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ABSTRACT

3D model creation forms a large part of the development process in

3D graphical environments such as games or simulations. If an un-

supervised approach can be used to generate high-quality textured

models the turnaround in these areas could be greatly improved. Ad-

vances in generative deep learning have been shown to understand

even complex 3D structures, allowing neural networks to output

generations learned from abundant model data. But there are no

methods that incorporate colour channels into these techniques,

an important factor when attempting to use the generations in an

immersive environment. Proposed in this paper is an advancement

on the initial voxel-based 3D generative adversarial network (GAN)

learning to include colour within the output generated samples

through adapting the channels of voxel inputs. Followed by the

application of marching cubes to translate the voxel-based models

into a naive coloured mesh. The method uses unsupervised learning

but requires a target 3D textured model data set. The techniques

shown in this paper were tested on a sparse collection of model

inputs from a set of open access textured models. The method was

tested on a data set of 24 variant models of fish. The outputs from

the trained generative model in this paper show promising results,

learning the shape and a variety of unique texture patterns.
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1 INTRODUCTION

Model generation forms an interesting topic within computer vi-

sion, and particularly the games field, where virtual renderings

are becoming more and more detailed, there is a growing need

for quicker asset development. Previous techniques have aimed

to answer this question through the use of collective tree based

generation, where parts of prior models are disassembled and then

reassembled with randomly picked model components to form

łnewž structures [13]. On top of this, there are pseudo-automated

methods used frequently in filmography, with large scale multi-

agent scenes sometimes being generated through PCG techniques.

Films such as The Lord of the Rings, World War Z and I Robot have

utilised an engine called MASSIVE. This engine uses state of the

art PCG methods that are also used in games to render an array

of unique background łactorsž. Though these techniques lack the

ability to render a multitude of random object models and require

user involvement to validate parameters.

Recently deep learning through generative techniques have lead

to novel methods for the creation of objects from a near-endless

domain. Such as 2D textures, art with transferred styles, photo-

realistic faces and text-image generation [2, 6, 10, 16]. While there is

little research in the field of 3D generative techniques, perhaps due

to the inherently difficult and computationaly large data structures

compared to the 2D counterparts.

In this paper we present a method of extending 3D Deep Convo-

lutional Generative Adversarial Networks (DCGAN) by adapting

the pre-processed data stage to a 4 channel voxel-based design.

The data input allows the 3-dimensional DCGAN to learn both

original voxel data format, and an extended colour representation

for each voxel block. The implementation of this type of learning

could allow art creators for various virtual environments, who have

access to many hundred model assets currently, the ability to easily

extend their database of model data which could be implemented

into future games/virtual environments.

There is also an exploration of the use of sparse data sets, and how

generative networks perform on creating new varied samples when

only exposed to a relatively small number of inputs. The number of

models used in this paper is 24 high-quality models from various

artists. The process shows how the variant art styles between artists

could be concatenated when inputting to a generative network,

while still creating high-quality procedural outputs.

Voxel-based data structures allow for a far simpler augmenta-

tion with current generative networks, where there is a uniform

data structure. Whereas mesh data files usually contain complex ar-

rangements of data, which don’t inherently work with more general

network inputs.
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Finally, the adaptation of commonly used algorithms for voxel-

mesh translation known as Marching Cubes [7] will be shown to

be applied to the voxel data. Extrapolating the face colours from

the voxel grid across the mesh’s face colours.

The structure of the paper is as follows; Background and related

work are discussed in Section 2. The data set will be briefly outlined

in Section 3. Followed in Section 4 will be an in-depth outline

of the methodology including the network architecture and pre-

processing of the data. Next results are summarised in Section 5,

followed by a discussion and conclusion in Sections 6 and 7.

2 BACKGROUND

Asset generation in games can form a large bottleneck in develop-

ment times. With improvements to the automation and supervision

of engine based game creation, a large proportion of time is now

spent creating assets for games rather than the underlying code.

This section will outline previous work in regards to 3D model

generation with the use of deep learning to improve automated

content creation. Alongside a description of the various techniques

needed to translate data into the format used in this paper.

2.1 Procedural Content Generation (PCG)

PCG or procedural content generation is a method of utilising

techniques and algorithms to generate content through automated

processes with a focus on randomness. With the definition explic-

itly excluding any content that has a manual creation process (using

graphics engines, inbuilt editor tools) [12]. Though this is an ar-

guable statement, as content generated with procedural techniques

that are polished through manual involvement may still be classi-

fied as procedural. Creating a slightly unclear divide on what PCG

encompasses.

