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Bayesian Matching Pursuit Based Channel

Estimation for Millimeter Wave Communication
You You, Student Member, IEEE, and Li Zhang, Senior Member, IEEE

Abstract—Hybrid precoding is considered as a solution to
reduce the high power consumption caused by devices operating
at radio frequency (RF) in millimeter wave (mmWave) commu-
nication. For hybrid precoding, the channel state information
(CSI) is critical but hard to obtain because of the analog
precoding at RF and the large number of antennas. mmWave
channel has been proved to be sparse by real-world experiments.
Compressive sensing (CS) methods can be applied to the channel
estimation to decrease complexity. However, there is a distinct
performance gap between the estimation of the existing CS
methods with or without given sparsity pattern (SP). In this letter,
a new method based on Bayesian matching pursuit(BMP) idea is
proposed to improve sparse channel estimation performance. We
make appropriate assumptions according to the characteristics of
mmWave channel. We select a set of candidate SPs with high pos-
terior probabilities to estimate CSI. Numerical simulation shows
that our proposed method has significantly improved channel
estimation performance with acceptable complexity compared to
existing methods including orthogonal matching pursuit, sparse
Bayesian learning and Bayesian compressive sensing.

I. INTRODUCTION

THE large amount available spectrum at millimeter wave

(mmWave) enables the 5G network to meet ever-growing

data rate demands and tackle the exponential increase traffic

volumes [1]. Thanks to the short wave length, massive MIMO

can be equipped at both base station (BS) and mobile station

(MS) to overcome the huge propagation loss in mmWave

communication. However, full digital precoding as in mi-

crowave system requires big number of radio frequency (RF)

chains , which is impractical for mmWave system because of

their high power consumption [2]. Therefore, a hybrid MIMO

architecture consisting of an analog beamformer cascaded

with a digital processor is proposed. It reduces the amount

of RF chains without compromising too much beamforming

performance [3].

Channel state information (CSI) is crucial to the design

of precoding and combining in mmWave system. The new

constraints on the hardware of hybrid architecture and the huge

number of antennas make channel estimation a challenging

problem. Due to the sparsity of mmWave channel [4], CSI

can be described by a limited number of angle of arrive

(AoA), angle of departure (AoD) and path gains. Compressive

sensing (CS) theory [5] and virtual angle representation [6]

are widely used to solve channel estimation problem as a

sparse signal recovery problem. In the sparse signal, the set of

locations of nonzero elements is called sparsity pattern (SP)

which represents the AoDs/AoAs of corresponding nonzero

paths. The values of the nonzero elements represent the

corresponding path gains.

There have been many works on the application of CS

to mmWave channel estimation. They can be divided into

close-loop and open-loop. [7] and [8] are close-loop beam

training-based methods, which use multistage process to avoid

exhaustive search. However, close-loop method is difficult to

be applied to outdoor channel, because limited transmitted

power prevents the use of wide beam. An alternative way

is to apply the open-loop methods which can decrease the

feedback overhead and use a fixed beam width. Open-loop

methods include non Bayesian based algorithms such as

orthogonal matching pursuit (OMP) [9] and Bayesian based

algorithms such as sparse Bayesian learning (SBL) [10] and

Bayesian compressive sensing (BCS) [11]. OMP is an iterative

algorithm that finds the sub-optimal solution. The nonzero

locations (SP) of CSI correspond to the columns of sensing

matrix which are highly correlated with the received signal.

Bayesian based method makes appropriate statistic assumption

and apply estimation techniques to identify the desired sparse

solution. Specifically, the SBL adopts a Bayesian framework

with each element following independent, zero-mean, Gaus-

sian distribution with unknown variance which are assigned

the Gamma conjugate prior as hyperpriori. Expectation maxi-

mization (EM) method is utilized to computes a Maximum A

Posteriori (MAP) estimate. BCS is another Bayesian method,

instead of applying EM to calculate MAP estimate, a more

efficient implementation has been derived by analyzing the

properties of the marginal likelihood function. It estimates CSI

through maximizing the marginal likelihood. All grid based

CS algorithms have off-grid error. [12], [13] and [14] propose

methods to mitigate this error for OMP, l1-norm minimization

and SBL respectively. However, for mmWave channel estima-

tion, there still have a distinct gap compared with that with

known SP especially at low SNRs as shown in [12], [13].

