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Purinergic receptor mediated 
calcium signalling in urothelial cells
Russell Chess-Williamsͷ, Donna J. Sellersͷ, Stuart M. Brierley  ͸ǡ͹ǡͺ, David Grundyͻ & 

Luke Grundyͷǡ͸ǡ͹ǡͺȗ

Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of 

bladder mechanosensationǤ Whilst nonǦneuronal ATP acts on the underlying bladder aơerent nerves 
to facilitate sensation, there is also the potential for ATP to act in an autocrine manner, modulating 

urothelial cell function. The aim of this study was to systematically characterise the functional 

response of primary mouse urothelial cells ȋPMUCsȌ to ATPǤ PMUCs isolated from male mice ȋͷͺȂͷͼ 
weeksȌ were used for liveǦcell ƪuorescent calcium imaging and qRTǦPCR to determine the expression 
proƤle of P͸X and P͸Y receptorsǤ The majority of PMUCs ȋͽͺȂͿ͸άȌ responded to ATP ȋͷ µMȂͷ mMȌǡ as 
indicted by an increase in intracellular calcium (iCa͸+ȌǤ PMUCs exhibited doseǦdependent responses 
to ATP ȋͷͶ nMȂͷ mMȌ in both calcium containing ȋ͸ mMǡ ECͻͶ = ͹ǤͺͿ ± ͶǤͽͽ µMȌ or calcium free ȋͶ mMǡ 
ECͻͶ = ͿǤͻ ± ͷǤͻ µMȌ buơersǤ Howeverǡ maximum iCa͸+ responses to ATP were signiƤcantly attenuated 
upon repetitive applications in calcium containing but not in calcium free buơerǤ qRTǦPCR revealed 
expression of P͸XͷȂͼǡ and P͸YͷȂ͸ǡ P͸Yͺǡ P͸Yͼǡ P͸YͷͷȂͷͺǡ but not P͸Xͽ in PMUCsǤ These Ƥndings suggest 
the major component of ATP induced increases in iCa͸+ are mediated via the liberation of calcium from 

intracellular storesǡ implicating functional P͸Y receptors that are ubiquitously expressed on PMUCsǤ

As the bladder ills, bladder aferents embedded within the detrusor smooth muscle and urothelium provide 
signals relating the degree of bladder distension into spino-bulbo-spinal relexes responsible for maintaining 
continence and supraspinal nuclei for sensory processing1,2. Although there are subtypes of bladder aferents that 
are considered to be tension receptors, thereby directly transducing bladder stretch into neuronal activation3, a 
role for adenosine 5′-triphosphate (ATP) released from the urothelium in response to bladder stretch has also 
been identiied in modulating bladder mechanosensation4.

ATP is released from urothelial cells in-vitro and in-vivo in response to cell or bladder stretch5–8, and signif-
icant increases in the levels of urothelial ATP release have been detected in pre-clinical models of spinal cord 
injury, feline interstitial cystitis, and cyclophosphamide induced cystitis9–12. Furthermore, enhanced ATP release 
is also seen from bladder strips isolated from patients with interstitial cystitis/bladder pain syndrome and neuro-
genic and idiopathic detrusor overactivity13–15. he mechanism underlying ATP release from the urothelium has 
been shown to integrate both traditional vesicular mechanisms9,16, as well as direct release via pannexin and con-
nexin channel proteins17,18. A number of studies, however, have shown that urothelial ATP release is controlled 
by a rise in intracellular calcium concentrations, with agents that interfere with intracellular calcium entry or the 
liberation of inositol triphosphate (IP3) able to block stretch induced ATP release9,10,19–23. As ATP is released from 
urothelial cells during stretch and acts on the underlying aferent nerves, there is also the potential for ATP to act 
in an autocrine manner, modulating urothelial cell function24–26.

