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Abstract

This paper considers estimation and inference for a class of varying coefficient models

in which some of the responses and some of the covariates are missing at random and

outliers are present. The paper proposes two general estimators—and a computation-

ally attractive and asymptotically equivalent one-step version of them—that combine

inverse probability weighting and robust local linear estimation. The paper also consid-

ers inference for the unknown infinite-dimensional parameter and proposes two Wald

statistics that are shown to have power under a sequence of local Pitman drifts and

are consistent as the drifts diverge. The results of the paper are illustrated with three

examples: robust local generalized estimating equations, robust local quasi-likelihood

and robust local nonlinear least squares estimation. A simulation study shows that

the proposed estimators and test statistics have competitive finite sample properties,

whereas two empirical examples illustrate the applicability of the proposed estimation

and testing methods.

Keywords Local linear estimation · MAR · M and Z estimators · Wald statistic

Mathematics Subject Classification 62E20 · 62G10

1 Introduction

This paper considers estimation and inference for a general class of varying coefficient

models where some of the responses and possibly some of the covariates are not

always observed and outliers can be present. In the absence of outliers and when

all the variables are observable, the estimation of the unknown infinite-dimensional
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parameter for specific examples of the model considered here can be carried out using

a number of alternative methods, such as spline approximation [see, for example,

Eubank et al. (2004) and Hastie and Tibshirani (1993) for varying coefficient models,

and Verhasselt (2014) for generalized varying coefficient models], series estimation

[see, for example, Huang et al. (2002)] or local smoothing [see, for example, Fan et al.

(1998) for local maximum likelihood, Fan et al. (1995) for local quasi-likelihood and

Ruppert and Wand (1994) for local least squares among many others]. However, the

influence function of the resulting estimators is unbounded, and thus, outliers or large

deviations from the response variable to its conditional mean can have potentially a

very negative effect on them. Furthermore, ignoring the fact that some of the data

is not always observable or simply excluding the missing observations, the so-called

complete case analysis, may also negatively affect the estimators and cause a great loss

of information. Clearly, these potential problems might also have negative effects on

the quality of any inference about the unknown infinite-dimensional parameter, since

these inferences are typically based on test statistics that rely on these estimators.

This paper uses local smoothing, which is flexible enough to accommodate the

estimation of the unknown infinite-dimensional parameter of the general model con-

sidered here and it makes the computation of the asymptotic covariance matrices

required for inference relatively easy—especially when some of the observations in

the sample are missing and/or are characterized by the presence of outliers. The paper

assumes that some of the responses and possibly some of the covariates are missing

at random (MAR) and proposes estimators that combine the ideas of smoothing and

robust estimation with the inverse probability weighting (IPW) method (Horvitz and

Thompson 1952). Robust estimation in nonparametric and semiparametric models

has been considered by Fan et al. (1994), Boente et al. (2006), Bianco et al. (2011)

and Hu and Cui (2010) among many others. Nonparametric and semiparametric esti-

mation with MAR observations has been considered by Cheng (1994), Liang et al.

(2004), Chen et al. (2006), Liang (2008) and Bianco et al. (2019) among others. Robust

nonparametric and semiparametric estimation with missing data has been considered

recently by Boente et al. (2009) and Bravo (2015). The estimators of this paper use a

real-valued function that downweights high leverage covariates and either a robustified

loss function (M estimator) or a robustified set of estimating equations (Z estimators)

that yield bounded influence functions. The unknown infinite-dimensional parame-

ter is estimated using the local linear estimator (Fan and Gijbels 1996), whereas the

probability of missing—the so-called selection probability—is estimated using either

a robust parametric or a robust nonparametric estimator.

For inference, the paper focuses on a robust Wald statistic. A similar Wald statistic

was used by Bianco and Spano (2019) in the context of parametric nonlinear regression

models with MAR responses and by Bianco et al. (2006) for the finite-dimensional

parameter in a partially linear model with all the variables observable. The Wald

statistics considered here are different from those considered by Bianco and Spano

(2019) and Bianco et al. (2006), because they use IPW-based robust local estimators.