2.2 3D Models

3D modelling is the creation of a representative structure that corre-

sponds to a surface shape. The use cases for 3D models are largely

exhibited within games, however, are also shown in simulations

and computer-generated imagery for films. These models can be

created through supervised or automated methods using specialist

software.

The amount of time varies on artist experience and the quality

of the model needed, but the consensus is that within games a vast

amount of time is spent on the creation of new assets for upcom-

ing games, even though companies may already have preexisting

models, which are sometimes ’recycled’ for future games, the large

proportion are brand new assets created from scratch. With this in

mind, the ability to automate the process by re-purposing current

model files into ones that have not been seen before would save

time for developers.

The task of automating 3D generation forms an entirely different

problem to solve compared to the lower dimensional counterpart of

2D image generation. There have been shown various approaches

using evolutionary and algorithmic-based techniques such as;

Using multiple sections of pre-existing models to reconstruct

variant samples of the original data points [13], these appear to

be variant but it’s easy to notice over time if exact sections of the

selected models are used frequently.

Another interesting approach is the translation from the com-

monly used mesh data into a format that is much simpler to repre-

sent, mesh files have a complex list of faces, vertices, textures and

sometimes normals, into a 3D array of values known as a voxel [15].

A voxel is a data structure that usually contains a binary value for

each position in a 3D grid. With such a simple structure complex

shapes can be rendered with no prior knowledge to object file data

structures, however, depending on the complexity of the grid used

to represent the mesh, the converted voxel quality could be reduced.

An example of a voxel data structure can be seen in Fig. 1.

With this representation techniquemoremodern-day approaches

have been applied to voxel data, with generative adversarial net-

works being shown to accurately map and reconstruct input voxel

data. This can be seen in [15] and [14] where a 3D variant of a Deep

convolutional GAN can learn the structure of the voxels, which

are inherently simple for the network to understand with only one

boolean variable per position in a uniform grid.

A technique of avoiding the voxel conversion type learning has

been shown in [3], where an end-to-end style learning approach is

applied. Using two differing frequency generators and averaging

the outputs results in a smooth surface mesh.

Consequently, none of these methods produces output results

with colours learned within the network structure, some show post-

processed texturing but these require manual or selected processing.

The closest work related to this in the game-industry use is the use

of the WaveFunctionCollapse algorithm[4], which is often applied

to 3D models that were intentionally authored at the level of voxel.

2.3 DCGAN

GANs provide a unique framework that utilises two deep neural

networks: a generator (G) network which attempts to capture the

distribution of the training data, mapping this on to an input of

variant noise (latent space) and a discriminator (D) network that

will estimate the probability of its input being from the original

training data or from the generators łrecreated/forgedž output,

basically a discrete multilayer perceptron classifier [1].

The initial work on GANs used a multilayered perceptron model

as their generators and discriminators networks. A method pro-

posed in 2016 [9] built on the work done by Ian Goodfellow et al. by

replacing the MLP networks with convolutional neural networks

(CNNs) [5] creating a new architecture known as Deep Convolu-

tional GAN or DCGAN. This architecture allowed breakthroughs

in the way images were generated with more consistent results,

previously producing noisy and incomprehensible outputs. Using

three differences over classical CNN’s the GAN methodology was

able to utilize the power of convolutions in a more stable environ-

ment; pooling layers were replaced with strided convolutions [11]

(Strided convolutions can be useful for when spatial information

is not relevant. Whereas traditional pooling allows the network

to forget about spatial structure of inputs), batch normalization

(Batch normalization normalizes inputs of a network to zero mean

and unit variance.) is used on inputs of both networks, there are no

fully connected layers in between input and output layers of the

network.
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3 DATA SET

3.1 Data Set

The data gathered in this paper consists of 24 high quality textured

3D models of fish from 8 different artists, with noticeably different

design styles from the 3D model repository, Turbosquid. With the

approach also aiming to investigate how different art styles could

be combined for the training of a generative model.

The intuition behind using varied 3D model styles was the abil-

ity for 3D artists to collaborate and perhaps combine their various

styled data sets together. With the network learning the distribu-

tions of a wide variety of inputs, the outputs of the network could

be manipulated for a particular style of model. The data set was also

unusually sparse with few sample data points for learning using

generative networks.

Figure 1: Example of a high quality mesh to a lower dimen-

sional voxel structure [8].

4 METHODOLOGY

In this section, there will be an initial outline of the pre-processing

method, and how the data set was manipulated to fit in with the

type of network model proposed.