Two functional subclasses of membrane bound P2 purinergic receptors (P2X and P2Y) mediate the extra-
cellular actions of ATP27. Functional P2X and P2Y purinergic receptors have been identiied in mouse, rat, and 
guinea pig urothelial cells, as well as human urothelial cell lines26,28–30. P2X receptors (P2X1-P2X7) are ionotropic 
ligand gated ion-channels, which with the exception of P2X7, are characterised by rapid activation and fast inacti-
vation31. P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14), in contrast, are classic metabotropic 
G-protein coupled receptors (GPCRs), coupling with Gq/11, Gs and Gi proteins to either activate phospholipase 
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C and release intracellular calcium or bind adenylyl cyclase to modulate cAMP levels27. A range of studies, using 
various techniques and urothelium from cats, rats, and humans have provided evidence that the urothelium 
expresses a comprehensive repertoire of purinergic receptor subtypes, including P2X1–7, and P2Y1,2,4

6,28,29.
he precise role of autocrine purinergic signalling within urothelial cells has yet to be fully determined, 

however, the maintenance of intracellular calcium homeostasis and further release of neuromodulators is a key 
consideration. Despite this, only a limited number of studies have systematically explored calcium signalling 
in urothelial cells. Activation of purinergic receptors upon the urothelium evokes an increase in intracellular 
calcium which induces acetylcholine release24 as well as auto-feedback to inluence ATP release itself13. Uridine 
5′-triphosphate (UTP) has also been shown to signiicantly enhance ATP release via intracellular calcium path-
ways26,28 indicating that P2Y receptors are an essential component of the urothelial purinergic signalling system.

In this study we provide the irst systematic characterisation of extracellular and intracellular calcium con-
tributions to the urothelial response to ATP using primary mouse urothelial cells (PMUCs). Furthermore, we 
provide the irst quantiied expression proile of P2X and P2Y receptors in PMUCs and found that intracellular 
calcium contributes the majority of the functional calcium response to ATP in these cells, implicating P2Y recep-
tors that couple to GPCRs.

Results
Immediately following plating of the PMUCs onto collagen coated coverslips, the cells were randomly dispersed 
(Fig. 1A). Ater 30 minutes, the urothelial cells from the same coverslip had migrated to form a continuous single 
sheet of cells (Fig. 1B). Primary cultures were conirmed to be of urothelial origin through positive staining with 
the transitional epithelial cell marker cytokeratin 7 (Fig. 1C).

Exposure of individual PMUCs to ATP (10 µM) induced a signiicant rise in intracellular calcium (iCa2+) lev-
els, as relected by an increase in the luorescent emissions ratio during continuous application (Fig. 2A). PMUCs 
responded to ATP with variable sensitivity, but the iCa2+ response was generally characterised by two distinct 
phases. here was an initial rapid rise in iCa2+ followed by a brief rapid decay, and a more sustained level of 
iCa2+, which was maintained until ATP was removed and a rapid return to baseline calcium levels was observed 
(Fig. 2A).

PMUC iCa2+ responses to ATP were concentration dependent (Fig. 2B,C). Whilst the majority of PMUCs 
(74–92% of cells/coverslip) respond to high concentrations of ATP (1 µM–1 mM), relatively few (12–20% of cells/
coverslip) respond to low concentrations of ATP (10–100 nM) with robust iCa2+ transients (Fig. 2D). Responses 
to ATP are maximal at 100 µM with no further increases upon application of 1 mM ATP (Fig. 2B,C). he EC50 for 
ATP evoked iCa2+ responses in urothelial cells was 3.49 ± 0.77 µM.

As ATP release from the urothelium is stimulus dependent, such that increases in bladder stretch would evoke 
a graded increase in ATP concentrations around urothelial cells, we wanted to test the response of PMUCs to 
repeated applications of ATP. he rise in iCa2+ during application of ATP returned to baseline immediately fol-
lowing washout. A subsequent dose of ATP at the same concentration to the same cells also initiated a signiicant 
rise in iCa2+ (Fig. 3A,B). However, when directly comparing the peak of the 1st and 2nd iCa2+ responses to ATP, we 
observed that the second response, although robust, was signiicantly attenuated compared to the irst response 
(Fig. 3C). Furthermore, the kinetics of the intracellular calcium response to ATP were altered, with a signiicant 
increase in the time taken to reach peak calcium luorescence with the second ATP application (Fig. 3D).