Furthermore, one of the proposed Wald statistics is characterized by a nonstandard

asymptotic distribution. Alternatively, a robust “distance” type of statistic, which is

in the same spirit of the robust deviance statistic proposed by Cantoni and Ronchetti

(2001) in the context of parametric quasi-likelihood estimation, could be used for
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inference. However, as opposed to the robust Wald statistics considered here, this

statistic is not asymptotic distribution-free (that is it depends on nuisance parameters)

under the null hypothesis [see Remark 4 in Sect. 3.2], which makes it less attractive

for inferential purposes.

The new results of the paper are the following: first, it establishes the asymptotic

normality of the proposed robust local M and Z estimators and it shows that the pres-

ence of MAR observations affects their asymptotic variance but not the asymptotic

bias. This result is consistent with that obtained by Chen et al. (2006) and Bravo and

Jacho-Chavez (2016) for semiparametric estimators in the presence of MAR responses

and with some general results obtained by Robins and Rotnitzky (1995) (albeit for

statistical models with finite-dimensional parameters). Second, it considers asymptot-

ically equivalent one-step version of the proposed estimators that are computationally

attractive and seem to perform well in the simulations. These results are rather gen-

eral as can be applied to both single and multiple equation models (i.e., models for

longitudinal or repeated outcomes data) and can be used to robustify a number of esti-

mators including the local quasi-likelihood estimator for generalized linear models

of Fan et al. (1995) and Chen et al. (2006), the local maximum likelihood estima-

tor for varying coefficient models of Cai et al. (2000) and the local nonlinear least

squares estimator for varying coefficient models of Kurum et al. (2013). They can

also be applied to construct estimators for marginal parameters of the model, such

as the marginal mean of the response, see Remark 3 in Sect. 3.1 for an example.

Third, it considers two Wald statistics that can be used to test linear hypotheses about

the infinite-dimensional parameter. Both statistics are shown to have power against a

sequence of local alternatives and are consistent when the local alternatives diverge.

The second Wald statistic has a nonstandard asymptotic distribution, but it is asymp-

totically distribution-free under the null hypothesis, which makes it easy to simulate

and therefore appealing to be used in the applied research. Fourth, the paper considers

three examples, that have been previously considered in the literature but not with

outliers and MAR observations: estimation and inference for models defined by a

quasi-likelihood function, for nonlinear regression models and for generalized esti-

mating equation models. Finally, this paper presents Monte Carlo evidence about the

finite sample performance for the proposed estimators and test statistics for the three

examples and considers two real data applications that illustrate the applicability and

usefulness of the proposed methods.

The rest of the paper is structured as follows: The next section introduces the

statistical models and the estimators. Section 3 contains the main results of the paper;

Sect. 4 presents one of the three examples (the robust local generalized estimation

equations model) and reports the results of a simulation study. Section 5 contains one

of the two real data applications, and Sect. 6 contains some concluding remarks. A

supplemental appendix available online contains the other two examples (with related

simulation studies), the other real data application and all the proofs of the results of

the paper.

The following notation is used throughout the paper: “T ” and “⊗” denote, respec-

tively, transpose and the standard Kronecker product, ‖·‖ is the Euclidean norm and

finally for any vector v v⊗2 = vvT .
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2 The statistical models and estimators

Let {Yi , X i , Ui }
n
i=1 denote a random sample from [Y , X , U ], where both Y and U are

scalar random variables and X =
[
X T

1 , X T
2

]T
is an R

k (k = k1 + k2)-valued random

vector.1 Assume that the response variable Y is related to the covariates X and U

through the semiparametric specification η (X , α0 (U )), where η (·) : X × U → R is

a known smooth function, that could represent, for example, a regression function or

the link function in a generalized linear model, and α0 (·) is an R
k-valued unknown

infinite-dimensional parameter assumed to be sufficiently smooth.