It indicates that, even without off-gird error, SP estimation

method needs to be further enhanced. So this paper focuses

on improving mmWave channel estimation performance using

Bayesian matching pursuit (BMP) idea. Numerical simulations

demonstrate that the estimation performance of the proposed

method outperforms the existing methods with affordable

complexity.

To the best of our knowledge, this letter is the first paper

to apply the BMP [15] to mmWave channel estimation. We

propose a method using ‘virtual sparsity’ to apply BMP with-

out known sparsity at a low complexity. We make appropriate

assumptions according to the characteristics of mmWave chan-

nel and select a set of candidate SPs with significant posterior

probabilities for minimum mean square error (MMSE) channel

estimation.
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II. SYSTEM MODEL

We consider a single user hybrid MIMO system shown in

Fig. 1, where the BS and MS are equipped with NT and NR

antennas. Both BS and MS have NRF RF chains (NRF ≤
min(NT , NR)).

In the channel estimation stage, BS uses pilot beam training

vectors {fm ∈ C
NT×1 : m = 1, . . . , NBeam

T } (NBeam
T ≤

NT ) to scan NBeam
T different directions successively. The

pilot beams are received by NBeam
R (NBeam

R ≤ NR) com-

bining vectors {wn ∈ C
NR×1 : n = 1, . . . , NBeam

R }
(NBeam

R ≤ NR) at MS. The received signal for the mth pilot

beam is given by

ym = WHHfmxp +WHnm, (1)

where xp is the transmitted pilot symbol. W =

[w1, . . . ,wNBeam

R

] ∈ C
NR×NBeam

R is the combining matrix

at MS. H ∈ C
NR×NT represents the channel matrix, and

nm ∈ C
NR×1 is the i.i.d Gaussian noise vector. Collecting

ym for m ∈ {1, . . . , NBeam
T }, we get

Y = WHHFX+N

=
√

PtW
HHF+N

(2)

where Y = [y1, . . . ,yNBeam

T

] ∈ C
NBeam

R
×NBeam

T ,

F = [f1, . . . , fNBeam

T

] ∈ C
NT×NBeam

T and N =

[WHn1, . . . ,W
HnNBeam

R

] ∈ C
NBeam

R
×NBeam

T is the noise

matrix. X ∈ C
NBeam

T
×NBeam

T is a diagonal matrix with xp

on its diagonal. We assume identical pilot symbols so that

X =
√
PtINBeam

T

where Pt is the pilot signal power.

The mmWave channel can be approximated by a geometric

channel mode with L scatters due to its limited scattering fea-

ture. Each scatterer contributes only one path of propagation

between BS and MS. The channel matrix can be written as

H =

√

NTNR

L

L
∑

ℓ=1

αℓaR(θ
r
ℓ )a

H
T (θtℓ), (3)

where αℓ is the complex gain of the l-th path, θrl and θtl are

the AoA and AoD of the l-th path, respectively. aT (θ
t
l ) and

aR(θ
r
l ) are array response vector for BS and MS. Assuming

that we use NT and NR uniform linear array (ULA), aT (θ
t
l )

and aR(θ
r
l ) can be given by

aT (θ
t
l ) = [1, e−j2π d

λ
cos θt

l , . . . , e−j2π d

λ
cos θt

l
(NT−1)]T

aR(θ
r
l ) = [1, e−j2π d

λ
cos θr

l , . . . , e−j2π d

λ
cos θr

l
(NR−1)]T

(4)

where d denotes the antenna spacing, λ denotes the wavelength

of operation. In this letter, we consider d = λ
2 . The channel

gains {αℓ}Lℓ=1 are modeled by i.i.d. random variables with

distribution CN (0, σ2). The AoAs and AoDs are modeled by

a Laplacian distribution whose mean is uniformly distributed

over [0, π), and angular standard deviation is σAS .