To determine the relative contribution of calcium release from intracellular stores to the PMUC response to 
ATP, we investigated the response to ATP in a calcium free bufer (Fig. 4). Whilst application of ATP in calcium 
free bufer evoked a dose dependent increase in iCa2+ above baseline (Fig. 4A), there was a rightward shit in the 
concentration-response curve to ATP in calcium free bufer and a reduction in the EC50 from 3.49 ± 0.77 µM in 
2 mM Ca2+ to 9.5 ± 1.5 µM in 0 mM Ca2+ bufer (Fig. 4A). he time taken to reach peak iCa2+ luorescence was 
also signiicantly increased in calcium free bufer compared to control solution (Fig. 4B). A closer look at the 
initial kinetics of the urothelial response to ATP in calcium free bufer reveals a signiicantly slower increase in 
iCa2+ compared to ATP responses in calcium containing bufer. Because PMUCs took longer to reach peak iCa2+ 

Figure 1. Primary mouse urothelial cells. (A) Light microscope images of PMUCs immediately following 
isolation and plating on collagen IV coated coverslips, and (B) ater 30 minutes in an incubator (37 °C, 95/5% 
O2/CO2). Cells migrate towards each other forming a cell layer. (C) Representative confocal image of urothelial 
cells 24 hrs ater isolation incubated with both primary (CK7) and secondary antibodies (AF488) and mounted 
with Prolong Gold Antifade with nuclei staining positive for 4′6-diamidino-2-phenylindole (DAPI). Cells were 
excited with 495-nm that emits luorescence at 505- to 534-nm. Scale bar, 20 µm.
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in response to ATP in calcium free bufer, the characteristic two phase iCa2+ response seen in control experiments 
was less obvious, instead replaced by a response which did not exhibit an initial sharp peak (Fig. 4C,D). he 
maximal intracellular calcium response to ATP in the absence of calcium was signiicantly reduced compared to 
control 2 mM calcium bufer (Fig. 4E). Moreover, when comparing duplicate applications of ATP in calcium free 
bufer, we show that maximum iCa2+ responses are not signiicantly reduced between the 1st and 2nd incubations 
with ATP (Fig. 4D,E). Additionally, we also observed that the maximal response to ATP in calcium free bufer is 
similar to the 2nd incubation with ATP in normal calcium bufer (Fig. 4E).

Membrane bound P2X and P2Y purinoceptors mediate the response to extracellular ATP27. Using qRT-PCR 
we show that PMUCs express almost the complete repertoire of purinergic P2 receptors, with the exception of 
P2X7 which was below the level of detection (Fig. 5). When comparing the expression of P2 receptors relative to 
the expression of P2Y1, we identiied that P2X2 is the most ubiquitously expressed P2X receptor. he P2Y1 recep-
tor was the highest expressed P2Y receptor, followed by P2Y2.

Discussion
Extracellular responses to ATP are mediated by two functional subclasses of membrane bound P2 purinergic 
receptors, P2X and P2Y. P2X receptors (P2X1-P2X6) are ionotropic ligand gated ion-channels which show marked 
desensitisation following rapid activation31. P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14), 
in contrast, are GPCRs, mediating efects via intracellular signalling pathways27. Data from the current study pro-
vide a number of novel indings that have implications for understanding the autocrine signaling of the bladder 
urothelium in response to ATP.