To introduce the M-type estimator for α0 (·), let

ζ (Y , η (X , α (U ))) ω (X) (1)

denote a loss function, where ω (·) is a real-valued function that downweights high

leverage covariates. Examples of ζ (·) include Huber’s ρ and Tukey’s bisquare ρ

functions and the loss functions used, for example, by Boente et al. (2006) and Bianco

et al. (2011) to bound the deviances and/or the Pearson residuals. Let δY and δX1

denote the binary indicators of missingness for Y and X1, respectively; for δ = δY δX1

let

Pr (δ = 1|Y , X , U ) = Pr (δ = 1|X2, U ) := π (X2, U ) > 0 a.s., (2)

denote the selection probability, which allows for the observed responses Yi and the

covariates in the vector X1i to be MAR for the same units i (i.e., δY
i δ

X1

i = 0) as well

as for different units i �= j (i.e., δY
i δ

X1

j = 0, ) in the sample 1 ≤ i, j ≤ n.2 Note that

by the law of iterated expectations

E

[
δ

π (X2, U )
ζ (Y , η (X , α0 (U ))) ω (X)

]

= E

{
E

[
E

(
δ

π (X2, U )
ζ (Y , η (X , α0 (U ))) ω (X) |Y , X , U

)
|U

]}

= E {E [ζ (Y , η (X , α0 (U ))) ω (X) |U ]} ,

which forms the basis for the estimators of this paper. Let

α0 (U ) = a1 + a2 (U − u) := aW

denote the linear approximation of α0 (U ) at the point u, where a1 = α0 (u) ,

a2 = h∂α0 (·) /∂u, W = [1, (U − u) /h]T , h (n) := h is the bandwidth, and let

π̂ (X2i , Ui ) denote an estimator for π (X2i , Ui ), which can be either parametric or

1 Note that the results of the paper are valid also for multivariate models, in which case Y and U are, say,

R
m -valued random vectors and X is an R

m × R
k -valued random matrix; see Sect. 4 for an example.

2 It is worth pointing out that the results of the paper could be easily modified to accommodate the cases

where only the responses Y or only the covariates in X1 are MAR, by changing the selection probability

(2) and modifying the expressions appearing in the theorems of Sect. 3 accordingly.
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nonparametric. For the former, let π (X2i , Ui , γ0) denote a parametric specification

for π (X2i , Ui ) (for example, a logit or a probit model), where γ0 ∈ Ŵ is a vector of

unknown finite-dimensional parameters, and let γ̂ denote a robust alternative to the

maximum likelihood estimator such as the one suggested by Bianco and Yohai (1996)

for the logistic regression; then, π̂ (X2i , Ui ) = π (X2i , Ui , γ̂ ). For the latter

π̂ (X2i , Ui ) =

∑n
j=1 δ j Lb

(
V j − Vi

)
ω

(
X2 j

)
∑n

j=1 Lb

(
V j − Vi

)
ω

(
X2 j

) ,

where ω (·) is real-valued function given in (1), Vi =
[
X T

2i , Ui

]T
and Lb (·) =

L (·/b) /bk2+1 is a product kernel function with bandwidth b (n) := b.

The IPW-based robust local M estimator for α0 (·) evaluated at U = u is âM
π̂ =[

âM
1π̂

T , âM
2π̂

T
]T

, where

âM
π̂ = arg min

a1,a2∈Rk

n∑

i=1

δi

π̂ (X2i , Ui )
ζ (Yi , η (X i , aWi ))

ω (X i ) Kh (Ui − u) , (3)

and Kh (·) = K (·/h) /h is a kernel function with bandwidth h (n) := h. Alternatively,

âM
π̂ can be defined as the solution to the first-order conditions:

n∑

i=1

δi

π̂ (X2i , Ui )

∂ζ
(
Yi , η

(
X i , âM

π̂ Wi

))

∂a
ω (X i ) Kh (Ui − u) = 0.