To apply CS techniques to channel estimation, virtual chan-

nel representation is used. Specifically, we assume that all the

angles fall onto a set of discrete angles called grid. In this

letter, we choose uniform grid as [0, π
G−1 ,

2π
G−1 , . . . ,

π(G−1)
G−1 ],

and G ≫ L to achieve the desired resolution. Using discrete

angle grid, the channel matrix H in (3) can be approximated

as

H ∼= ARHbA
H
T , (5)

where AR = [aR(0), . . . ,aR(
π

G−1 ), . . . ,aR(
π(G−1)
G−1 )] ∈

C
NR×G, AT = [aT (0), . . . ,aT (

π
G−1 ), . . . ,aT (

π(G−1)
G−1 )] ∈

C
NT×G and Hb ∈ C

G×G is a L-sparse channel gain matrix.

The virtual channel representation is not exactly equal to the

real channel matrix H because of the quantized grid error as

the simulation results in [12].

III. FORMULATION OF MMWAVE CHANNEL

ESTIMATION PROBLEM

Considering the system model in (2) and channel model

in (5), the mmWave channel estimation problem can be

formulated as a sparse signal recovery problem by vectorizing

Y in (2). Using property of Khatri-Rao product vec(ABC) =
(CT ⊗A) · vec(B) for Y and H, we can get

yv=
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ARHbA

H
T ) + nQ

=
√
P (FT ⊗WH)ADh+ nQ

=Q · (h) + nQ,

(6)

where yv ∈ C
M×1 is the vectorized received signal where

M = NBeam
T NBeam

R is the measurement dimension. AD =
A∗

T ⊗AR is an NTNR × G2 dictionary matrix that consists

of the G2 column vectors of the form aHT (θu) ⊗ aR(θv),
with θu and θv , the uth and vth points, respectively, of the

angle uniform grid. h = vec(Hb) represents the path gains

of the corresponding quantized directions. h is an N × 1
vector where N = G2 is the virtual channel dimension.

Q =
√
P (FT ⊗ WH)AD ∈ C

M×N is the sensing matrix.

(6) is a sparse signal recovery problem as h has only L non-

zero elements and L ≪ N . Compressive sensing(CS) methods

including OMP [9], SBL [10] and BCS [11] can be leveraged

to recover h from noisy received signal yv .

As introduced in Section I. All theses algorithms aim to find

the most likely SP, which may not be the most accurate one.

In contrast to the MAP estimator, Minimum Mean-Squared-

Error (MMSE) uses a fusion of SPs to form its result. Thus,

In this letter, we propose to work with a mixture of chosen

candidate SPs based on posterior possibility with appropriate

assumption.

IV. PROPOSED BAYESIAN MATCHING PURSUIT METHOD

FOR MMWAVE CHANNEL ESTIMATION

A. Assumptions for mmWave channel

To apply the BMP to estimate the mmWave channel, we

need to make appropriate statistic assumptions according to

the characteristics of mmWave channel. The noise nQ in (6)

is assumed to be white circular Gaussian with variance σ2,

i.e., nQ ∼ CN (0, σ2IM ). {hn}Nn=0 are the elements in sparse

vector h. We assume that {hn}Nn=0 are drawn from T specific

Gaussian distribution. In this application, simulations shows

that larger T provides the same performance but with higher

complexity. Therefore, we chose T = 2. sn = t ∈ {0, 1}
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Fig. 1: Hybrid massive MIMO architecture for mmWave communication .

is used as a mixture parameter to index the component

distribution. When sn = 0, (µ0, σ
2
0) = (0, 0) is set to make

sure that hn = 0. When sn = 1, (µ1 = 0, σ2
1 = 100P )

is set to indicate an active non-zero coefficient where P is

the power of the received signal. It is the simplest way to

represent a sparse signal when we don’t know the mean

of the nonzero values. We set 100P as the variance for

nonzero element. Because we assume zero mean for non-

zero elements, it is hard to distinguish them from non-

active elements. A relative large variance can improve the

accuracy. Our simulation based analysis shows that variance

larger than 100P would not improve performance further in

our application. So we set 100P as the variance for nonzero

elements. {sn}N−1
n=0 are treated as i.i.d random variables as

Pr{sn = t} = λt (0 < λt ≤ 1). λt is the probability that

the value follows Gaussian distribution indexed by sn = t.
We make

∑

t=1 λt ≪ 1 to ensure the sparsity. Considering

h = [h0, . . . , hN−1]
T and s = [s0, . . . , sN−1]

T , the priors

can be written as

h | s ∼ CN (µ(s),R(s)), (7)

where [µ(s)]n = µsn and R(s) has diagonal [R(s)]n,n = σ2
sn .