In this study we provide the irst quantitative expression proile of P2X and P2Y receptors of the urothelium. 
We found the most signiicant expression of P2X2, P2X4, P2Y1 and P2Y2, as well as lesser expression of other 
purinergic receptor subtypes including P2Y6. here are many beneits in the use of PMUC’s versus a known 
urothelial cell line, however, a small possibility exists that our PMUC culture is not 100% pure. Nonetheless, our 
dissection and culture has been reined to ensure the highest purity, and this technique has been used extensively 
for the purpose of characterising functional urothelial responses5,8,30. In addition, our immunostaining for CK7 
indicates that our PMUC culture is pure and our data is largely consistent with previous reports of urothelial 
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Figure 2. ATP activates urothelial cells. (A) Representative trace of a calcium imaging experiment reveals 
that ATP (10 µM) is able to induce sustained intracellular calcium entry in PMUCs that returns to baseline 
following washout. Each coloured line represents an individual urothelial cell from a single experiment. (B) 
Group data shows urothelial responses to ATP (10 nM–1 mM) are dose dependent with little or no response to 
10–100 nM ATP, but sustained intracellular calcium responses to 1 µM, 10 µM, 100 µM, 1 mM (N = 6, n = 37–76 
per concentration, Mean ± SEM). (C) Non-linear it of PMUCs peak response to ATP reveal an EC50 value of 
3.49 ± 0.77 µM ATP (N = 6). (D) Less than 20% of PMUCs respond to 10–100 nM ATP, whereas 74–92% of 
PMUC’s respond to 1 µM to 1 mM ATP.
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purinergic receptor expression28,29,32,33. P2X7 mRNA was not detected in our study, consistent with a lack of 
expression in human urothelium29. P2X7 is predominantly expressed on cells of hematopoietic lineage as well 
as glial cells, Schwann cells and astrocytes34. An immunohistochemistry study of cat urothelium, has previously 
revealed signiicant P2X7 staining throughout the basal and apical layers of the urothelium6, however, more recent 
studies have identiied the urothelium is prone to non-speciic adsorption of antibodies35,36. To ultimately deter-
mine the precise molecular architecture of the purinergic receptors expressed on the urothelium, a comprehen-
sive analysis using multiple complementary techniques, including qPCR, western blot, immunohistochemistry 
and in-situ hybridization will be required.

Using live cell calcium imaging, we have systematically characterised the functional response of primary 
mouse urothelial cells to ATP, revealing a key role for intracellular calcium stores in urothelial ATP responses. 
Consistent with our observations, a number of previous studies have shown functional responses to ATP in iso-
lated urothelial cells from mouse, rat, and guinea pig26,28–30. In the current study, the urothelial response to ATP 
was characterised by a rapid rise in intracellular calcium, followed by sustained intracellular levels of calcium in 
the presence of the agonist. Following duplicate applications of sub-maximal ATP, and in a calcium free extra-
cellular solution, the magnitude and kinetics of ATP evoked responses were altered. As the repeat sub-maximal 
doses of ATP were applied with only a short washout period, it is possible that the changes in the observed 
response are due to alterations in the function of urothelial purinergic receptors responsible for calcium inlux. 
As P2X receptors undergo rapid desensitisation, it is likely that the reduction in response that we observed during 
duplicate application of ATP in calcium containing bufer is due to a desensitisation of these P2X receptors. P2X 
receptors also exhibit rapid activation kinetics, with direct inlux of cations across the electrochemical gradient 
responsible for intracellular calcium inlux. We, like others, found signiicant expression of the P2X2 receptor 
in the urothelium6,37,38, as well as expression of P2X1,3,4,5,6 which have also previously been identiied within the 
urothelium6,37–39. herefore, if these receptors are desensitised we would expect, and in this study observed, an 
increase in the time taken to reach peak intracellular calcium during a second application of ATP. Furthermore, 
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Figure 3. PMUCs respond to repeated applications of ATP. (A) ATP (10 µM) evokes a sustained increase 
in intracellular calcium in PMUCs that rapidly returns to baseline following washout. A second application 
of ATP also evokes sustained intracellular calcium entry (N = 3, n = 67). (B) Representative trace of PMUC 
calcium luorescence shows individual responses to repeated application of ATP (10 µM). Each line represents 
and individual urothelial cell from a single experiment. (C) he 2nd response to ATP had a signiicantly 
lower peak intracellular calcium entry than the 1st response to ATP (0.22 ± 0.01 vs. 0.15 ± 0.007 Rf340/380, 
N = 3, n = 67 ***P ≤ 0.001, paired Students t-test). (D) he time taken to reach peak intracellular calcium 
entry is signiicantly greater during the second response to ATP compared to the irst response (15.3 ± 1.4 vs. 
19.5 ± 2.4 seconds, N = 3, *P < 0.05, paired Students t-test).
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the obvious diferences in the rate of intracellular calcium rise that occurred in calcium free, compared to calcium 
containing bufer further implicate P2X receptors in the initial fast component of intracellular calcium inlux in 
response to ATP. he relative abundance of P2X2 over other P2X receptors suggests this receptor may be a key 
integrator of this response, however, in a somewhat related function, P2X4 mediates ATP-induced calcium inlux 
in response to luid shear stress in human vascular endothelium40 and its role in urothelial evoked calcium inlux 
cannot be currently ruled out. he P2X receptor isoforms mediating this initial ATP response requires further 
elucidation. Together these data support a mechanism whereby liberation of intracellular calcium via a slower 
G-protein coupled mechanism involving inositol triphosphate (IP3)