The latter estimator suggests the second class of robust local estimators considered in

this paper. Let

μ (Y , η (X , α (U ))) ω (X) (4)

denote an R
k-valued vector of robust estimating equations. Estimating equations

arise naturally in statistics, with the derivative of a quasi-likelihood (the quasi-

score) (Wedderburn 1974) being a prominent example. Other important examples

include generalized estimating equations of Liang and Zeger (1986), the variance

function estimating equations of Carroll and Ruppert (1988) and the first-order

conditions used in the Gauss–Newton method to solve nonlinear least squares prob-

lems. However, estimating equations are not robust to outlier and hence the use of

their robust analog (4). The vector of robust estimating equations μ (·) is such that

E
[
μGω (Y , η (X , α (U ))) ω (X)

]
= 0 for a unique α (U ) = α0 (U ), where μGω (·)

is the centered robust estimating equations with the centering factor Gω (·) used to

achieve Fisher consistency, see Sect. 4.1 for an example of Gω (·).

The IPW-based robust local Z estimator âZ for α0 (·) evaluated at U = u is defined

as the solution to
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n∑

i=1

δi

π̂ (X2i , Ui )
μGω

(
Yi , η

(
X i , âZ Wi

))
η′

(
X i , âZ Wi

)
ω (X i ) Kh (Ui − u) = 0,

(5)

where η′ (·) = ∂η (·) /∂a.

3 Asymptotic results

3.1 Estimation

Let U denote the support of U and, for simplicity of notation, let ζ (·) ω (·) := ζω (·),

μGω (·) ω (·) := μω (·), H = diag [1, h] ⊗ Ik ,

∂ζω (Y , η (X , aW ))

∂a
=

∂ζω (Y , η (X , aW ))

∂η
η′ (X , aW ) := ζω1 (Y , η (X , aW )) ,

∂2ζω (Y , η (X , aW ))

(∂a)⊗2
=

∂2ζω (Y , η (X , aW ))

∂η2
η′ (X , aW )⊗2

+
∂ζω (Y , η (X , aW ))

∂η
η′′ (X , aW ) := ζω2 (Y , η (X , aW )) ,

∂
(
μω (Y , η (X , aW )) η′ (X , aW )

)

∂a
=

∂μω (Y , η (X , aW ))

∂η
η′ (X , aW )⊗2

+μω (Y , η (X , aW )) η′′ (X , aW ) := μω1 (Y , η (X , aW )) ,

where η′′ (·) = ∂2η (·) / (∂a)⊗2 .

Let v1k =
∫

uk K (u) du, v2k =
∫

uk K 2 (u) du,

Ŵζ0 (u) = E [ζω2 (Y , η (X , α0 (U ))) |U = u] ,

�πζ0 (u) = E

[
ζω1 (Y , η (X , α0 (U )))

π (X2, U )

⊗2

|U = u

]
,

Ŵμ0 (u) = E [μω1 (Y , η (X , α0 (U ))) |U = u] ,

�πμ0 (u) = E

[(
μω (Y , η (X , α0 (U ))) η′ (X , α0 (U ))

)

π (X2, U )

⊗2

|U = u

]
,

Ŵ
v1

×0 (u) =

[
1 v11

v11 v12

]
⊗ Ŵ×0 (u) for × = ζ or μ,

�
v2

π×0 (u) =

[
v20 v21

v21 v22

]
⊗ �π×0 (u) for× = ζ or μ.
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Theorem 1 Under assumptions A1–A6 in the supplemental appendix

(nh)1/2

(
H

(
âM

π̂ − a0

)
−

h2 f (u)

2
(
v12 − v2

11

)
[ (

v2
12 − v11v13

)

(v13 − v11v12)

]
⊗

∂2α0 (u)

∂u2

)

d
→ N

(
0, Ŵ

v1

ζ0 (u)−1
�

ν2

πζ0 (u)

f (u)
Ŵ

v1

ζ0 (u)−1

)
.

