:: : the first statement (((Bi = gxiri)∧ (Xi =
gxi) ∧ (Ri = gri)) ∧ ((Bj = gxjrj ) ∧ (Xj = gxj ) ∧ (Rj =
grj )) ∧ ((Ci = gαiβig) ∧ (A = gαi) ∧ (B = gβi))) is true.

Generate r11, r12, r13 ∈R Zp and compute commitments

ε11 = gr11 , ε12 = gr12 , ε13 = gr13

and

ε′11 = (Ri)
r11 , ε′12 = (Rj)

r12 , ε′13 = (B)r13

Then select ch2, ρ21, ρ22, ρ23 ∈R Zp and compute

ε21 = gρ21(Xi)
ch2 , ε22 = gρ22(Xj)

ch2 , ε23 = gρ23(A)ch2

and ε′21 = (Yi)
ρ21(Bi)

ch2 , ε′22 = (Rj)
ρ22(Bj)

ch2 , ε′23 =
(B)ρ23(Ci)

ch2 . Also select ch3, ρ31, ρ32, ρ33 ∈R Zp and

compute

ε31 = gρ31(Xi)
ch3 , ε32 = gρ32(Xj)

ch3

and

ε′31 = (Yi)
ρ31(Bi)

ch3 , ε′32 = (Yj)
ρ32(Bj)

ch3

Let, the grand challenge be ch. Compute ch1 = ch−ch2−ch3.

Now, compute three responses

ρ11 = r11−xi ∗ ch1, ρ12 = r12−xj · ch1, ρ13 = r13−αi · ch1

Publish all the commitments, challenges and the responses.

The verification equations are as below:

1) gρ11
?
= ε11

(Xi)ch1

2) gρ12
?
= ε12

(Xj)ch1

3) gρ13
?
= ε13

(A)ch1

4) (Ri)
ρ11

?
=

ε′11
(Bi)ch1

5) (Rj)
ρ12

?
=

ε′12
(Bj)ch1

6) (B)ρ13
?
=

ε′13
(Ci/g)ch1

7) gρ21
?
= ε21

(Xi)ch2

8) gρ22
?
= ε22

(Xj)ch2

9) gρ23
?
= ε23

(A)ch2

10) (Yi)
ρ21

?
=

ε′21
(Bi)ch2

11) (Rj)
ρ22

?
=

ε′22
(Bj)ch2

12) (B)ρ23
?
=

ε′23
(Ci)ch2

13) gρ31
?
= ε31

(Xi)ch3

14) gρ32
?
= ε32

(Xj)ch3

15) (Yi)
ρ31

?
=

ε′31
(Bi)ch3

16) (Yj)
ρ32

?
=

ε′32
(Bj)ch3

If the above 16 equations hold, the proof is correct.

b) Case 2:: The second statement (((Bi = gxiyi) ∧
(Xi = gxi)∧(Yi = gyi))∧((Bj = gxjrj )∧(Xj = gxj )∧(Rj =
grj )) ∧ ((Ci = gαiβi) ∧ (A = gαi) ∧ (B = gβi))) is true.

Generate r21, r22, r23 ∈R Zp and compute commitments

ε21 = gr21 , ε22 = gr22 , ε23 = gr23

and

ε′21 = (Yi)
r21 , ε′22 = (Rj)

r22 , ε′23 = (B)r23

Then select ch1, ρ11, ρ12, ρ13 ∈R Zp and compute

ε11 = gρ11(Xi)
ch1 , ε12 = gρ12(Xj)

ch1 , ε13 = gρ13(A)ch1

and

ε′11 = (Ri)
ρ11(Bi)

ch1 , ε′12 = (Rj)
ρ12(Bj)

ch1 , ε′13 = (B)ρ13(Ci/g)
ch1

Also select ch3, ρ31, ρ32, ρ33 ∈R Zp and compute

ε31 = gρ31(Xi)
ch3 , ε32 = gρ32(Xj)

ch3
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and

ε′31 = (Yi)
ρ31(Bi)

ch3 , ε′32 = (Yj)
ρ32(Bj)

ch3

Let, the grand challenge be ch. Compute ch2 = ch−ch1−ch3.

Now, compute three responses

ρ21 = r21−xi · ch2, ρ22 = r22−xj · ch2, ρ23 = r23−αi · ch2

Publish all the commitments, challenges and the responses.

The verification equations are as that of Case 1.

c) Case 3:: The third statement (((Bi = gxiyi)∧ (Xi =
gxi)∧(Yi = gyi))∧((Bj = gxjyj )∧(Xj = gxj )∧(Yj = gyj )))
is true. Generate r31, r32 ∈R Zp and compute commitments

ε31 = gr31 , ε32 = gr32

and

ε′31 = (Yi)
r31 , ε′32 = (Yj)

r32

Then select ch1, ρ11, ρ12, ρ13 ∈R Zp and compute

ε11 = gρ11(Xi)
ch1 , ε12 = gρ12(Xj)

ch1 , ε13 = gρ13(A)ch1

and

ε′11 = (Ri)
ρ11(Bi)

ch1 , ε′12 = (Rj)
ρ12(Bj)

ch1 , ε′13 = (B)ρ13(Ci/g)
ch1

Also select ch2, ρ21, ρ22, ρ23 ∈R Zp and compute

ε21 = gρ21(Xi)
ch2 , ε22 = gρ22(Xj)

ch2 , ε23 = gρ23(A)ch2

and

ε′21 = (Yi)
ρ21(Bi)

ch2 , ε′22 = (Rj)
ρ22(Bj)

ch2 , ε′23 = (B)ρ23(Ci)
ch2

Let, the grand challenge be ch. Compute ch3 = ch−ch1−ch2.

Now, compute two responses as follows

ρ31 = r31 − xi · ch3, ρ32 = r32 − xj · ch3

Publish all the commitments, challenges and the responses.

The verification equations are as that of Case 1.

Overall it requires at most 28 exponentiations for computing

the above zero knowledge proof. Also the space complexity

of the proof is 27. The verifier needs to perform 32 exponen-

tiations for verifying all the arguments.
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