41, rather than direct inlux across the elec-
trochemical gradient, may be responsible for the intracellular calcium inlux in response to repeated applications 
of ATP27. P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, couple to phospholipase C and the liberation of intracellular calcium 
via IP3 and we, like others, identiied the expression of these P2Y receptor subtypes within the urothelium6,26,28.

In further support of a P2Y mediated ATP response in the urothelium, we identified that ATP evoked 
increases in intracellular calcium persist even when cells are superfused in a calcium free extracellular solution. 
Removal of extracellular calcium from the perfusion bufer isolates the GPCR mediated P2Y receptor response 
from the ionotropic P2X component of calcium inlux42, and thus provides additional evidence that a large pro-
portion of the urothelial response to ATP is mediated by the liberation of calcium from intracellular stores rather 
than through membrane bound calcium channels. In addition, with repeated applications of ATP in the absence 
of extracellular calcium, there was no reduction in peak response or obvious change in response proile. In rat cul-
tured urothelial cells, UTP, an agonist of P2Y receptors, has been shown to stimulate intracellular calcium rises via 
a phospholipase C-linked mechanism which was unafected by extracellular calcium but signiicantly attenuated 
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Figure 4. ATP evokes intracellular calcium responses in calcium free bufer. (A) Dose response of PMUCs to 
ATP (10 nM–1 mM) in normal calcium containing extracellular bufer (2 mM) and calcium free bufer (0 mM). 
PMUCs exhibit a dose-dependent increase in intracellular calcium in nominal calcium bufer, but the EC50 to 
ATP is reduced compared to nominal calcium conditions (3.49 ± 0.77 vs. 9.5 ± 1.5 µM, N = 6, n = 314–360). 
(B) he time taken for ATP (10 µM) to induce peak intracellular calcium in 0 mM calcium bufer is signiicantly 
longer than when cells are exposed to ATP (10 µM) in normal 2 mM calcium bufer (15.3 ± 1.4 s Vs 23.3 ± 1.9 s, 
N = 3, n = 62 **P ≤0 0.01 unpaired t-test). (C) he initial kinetics of the intracellular calcium response to 
ATP (10 µM), calculated by linear regression of the initial slope, is dramatically reduced in the absence of 
extracellular calcium 0.022 ± 0.0025 Vs 0.0058 ± 0.0007015 dRf/dTime (s) (N = 3, n = 67, n = 62). (D) In 
calcium free bufer, ATP (10 µM) evokes a sustained increase in intracellular calcium in PMUC’s that rapidly 
returns to baseline following removal of ATP. A second application of ATP in calcium free bufer evokes a 
sustained intracellular calcium entry (N = 3, n = 62). (E) Peak evoked intracellular calcium responses to 10 µM 
ATP were signiicantly reduced in calcium free bufer (0.22 ± 0.01 vs. 0.17 ± 0.01 Rf340/380, N = 3, n = 67, 
n = 62 ***P ≤ 0.001; one-way ANOVA with Tukey’s post-hoc multiple comparisons). Peak evoked intracellular 
calcium responses were not signiicantly reduced during duplicate applications of ATP (10 µM) in calcium free 
bufer (0.17 ± 0.01 vs. 0.16 ± 0.007 Rf340/380, N = 3, n = 62, ns P ≥ 0.05; one-way ANOVA with Tukey’s post-
hoc multiple comparisons).
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by store depletion26,28. Our study also provide some insight into the mechanisms responsible for urothelial cal-
cium conductance. In normal calcium containing bufer, our data suggests extracellular calcium conductance 
provides the initial fast component of the intracellular calcium response to ATP, likely via non-selective P2X 
receptor cation channels, corroborating computational modelling and functional studies of urothelial cell calcium 
signalling that implicated extracellular channel currents43,44. During duplicate applications of ATP in calcium free 
bufer we observe calcium responses that are of equivalent magnitude in the irst and second application, as well 
as a rapid return to baseline following ATP removal. hese data suggest that ater removal of ATP as a stimulus, 
intracellular calcium is not lost in signiicant amounts into the extracellular space and that intracellular calcium 
is rapidly and eiciently sequestered back into the endoplasmic reticulum for future use.