We adapt a DCGAN by changing the dimensions of the filter

space from 2D to 3D by adding an additional depth channel. The

importance of creating a simple input for the network is crucial to

the correct learning and understanding of the data. Therefore the

input to the network was decided to be in the format of a 3D tensor

of colour values.

4.1 Pre-processing

For the model pre-processing the data was split from the usual

format of voxel data, combining two approaches of using a standard

RGB channel and a fourth channel to determine if a voxel appears

in that space or not, this can be understood as a binary clamped

alpha channel.

The models were all run through a voxelization process, by

running a uniform 3D kernel over the mesh to calculate if a block

should exist there or not. An example of a low-resolution conversion

can be seen in Fig. 1.

Different to usual conversion methods the colour of the meshes

face at the point of calculation was also carried over. This allowed

the voxel to contain the additional information of the texture file.

This conversion can be seen in Fig. 4b.

Table 1: List of the main DCGAN hyperparameters for the

results shown in this paper.

Parameter Value

Optimizer ADAM

Learning rate (G) 0.005

Learning rate (D) 0.00005

Momentum 0.7

L2 regularization 1e−5

Input Size 643

Batch size 8

Depth (N) 5

The voxel data was then ’hollowed’ out to remove the data from

the central point of the voxel data. The method was tested with

both hollow and filled voxels, though there was no way to apply

colour to the inside of the voxel while still not adding unnecessary

noise to the network’s inputs. It was possible to fill in the voxel

with either one coloured blocks or an interpolation from the outside

points, but for the purpose of mesh generation, the only required

data was the voxel outer shell.

As the model was in 3 dimensions it was important to keep the

size of the voxel relatively small such that the number of parameters

didn’t scale out of scope for the computer hard-wares capability.

Usually, RGB generative inputs in 2d space have data size of n2 ∗

3 With the proposed data structure in this paper the data size

increases to n
3
∗ 4, therefore we chose to use size 64 in every

dimension such that the visual fidelity of outputs was still high, but

the size of the parameters could still fit inside of the hardware that

would be used.

Though this was the size of the training input data, the actual

size of the models varied and could be smaller. The 64x64x64 grid

simply acted a contained uniform box for all of the training data,

eachmodel was inserted into the larger sized grid around the central

point creating a normalised size for each input.

Finally, since the data had been inserted into a new 3D grid, it

was important that the values were uniformly set. Such that the

values that are not seen have a normally distributed random colour

assigned. This data can be visualised as RGBA with the A channel

being either −1 or 1 based on if a voxel appeared in that position.

Accompanied by the RGB channel which contained the colour of

the voxel scaled between −1 and 1 centered at 0 and if there was no

voxel in that position then the RGBwas set to a normally distributed

random set of values between −1 and 1 to ensure the network was

not saturated with one set of values, an example of a cross-section

of a model training data can be seen in Fig. 3. Originally the non-

appearing voxel values were set to a specific value of −1 (black)

though with the sparsity of visible voxels the network could not

learn the structure of the input data.

4.2 Network Training

The network used was a deep convolutional generative adversarial

network (DCGAN) [9]. With the adaption of increasing the dimen-

sionality by 1 channel, to 3 dimensions. The GAN consisted of two
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(a) Discriminator (Final output Sigmoid activation)

(b) Generator

Figure 2: Example of the network architectures for both the generator (b) and discriminator (a). Depth of 5 was used in both

networks, however, a smaller representation is shown here. Each up and down sampling is twice or half the previous tensors

size respectively.

(a) RGB Colour Channel (b) Alpha Colour Channel

Figure 3: Central slice of an example of one of the training

3D voxels in theX-axis.With a separated visualisation of the

data preparation of a 3D fish model. This shows the assign-

ment of a randompixel colour for spaces that do not contain

data to reduce the chance of sparsity of the learned region’s

colour.

networks; a generator which would create new samples from a

latent vector of size 100 through a 5 depth up-sampling network

with relu used between every hidden layer. A discriminator was

used which would classify these samples, and a batch of the real

data points, as either generated or real. The discriminator down-

sampled from a 643 to a final fully connected sigmoid output. The

exact network paramaters of both can be seen in Table 1 and an

overview of the up-sampling / down-sampling of the two networks

can be seen in Fig. 2.

There was a large degree of importance on parameter selection

of the network. With only a sparse data set, using a higher learn-

ing rate for the generator, over the number of epochs the model

was trained for, created a decidedly overfit model. With output

generations hardly varying in visual appearance compared to the

training data. While a large reduction to the generator’s learning

rate proved to be beneficial in generating more varied samples.