Furthermore, if K (·) is symmetric

(nh)1/2

(
âM

1π̂ − α0 (u) −
h2 f (u) v12

2

∂2α0 (u)

∂u2

)

d
→ N

(
0,

Ŵζ0 (u)−1 v20�πζ0 (u) Ŵζ0 (u)−1

f (u)

)
.

To reduce the computational cost of âM
π̂ , a one-step version of it is proposed.

This procedure, which is effectively one iteration of the Raphson–Newton method,

is appealing when the minimization of the loss function is difficult (or very time-

consuming) to achieve to the desired degree of accuracy. If the initial estimator âM
π̂ =[

âM
1π̂

T , âM
2π̂

T
]T

is close enough to α0 (U ) for U ≈ u—see Assumption A7 in the

supplemental appendix, then the estimator from applying one iteration will have the

same asymptotic variance as that of the minimizer of the loss function. To be specific,

the one-step IPW-based robust M local estimator has the form

[
ãM

1π̂

ãM
2π̂

]
=

[
âM

1π̂

âM
2π̂

]
−

[
n∑

i=1

δi

π̂i

ζ2ω

(
Yi , η

(
X i , âM

π̂ Wi

))
Kh (Ui − u)

]−1

×

n∑

i=1

δi

π̂i

ζ1ω

(
Yi , η

(
X i , âM

π̂ Wi

))
η′ (X i , âWi ) Kh (Ui − u) . (6)

Theorem 2 Under the same assumptions of Theorem 1 and A7 in the supplemental

appendix, the IPW-based one-step robust local M estimator given in (6) has the same

asymptotic distribution as that given in Theorem 1. In particular, if K (·) is symmetric

(nh)1/2

(
ãM

1π̂ − α0 (u) −
h2 f (u) v12

2

∂2α0 (u)

∂u2

)

d
→ N

(
0,

Ŵζ0 (u)−1 v20�πζ0 (u) Ŵζ0 (u)−1

f (u)

)
.

The next theorem establishes the asymptotic normality of the IPW-based robust

local Z estimator defined in (5).
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Theorem 3 Under assumptions A1–A3, A4–A6 in the supplemental appendix

(nh)1/2

(
H

(
âZ

π̂ − a0

)
−

h2 f (u)

2
(
v12 − v2

11

)
[ (

v2
12 − v11v13

)

(v13 − v11v12)

]
⊗

∂2α0 (u)

∂u2

)

d
→ N

(
0, Ŵ

v1

μ0 (u)−1
�

ν2

πμ0 (u)

f (u)
Ŵ

v1

μ0 (u)−1

)
.

Furthermore, if K (·) is symmetric

(nh)1/2

(
âZ

1π̂ − α0 (u) −
h2 f (u) v12

2

∂2α0 (u)

∂u2

)

d
→ N

(
0,

Ŵμ0 (u)−1 v20�πμ0 (u) Ŵμ0 (u)−1

f (u)

)
.

As with the previous class of M estimators, it is possible to consider a one-step

version of the IPW-based robust local Z estimator, which has the form

[
α̃Z

1π̂

ãZ
1π̂

]
=

[
âZ

1π̂

âZ
2π̂

]
−

[
n∑

i=1

δi

π̂ (X2i , Ui )
μ1ω

(
Yi , η

(
X i , âZ Wi

))
Kh (Ui − u)

]−1

×

n∑

i=1

δi

π̂ (X2i , Ui )
μω

(
Yi , η

(
X i , âZ Wi

))
Kh (Ui − u) . (7)

Theorem 4 Under the same assumptions of Theorem 3 and A7 (with âZ
π̂ replacing

âM
π̂ ), the IPW-based one-step version of the robust local Z estimator given in (7) has

the same asymptotic distribution as that given in Theorem 3. In particular, if K (·) is

symmetric

(nh)1/2

(
ãZ

1π̂ − α0 (u) −
h2 f (u) v12

2

∂2α0 (u)

∂u2

)

d
→ N

(
0,

Ŵμ0 (u)−1 v20�πμ0 (u) Ŵμ0 (u)−1

f (u)

)
.