he ability of urothelial cells to respond to continuous or repeated stimuli with an increase in intracellular 
calcium, the known stimulus for distension evoked ATP release from the urothelium22,23, is essential to the pro-
posed physiological role of urothelial signalling during bladder distension. he importance of ATP in providing 
autocrine modulation of intracellular calcium levels within the urothelium is implicated by the role of intracellu-
lar calcium, via the liberation of IP3, in mediating stretch evoked ATP release19,22,23, the ability of ATP to induce 
ATP release13, and the multitude of interactions that ATP has been proposed to mediate in the sub-urothelium 
relating to mechanosensitivity17,27,45–47. hus, a mechanism by which the actions of ATP and its metabolites are 
able to mediate further ATP release could be an additional mechanism contributing to the enhancement in relex 
bladder activity observed in a number of bladder disorders. Indeed, ATP release is enhanced from bladder strips 
isolated from neurogenic and idiopathic detrusor overactivity patients, as well as IC/BPS patients13–15, and an 
increased urinary content of ATP is observed in women with OAB48. Whilst this ATP is likely to be acting on 
underlying bladder aferent nerves49,50, bladder sensations could be further modiied by autocrine actions of ATP 
on urothelial cells.

The presence of ectonucleotides in the urothelial layer51, which have the ability to breakdown ATP to 
adenosine-5′-diphosphate, a potent agonist of P2Y1, and results showing that both ADP and UTP are able to 
stimulate release of ATP52, have all provided further credibility to the theory that P2Y receptors have an essential 
role in urothelial function and ATP release. Intriguingly, the ATP metabolite adenosine, acting through P1 recep-
tors has been shown to inhibit further ATP release and this was proposed to be through inhibition of intracellular 
calcium liberation19. A systematic assessment of the contribution of purinergic receptors in the response to ATP 
will be an important area for future investigation.

hese results have shown for the irst time that the major component of ATP induced increases in urothelial 
intracellular calcium are via the liberation of calcium from intracellular stores, implicating but not conirming 
functional P2Y receptors. In addition, these results provide the irst complete expression proile of P2X and P2Y 
receptors on PMUCs. he control of urothelial intracellular calcium levels is a necessary factor in ATP release, 
and ATP release is an essential component in the control of micturition within the bladder.

Methods
he methods described have been used in previous studies and were performed as previously described5,8,53. 
Comprehensive details of the methods are provided to account for any minor variations in protocol.

Animals. he University of Sheield Animal Care Committee (UK) approved experiments involving animals 
under a project license issued in accordance with the UK Animals (Scientiic Procedures) Act 1986. Adult (14–16 
weeks) C57BL/6J male mice were used in this study. Mice were group housed (5 mice/cage) in speciic housing 
rooms within a temperature-controlled environment of 22 °C and a 12:12 hr light-dark cycle. Mice had free access 
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to food and water at all time. All experiments were performed on cells isolated from mice that were humanely 
euthanized by cervical dislocation in accordance with the guidelines set-out by the UK Animals Act 19865,8.