Considering (6), the channel vector h and the received signal

yv are joint Gaussian conditioned on the mixture parameters

s as

[

yv

h

] ∣

∣

∣

∣

s ∼ CN
([

Qµ(s)
µ(s)

]

,

[

Φ(s) QR(s)

R(s)Q
H

R(s)

])

, (8)

where

Φ(s) , QR(s)Q
H
+ σ2IM . (9)

B. MMSE Coefficient Estimation

For channel estimation, MMSE estimate of h from yv is

ĥmmse , E{h|yv} =
∑

s∈S

p(s|yv)E{h|yv, s}. (10)

From (8) it is straightforward [16] to obtain

E{h|yv, s} = µ(s) +R(s)Q
H
Φ(s)

−1(
yv −Qµ(s)

)

. (11)

We store the set of all possible SPs as S. If we know all

possible 2N ({0, 1}N ) posterior probability p(s|yv)s∈S, (10)

can be calculated. But it is impractical to compute all possible

2N posterior probability p(s|yv)s∈S. Note that, the size of

SΩ which includes the SPs with non-negligible posterior

probability p(s|yv)s∈SΩ
can be small and practical to compute

because of the sparsity. Using only the dominant SPs in SΩ

yields the approximate MMSE estimate

ĥammse , E{h|yv} =
∑

s∈SΩ

p(s|yv)E{h|yv, s}. (12)

The primary challenge in the computation of (12) is to

obtain SΩ to calculate p(s|yv) and Φ(s)
−1

. So, we first

leverage a fast method to search for SΩ.

C. Search for Dominant SPs

We search for SΩ by selecting s ∈ S with the significant

posterior probability p(s|yv). According to Bayesian rule, the

posterior probability can be written as

p(s|yv) =
p(yv|s)p(s)

∑

s′∈S
p(yv|s′)p(s′)

, (13)

where p(s|yv) are equal to p(yv|s)p(s) up to a scale. For

convenience, we work in logarithm domain and define α(s,yv)
as SP selection metric:

α(s,yv) , ln p(yv|s)p(s)

= ln p(yv|s) +
N−1
∑

n=0

ln p(s)

= −
(

yv −Qµ(s)
)H

Φ(s)
−1(

yv −Qµ(s)
)

− ln det
(

Φ(s)
)

−M lnπ +
N−1
∑

n=0

lnλsn .

(14)

The significant p(s|yv) corresponds to significant value of

α(s,yv). So we search SΩ based on metric α(s,yv) using

non-exhaustive tree search method.

The search starts with s = 0. In the first stage, we change

only one element to non-zero in s which corresponds to N
different ‘one element active’ SPs. We store all these possible

SPs as S(1) and calculate the metric α(s) for them. We choose

D SPs with largest metrics and store them as S
(1)
Ω . In the

second step, we activate one more element from the D chosen

SPs in S
(1)
Ω so that we have (N − 1) + (N − 2) + ...+ (N −

D) possible ‘two element active’ SPs in S(2). Then D ‘two

element active’ SPs with largest metrics among these (ND−
(1+D)D

2 ) possible SPs are chosen and stored in S
(2)
Ω . We do

this procedure J times to get D ‘J element active’ SPs with

largest posterior possibility as candidate SPs.

The value of D is fixed and chosen as 5, because our

simulation shows the benefits of increasing D diminish quickly

for D > 5. The value of J is determined by the sparsity of

the channel. However, we don’t know the real sparsity of

mmWave channel. So we define a virtual sparsity L
′

. We

choose an arbitrary small integer from 2 to 5 as the virtual

sparsity because the real sparsity for mmWave channel is

generally less than 10. And we calculate λ1 as: L
′

/N . L
′

follows Binomial (N,λ1) distribution. It is common to use

the approximation L
′ ∼ N (Nλ1, Nλ1(1 − λ1)), in which

case Pr(L
′

> J) = 1
2erfc(

J−Nλ1√
2Nλ1(1−λ1)

). We choose
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J = ⌈erfc−1(2J0)
√

2Nλ1(1− λ1) + Nλ1⌉ where J0 is a

very small target value of Pr{L′

> J}. The use of pre-

determined virtual sparsity provide superior performance with

low complexity without the need to know real sparsity.