Remark 1 In the case where all the variables are observable, the resulting robust local

M and Z estimators have the same asymptotic distributions as those given in Theorems

1–4 without the selection probability π (X2, U ).

Remark 2 In the case where all the X covariates are MAR, that is if the selection

probability is Pr (δ = 1|Y , X , U ) = Pr (δ = 1|U ) := π (U ), the resulting IPW-based

robust local M and Z estimators have the same asymptotic distributions as those given

in Theorems 1–4 with �π×0 (u) = �×0 (u) /π (u) and × = ζ or μ.
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Remark 3 The robust IPW estimation method of this paper can also be used to construct

estimators for the unknown marginal mean μ0 of the response Y . We first consider

the case when only some of the observed responses Yi are MAR, that is the selection

probability is

Pr
(
δY = 1|Y , X , U

)
= Pr

(
δY = 1|X , U

)
:= π (X , U ) > 0 a.s. (8)

We consider two estimators: the first one is

μ̂I PW =
1

n

n∑

i=1

δY
i Yi

π̂ (X i , Ui )
,

whereas the second one is based on the assumption that E (Y |X , U ) = η (X , α0 (U ))

and is

μ̂DR =
1

n

n∑

i=1

δY
i Yi

π̂ (X i , Ui )
+

1

n

n∑

i=1

(
1 −

δY
i

π̂ (X i , Ui )

)
η (X i , α̂ (Ui )) ,

where π̂ (X i , Ui ) is either the robust logit parametric or nonparametric estimate of the

selection probability (8) and α̂ (·) can be either a robust M or Z estimator as discussed

in Sect. 2. The first estimator is the standard IPW sample mean dating back to Horvitz

and Thompson (1952); it is fully nonparametric in the sense that it does not include

the additional information that the response Y is related to the covariates X and U

through the function η (·) and is robust to the presence of outliers in the covariates X ,

but is not robust to a possibly misspecified parametric model π (X i , Ui , γ0) for the

selection probability (8). The second estimator is an imputation-type estimator, in the

same spirit of the doubly robust estimators often used in the missing data literature,

see, for example, Robins et al. (1994) and Scharfstein et al. (1999). By construction,

it is robust to possible misspecification of the regression function E (Y |X , U ) or of

the parametric model π (X i , Ui , γ0) (i.e., it is doubly robust) but is sensitive to the

presence of outliers in the covariates X , although this sensitivity is mitigated by the

fact that α̂ (·) is a robust estimator. The following theorem establishes the asymptotic

normality of n1/2 (μ̂• − μ0), where • is either I PW or DR.

Theorem 5 Under Assumption A8

n1/2
(
μ̂ j

• − μ0

)
d
→ N

(
0, V j (μ0)

)
, j = “N P ′′, or “P ′′

r ,

VN P (μ0) = E

[
σ 2 (X , U )

π (X , U )
+ (E (Y |X , U ) − μ0)

2

]
,

VPr (μ0) = VN P (μ0) + V1Pr (γ0) − 2V2Pr (γ0) ,
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where

V1Pr (γ0) = E

[
E (Y |X , U )

π (X , U , γ0)

∂π (X , U , γ0)

∂γ T

]
�(γ0)

E

[
E (Y |X , U )

π (X2, U , γ0)

∂π (X , U , γ0)

∂γ

]
,

V2Pr (γ0) = E

(
E (Y |X , U ) E

(
E (Y |X , U )

π

∂π

∂γ T

)
M−1 (γ0) rω (γ0)

)
,

� (γ0) = M−1 (γ0) V ar (rω (γ0)) M−1 (γ0) .