Isolation of primary mouse urothelial cells (PMUCs). Culture of primary mouse urothelial cells 
was performed as previously described5,8,30. Following cervical dislocation, bladders were excised from the 
mouse, dissected in sterile PBS and pinned urothelial side up in a SYLGARD™ coated dish. he bladder was 
incubated with 2.5 mg/ml Dispase dissolved in modiied Eagle’s medium (MEM) media (Gibco) containing 
1% antibiotic-antimycotic (PSF) solution (Gibco) and 0.7% Hepes (1 M) for 3 hrs at room temperature (21 °C). 
Cells were gently scraped from the urothelium using a blunt scalpel and dissociated in 0.025% trypsin-EDTA 
(Invitrogen) at 37 °C for 10 mins using gentle trituration with a Pasteur pipette at 5 and 10 minutes. he cell sus-
pension was resuspended in MEM with 10% Fetal Bovine Serum (FBS) before centrifugation (15 min, 1,500 rpm, 
4 °C). he MEM + FBS was aspirated and the cell pellet was resuspended in fresh keratinocyte serum free media 
(KSFM; Invitrogen) before being plated on collagen (IV) (Sigma-Aldrich) coated coverslips. Coverslips were let 
for 4 h in an incubator at 37 °C and 5% CO2 before looding with KSFM (2 ml/well).

Calcium imaging of cultured urothelial cells. Calcium imaging of PMUC’s was performed as pre-
viously described5,8. Cultured urothelial cells (20–24 hrs) attached to coverslips were loaded with 2 µM Fura-
2-acetoxymethyl ester (Fura-2AM; Sigma Aldrich) for 15 minutes in the dark at 37 °C. Coverslips were then 
placed in a washing well containing KSFM media at 37 °C for 15 minutes before being washed in HEPES bufer 
(Composition in mM (NaCl 142, NaHCO3 5, HEPES 10, Glucose 16, KCL 2, CaCl2 2, MgCl2 1, 0.1% BSA, 
310 mOsm) at room temperature for 15 minutes before imaging. Coverslips containing cells were transferred to 
a perfusion chamber mounted on an inverted microscope (Axiovert S100 TV, Zeiss, Cambridge, UK) equipped 
with a 20x oil immersion objective (Zeiss). Cells were continually superfused with external HEPES solution at a 
rate of approximately 1.5 mL/min. Cells were alternately illuminated at 340 and 380 nm with a 20 msec exposure 
time (Polychrome IV, TILL Photonics, Munich, Germany). Emitted light was passed through a 510 nm band 
pass ilter and collected by a 512B Cascade CCD camera (Photometrics, Tucson, AZ) and images were acquired 
at 0.5 Hz. MetaMorph imaging sotware (Molecular Devices, Sunnyvale, CA) was used to analyse all calcium 
imaging experiments.

Calcium imaging protocol. Cells for experiments carried out in normal calcium (2 mM) containing bufer 
were exposed to an individual concentration of ATP (10 nM–1 mM) for 60 seconds via continual perfusion. If a 
second dose of ATP was to be applied, a 3-minute washout with HEPES was allowed, followed by ATP at the same 
concentration for a further 60 seconds. Individual cells were easily discriminated based on luorescent inten-
sity under the microscope. For experiments in calcium free (0 mM) HEPES (Composition in mM (NaCl 142, 
NaHCO3 5, HEPES 10, Glucose 16, KCL 2, MgCl2 3, 0.1% BSA, 310 mOsm), recordings were started in calcium 
containing HEPES and switched to continual perfusion with calcium free HEPES during the recording period for 
two minutes prior to addition of ATP to ensure a complete switch in solution.