Algorithm 1 Search via Bayesian Matching Pursuit

αroot = − 1
σ2 ‖yv‖22 −M lnσ2 −M lnπ +N lnλ0

for n = 0 : N − 1 do

croot
n = 1

σ2qn, βroot
n = σ2

1(1 + σ2
1q

H
n croot

n )−1

for t = 1 : T − 1 do

αroot
n,t = αroot + ln

βroot
n

σ2

1

+ βroot
n |crootH

n yv +
µt

σ2

1

|2 − |µt|
2

σ2

1

+ ln λ1

λ0

end for

end for

for d = 1 : D do

n=[], p=[], ŝ(d,0) = 0, z = yv

for n = 0 : N − 1 do

cn = croot
n , βn = βroot

n

for t = 1 : T − 1 do

αn,t = αroot
n,t

end for

end for

for j = 1 : J do

(nΩ, tΩ) = (n, t) indexing the largest element in

{αn,t}t=1:T−1
n=0:N−1 which leads to an as-of-yet

unexplored node.

α(d,j) = αnΩ,tΩ , ŝ(d,j) = ŝ(d,j−1) + tΩδΩ
n = [n, nΩ], t = [t, tΩ], z = z− qnΩ

µΩ

for n = 0 : N − 1 do

cn = cn−βnΩ
cnΩ

cHnΩ
qn, βn = σ2

1(1+σ2
1q

H
n cn)

−1

for t = 1 : T − 1 do

αn,t = α(d,j) + ln βn

σ2

1

+ βn|cHn z+ µt

σ2

1

|2 − |µt|
2

σ2

1

+ ln λ1

λ0

end for

end for

ĥ(d,j) =
∑j

k=1 δ[n]k [σ
2
1c

H
[n]k

z+ µ[t]k ]
end for

end for

D. Fast Metric Update

In the above search, metric α needs to be calculated for each

possible SP. We adopted a fast metric metric update method

[15] to reduce the computational complexity.

For the case that [s]n = t and [s′]n = t′, where s and s′

are identical except for the nth coefficient. For brevity, we

use µt′,t , µt′ − µt, σ2
t′,t , σ2

t′ − σ2
t and ∆n,t′(s,yv) ,

α(s′,yv)−α(s,yv) below. Note that the root node (S
(0)
Ω = 0)

has the following metric

α(0,yv) = − 1

σ2
‖yv‖22 −M lnσ2 −M lnπ +N lnλ0. (15)

To derive the fast metric update, starting with property

Φ(s′) = Φ(s) + σ2
t′,tqnq

H
n , (16)

where qn is the nth column of Q. The matrix inversion lemma

implies

Φ(s′)
−1

= Φ(s)
−1 − βn,t′cnc

H
n (17)

cn , Φ(s)
−1

qn (18)

βn,t′ , σ2
t′,t(1 + σ2

t′,tq
H
n cn)

−1 (19)

According to [15], we assume that σ2
t′ 6= σ2

t , (15)-(18) imply

∆n,t′(s,yv) = βn,t′
∣

∣cHn
(

yv −Qµ(s)
)

+ µt′,t/σ
2
t′,t

∣

∣

− |µt′,t|2/σ2
t′,t + ln (βn,t′/σ

2
t′,t)

+ ln(λt′/λt)

(20)

where ∆n,t′(s,yv) quantifies the change to α(s,yv) corre-

sponding to the change of the nth index in s from t to t′.
And then we can work out the metric for s′ as α(s,yv) +
∆n,t′(s,yv). In this letter, T = 2, t = 0, t′ = 1.