Theorem 5 shows that the two proposed estimators are asymptotically equivalent. The

asymptotic variance VN P (μ0) corresponds to the semiparametric efficiency bound

of Hahn (1998); the asymptotic variance VPr (μ0) will be smaller than VN P (μ0)

if V1Pr (γ0) ≤ V2Pr (γ0). To this end, note that if the selection probability (8) was

estimated by an ordinary parametric logit, the resulting asymptotic variance would be

VP (μ0) = VN P (μ0) − V1P (μ0), where

V1P (μ0) = E

[
E (Y |X , U )

π (X , U , γ0)

∂π (X , U , γ0)

∂γ T

]
I (γ0)

−1

E

[
E (Y |X , U )

π (X2, U , γ0)

∂π (X , U , γ0)

∂γ

]
,

and I (γ0) is the information matrix for a logit estimator, which implies that μ̂P
• would

be more efficient than μ̂N P
• . Thus, the closer (numerically) the influence function

M−1 (γ0) rω (γ0) of the Bianco and Yohai (1996) estimator γ̂ is to that of the ordinary

logit estimator, the more likely μ̂
Pr
• will be more efficient than μ̂N P

• .

We conclude this remark by briefly discussing the case where some of the observed

covariates X i , say X1i , are also MAR. In this case, the IPW estimator can still be

used, as it relies only on the observable covariates X2 and U ; on the other hand, the

imputation estimator becomes unfeasible because of its dependence on the missing X1.

To obtain a feasible imputation estimator additional assumptions, such as specifying

the joint distribution of X1 and X2, or the existence of an additional of set of covariates,

say Z , that are related (parametrically or nonparametrically) to X1, would be required.

3.2 Inference

The results of the previous section can be used to construct Wald statistics to test local

statistical hypotheses about α (·). To investigate the asymptotic properties of such

statistics, we consider the following local hypothesis with a Pitman drift

Hn : Rα (u) = r0 (u) + γn (u) , (9)
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where R is an l × k matrix of constants and γn (·) is a bounded continuous function

that may depend on n. Let S = [Ik, Ok] denote a selection matrix, where Ok is a k ×k

matrix of zeros, and let

W (u) = (nh)
[(

R˜̂a∗
1π̂ − r0 (u)

)]T
(

RSŴ̂
v1
× (u)−1 �̂

v2

π̂× (u) Ŵ̂
v1
× (u)−1 ST RT

)−1

×
(
R˜̂a∗

1π̂ − r0 (u)
)

for × = ζ or μ,

denote the Wald statistic, where, for ∗ = M or Z , ˜̂a∗
1π̂ can be either the IPW-based

robust local M or Z local estimator â∗
1π̂ or its one-step version ã∗

1π̂ , Ŵ̂
v1
× (·) and �̂

v2

π̂× (·)

are consistent estimators3 of Ŵ
v1

×0 (·) and �
v2

π×0 (·), and π̂ (·) is either the parametric

or nonparametric estimator of π (·).

Proposition 1 Under the assumptions of Theorems 1–4, if rank (R) = l (l ≤ k), and

nh5 → 0, then under (9) (i) for (nh)1/2 γn (u) → γ (u) > 0 (for some ‖γ (u)‖ < ∞)

W (u)
d
→ χ2 (κ, l) ,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and

noncentrality parameter

κ = f (u) γ (u)T
(

RSŴ
v1

×0 (u)−1 �
v2

π×0 (u) Ŵ
v1

×0 (u)−1 ST RT
)−1

γ (u) (× = ζ or μ) ;

(ii) for (nh)1/2 γn (u) → ∞,

W (u)
p

→ ∞.

Proposition 1 shows that with undersmoothing the proposed test has power against

local Pitman-type alternatives and is consistent against any fixed alternatives of the

form γn (·) = γ (·) . Under the null hypothesis H0 : Rα (u) = r0 (u), the proposition

can be used to construct confidence regions for Rα (u) with nominal coverage 1 − α,

that is for Pr
(
χ2 (l) ≤ cα

)
= 1 − α and Cα (u) = Pr (r0 (u) |W (u) ≤ cα) ,

Pr (r0 (u) ∈ Cα (u)) = 1 − α + o (1) .