The network also employs a technique to reduce overpowering

of the discriminator, such that when the discriminator’s accuracy

achieves over 75% the network halts the training of the discrimina-

tor.

The training of the network took 10,000 epochs to fully train

the relatively small data set, taking 5 hours on one GTX 1080. The

addition of the colour channels emphasised the time in which the

network took to train, on top of decreasing the visual fidelity of the

outputs compared to the original points.
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(a) Original textured mesh
(b) Voxel conversion (c) Output from GAN

Figure 4: Data pipeline from left to right. Showing the original textured mesh converted to a voxel which is used as an input

to the network. Finall, an output from the fully trained network can be seen.

The network was understood to be fully trained when the gen-

erated outputs were observed to contain a similar amount of alpha

points (110%) equal to 1 (signalling visible pixels) to an average of

the original inputs. Though this was subjective and used as simply

an indicator that the network was generating coherent outputs.

The network saved checkpoints at 500 epoch intervals as to visually

observe the outputs.

4.3 Marching Cubes Mesh Conversion

Marching cubes is an algorithm for constructing 3D surface models

(meshes) from 3D voxel data [7].

Marching cube examples typically extend only the surface mesh,

excluding any face colours. While if the face colour is stored along-

side the surface mesh a naive extrapolation of the voxel’s colours

could be transferred into the mesh output. An example of this can

be seen in Fig. 5.

Though the appearance of the marching cubes mesh is currently

coarse, this could be alleviated through the use of hardware with

larger memory capacity. This would allow inputs to exceed the

input size of 64 used in this paper, which would produce a more

smooth marching cubes conversion.

Figure 5: Low resolution mesh conversion using marching

cubes with extrapolated face colours.

5 RESULTS

The results show a promising contribution to model generation

with inherent learned texturing within the network. In Fig. 4 the

pipeline of this technique can be seen, with the final image Fig. 4c

showing a typical output of the network. With the network only

able to learn from a sparse collection of inputs, the output models

were remarkably varied in both colour and shape.

There was a varying amount of noise that existed around the

output image which was an artifact of training. While applying a

Gaussian blur in 3D space of kernel 3x3x3 and a low sigma of 0.05

pushed these artifact values below the alpha thresh-hold to show

when rendered. A Gaussian blur was possible in this data due to

the visible noise clusters existing in sparse areas away from the

main model’s distribution.

As mentioned previously the use of a marching cube algorithm

provided a translation technique to transform the 3D voxel-based

data into a naive low-quality mesh render. This type of mesh could

be used within background renders of virtual scenes, where neces-

sarily high detail is not needed, but the overall shape and colours

can still be recognised from afar.

Previous results in this field share the same model structurally

similarities [15], however, lack the importance of texturing/colouring

the model. The results shown here visualise both structurally sound

model outputs alongside an interesting application of the learned

textures of the models. Though it is difficult to measure the łsimi-

larityž of the generations to the inputs, a random selection of the

network generations can be seen in Fig. 6.

6 DISCUSSION

Current limitations with this technique revolve around the quality

of the outputs, whether it be the voxel or the mesh conversion

there is a distinct lack of size and quality of learned generations

compared to the original.

With this in mind future work will be centred on applying super-

resolution techniques that have been used within 2D face genera-

tion using GANs [6], to provide a computationally cheap upscaling

to the voxel-based generations. With the better quality of voxel pro-

viding a more detailed mesh conversion when applying marching

cubes.

Furthermore, many voxel games use direct block-based models,

in which case the generative outputs could be used łout of the boxž

without any prior manipulation.
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Figure 6: A random selection of output generations from the network.

7 CONCLUSION

Overall the results in this paper show an interesting contribution

to 3D model generation with the inclusion of colour. Through a

mesh to mesh style learning using a data translation technique to

convert mesh data to voxel data, passed through a 3 dimensional,

4 channel generative adversarial network. Finally using marching

cubes to convert from the voxel network output back to a naive

coloured mesh of the learned data.

The novel contributions of the paper are the ability to generate

3D models with the added data channels to exhibit coloured textur-

ing on 3D voxel outputs. With this extending to the application of

marching cubes for textured mesh generation.

The exploration of using a spare data set with few sample points

while still maintaining a high visual fidelity and generation variety

proved successful. Utilising network parameters to control how

quickly the generator could learn as to not over-fit on the few

samples available to it.

There is an observation of noisy data within the visual standards

of the output images, which indicates that the network struggled to

understand the high dimensional data, especially with the additive

colour channel compared to previous techniques.
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