In summary, the proposed Bayesian Matching Pursuit based

method is a non-exhaustive tree-search using the SP se-

lection metric (14) with fast metric update. According to

the characteristics of mmWave channel, we choose to apply

T = 2, (µ0, σ
2
0) = (0, 0), (µ1, σ

2
1) = (0, 100P ), D = 5, L′ =

5, λ1 = L
′

/N, J = ⌈erfc−1(2J0)
√

2Nλ1(1− λ1) + Nλ1⌉,

J0 = 0.005. The algorithm is shown in Algorithm 1, where

δ represents approximate posterior probability of s using the

renormalized estimate

p(s|yv) =
exp{α(s,yv)}

∑

s′∈S
exp{α(s′,yv)}

≈ exp{α(s,yv)}
∑

s′∈SΩ
exp{α(s′,yv)}

.

(21)

When the search ends, the algorithm would return the MMSE

estimation of h using (12).

V. SIMULATION RESULTS

The performance of the proposed method is examined via

computer simulation. ULAs are assumed at both BS and MS

with NT = NR = 32. We use NBeam
T = 32 training beams at

BS and NBeam
R = 32 combining beams at MS. All simulation

results are averaged over 500 channel realizations with a

carrier frequency of 60GHz. At each channel realization, the

number of scatterers is L = 7. We sample [0, π) uniformly

with G = 64 samples. The design of hybrid precoding and

combining matrices have been extensively investigated, so

we just adopt the precoder and combiner presented in [17].

F = (Λ
−1/2
F UH

F )T where UF and ΛF are the matrices

of the eigenvectors and eigenvalues of A∗
T (A

∗
T )

H . W =

(Λ
−1/2
W UH

W )H where UWΛWUH
W = AR(AR)

H . G = 64
is used to satisfy RIP for applying CS algorithms. For BCS

and SBL, true noise power are provided based on SNR. For

the proposed method, noise power are measured as 1/100 of

the variance of the received signal. Parameters are selected as

explained in section IV-D. Note that, we also use a large virtual

sparsity 10 to compare with the algorithm which uses small

virtual sparsity 5. Proposed algorithms are named as Proposed

S and Proposed L for small virtual sparsity and large virtual

sparsity respectively.

In Fig. 2, we compare methods OMP, SBL, BCS, the

Proposed S and the Proposed L. The performance of chan-

nel estimation precision is measured by the normalized
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Fig. 2: NMSE at different SNRs (dB).

Fig. 3: Runtime at different SNRs (dB).

mean square error (NMSE) defined as 10 log10
(

E(‖H −
Hestimate‖2F /‖H‖2F )

)

. As shown, our proposed methods per-

form better than any other CS algorithms at low SNRs.

The proposed S achieves the best performance with 3-4 dB

improvement compared with BCS when SNR < 9dB. For

higher SNRs, the proposed L can achieve 2dB improvement

over BCS. We found that smaller virtual sparsity works better

for low SNRs, but bigger virtual sparsity is required for higher

SNRs. This is because we did not consider off-grid error

mitigation in this letter. The accuracy of channel estimation is

affected by noise and off-grid errors. For higher SNRs, where

the errors caused by off-grid error dominates, the additional

active elements can help mitigate off-grid error impact and

improve the estimation performance. On the contrary, noise

dominates at lower SNRs. In such case, adding extra active

elements which are redundancy for MMSE estimation will

lead to worse performance. Apparently, larger virtual sparsity

requires higher complexity, so we have to consider the trade-

off between complexity and estimation accuracy. For mmWave

channel estimation, using small virtual sparsity provides suf-

ficient accuracy even for high SNRs, with a much lower

complexity as shown in Fig. 3.

Fig. 3 displays the average runtime of all CS based methods.

Our proposed method is significantly faster than SBL, on the

same order of BCS, significantly slower than OMP. The result

shows that our proposed method can greatly improve channel

estimation performance with affordable computation.

VI. CONCLUSION

In this letter, we propose a novel method based on Bayesian

matching pursuit algorithm for channel estimation in mmWave

MIMO communication. Through selecting appropriate param-

eters according to the characteristics of mmWave channel,

we utilize Bayesian model to implement MMSE channel

estimation using a set of candidate SPs. The simulation

results demonstrated that our algorithm can outperform all

existing methods while requiring an affordable computational

complexity.
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