Immunohistochemistry of cultured urothelial cells. Immunohistochemistry and microscopy of 
cultured urothelial cells was performed as previously described5. Urothelial cells were labeled for transitional 
epithelium using monoclonal antibody cytokeratin 7 (CK7) (OV-TL 12/30; hermoFisher). he details of the 
primary antibody used are in Table 1. Coverslips were washed with 0.1 M phosphate-buffered saline (PBS) 
three times and ixed with ice-cold 4% PFA at 4 °C for 45 minutes. Coverslips were washed with saponin 0.05% 
(Sigma-Aldrich) + 2% FBS in 0.1 M PBS (SF-PBS) to remove excess PFA and permeabilise cell membranes. 
Nonspeciic binding of secondary antibodies was blocked with 3% bovine serum albumin diluted in 0.05% 
SF-PBS (Sigma-Aldrich) for 1 h. Coverslips were incubated with primary antisera and diluted in SF-PBS over-
night (28 h) at 4 °C. Sections were then washed 3x in PBS and incubated in the dark for 2 h at room tempera-
ture with secondary antibody conjugated to Alexa Fluor. Cells were then washed in SF-PBS before mounting in 
Prolong Gold Antifade with DAPI (hermoFisher Scientiic) and coverslipped. Slides were allowed to dry for 24 h 
before visualization.

Microscopy. Fluorescence was visualized with a confocal laser scanning microscope (Leica TCS SP8X; Leica 
Microsystems, Wetzlar, Germany). Images (1,024 × 1,024 pixels) were obtained using a X63 lens (sotware zoom 
X1.3) X60 oil immersion objective, and sequential scanning (4- to 5-line average). Separation of luorophores 
was achieved using white line laser tuned to 495-nm excitation and 505- to 534-nm emission detection settings 
for AF-488 and 405-nm excitation and 425- to 475-nm emission detection settings for DAPI. Confocal settings 
were optimized to reduce background staining by adjusting the white light laser intensity, emission window (as 
described above), and ampliier gain [726.7 ofset: X0.07 (AF488); 10 ofset: X0.1 (DAPI)]. hese settings were 
saved and used for all imaging5.

Species 
Raised in

RRID/AF 
Conjugate Manufacturer Dilution

Primary antigen Cytokeratin 7 
(clone OV-TL 12/30)

Mouse AB_10989596 hermoFisher 1:50

Secondary Antigen Mouse IgG1 Goat 488 hermoFisher 1:1000

Table 1. Primary and secondary antisera details.
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qRTǦPCR of urothelial cellsǤ Following isolation of PMUC, cells were incubated at 37 °C in KSFM media 
for 24 hrs. mRNA from PMUC’s was isolated (RNAeasy minikit, Qiagen) and cDNA was synthesized by reverse 
transcription using superscript III (Invitrogen) from mRNA following the manufacturers protocol. cDNA was 
ampliied by PCR for 35 cycles (Research Rotor-Gene 6000 real time thermocycler; Corbett-Qiagen) with for-
ward and reverse primers (Table 2) and iQSYBR Green Master Mix (Biorad). Primers were designed as exon 
spanning with a product size of between 98–207 bp and Tm°C of less than 65 °C (Table 2). All PCR reactions were 
made up to a total of 25 µl, cyclic conditions were set at: 95 °C for 12 minutes as an initial hold stage followed by 40 
cycles of 95 °C for 30 s, 59 °C for 30 s, 72 °C for 30 s, followed by a melt curve of 0.5 °C increments every 30 seconds 
from 72–95 °C. All samples were assayed in triplicate in the same plate. he relative amount of a target gene was 
calculated by the 2−∆∆Ct method using β-actin as a housekeeping gene.

Data analysis and statistics. PMUCs intracellular calcium lux was calculated as a ratio between the luo-
rescent signal at 340/380 nm (e.g. Rf 340/380) for responding cells. All data are presented as Mean ± SEM. Initial 
slope for urothelial activation kinetics was calculated using a linear regression of time from ATP application to 
max peak (Rf340/380). For qRT-PCR expression, levels of each target gene were calculated relative to the house-
keeping gene, β-actin, and represented relative of P2Y1 receptor expression. Statistical analysis was carried out 
using either paired or un-paired Student’s t-test as appropriate. Statistical signiicance was conirmed at P < 0.05 
using GraphPad Prism 7 sotware. (N = number of mice, n = number of cells)53.

Data availability
he datasets generated during and/or analysed during the study are available from the corresponding author on 
reasonable request.
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