Note that in the case of K (·) being symmetric, the Wald statistic W (u) simplifies

to

Ws (u) = (nh)
(
R˜̂a∗

1π̂ (u) − r0 (u)
)T

(
RŴ̂× (u)−1 v20�̂π̂× (u) Ŵ̂× (u)−1 RT

)−1

×
(
R˜̂a∗

1π̂ (u) − r0 (u)
)
. (10)

3 See the supplemental appendix for some examples of Ŵ̂
v1
× (·) and �̂

v2
π̂× (·).
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Proposition 1 can also be used to test the important hypothesis of constancy of the

varying coefficients α (·), corresponding to

H0 : α0 (u) = α0. (11)

The test can be implemented using the finite-dimensional analog of the IPW-based

robust local M and Z estimators defined in (3) and (5), that is

α̂M
π̂ = arg min

α∈A

n∑

i=1

δi

π̂ (X2i , Ui )
ζ (Yi , η (X i , α)) ω (X i ) ,

α̂Z
π̂ =

n∑

i=1

δi

π̂ (X2i , Ui )
μ

(
Yi , η

(
X i , α̂

Z
))

η′
(

X i , α̂
Z
)

ω (X i ) = 0, (12)

where A is a compact set and α0 ∈ int (A). Let α̂∗
π̂ (∗ = M or Z) denote either of

the estimators defined in (12) and note that under the null hypothesis (11) and the

assumption that n1/2
(
α̂∗

π̂ − α0

)
= Op (1) ,

(nh)1/2
(̃
â∗

1π̂ − α̂∗
π̂

)
= (nh)1/2

(̃
â∗

1π̂ − α0

)
+ op (1) ,

hence by Proposition 1

Wc (u) = (nh)
(̃
â∗

1π̂ − α0

)T
(

SŴ̂
v1
× (u)−1 �̂

v2

π̂× (u) Ŵ̂
v1
× (u)−1 ST

)−1

×
(̃
â∗

1π̂ − α0

) d
→ χ2 (p) . (13)

It is important to note that the test statistics W (u), Ws (u) and Wc (u) are asymptot-

ically valid at a single point u. To increase their power, one can consider them over a

fixed range of values of u, say
{
u j

}s

j=1
, and use instead the test statistics max j W

(
u j

)

and max j Wc

(
u j

)
( j = 1, . . . , s), as the following proposition shows.

Proposition 2 Under the assumptions of Proposition 1, (i) for (nh)1/2 γn

(
u j

)
→

γ
(
u j

)
> 0 ( for some

∥∥γ
(
u j

)∥∥ < ∞)

max
1≤ j≤s

W
(
u j

) d
→ max

j
χ2

j

(
κ j , l

)
,

max
1≤ j≤s

Wc

(
u j

) d
→ max

j
χ2

j

(
κ jc, l

)
(14)

where

κ j = f
(
u j

)
γ

(
u j

)T
(

RSŴ
v1

×0

(
u j

)−1
�

v2
π×

(
u j

)
Ŵ

v1

×0 (u)−1 ST RT
)−1

γ
(
u j

)
,

κ jc = f
(
u j

)
γ

(
u j

)T
(

SŴ
v1

×0

(
u j

)−1
�

v2

π×0

(
u j

)
Ŵ

v1

×0 (u)−1 ST
)−1

γ
(
u j

)
;
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(ii) for (nh)1/2 γn

(
u j

)
→ ∞

max
1≤ j≤s

W
(
u j

)
, max

1≤ j≤s
Wc

(
u j

) p
→ ∞.

Note that the distribution of the test statistics in Proposition 2 is nonstandard, since

it involves the maximum of s independent noncentral Chi-squared distributions. How-

ever, under the null hypothesis Rα (u) = r0 (u), the test statistic is asymptotically

distribution-free; hence, its distribution can be evaluated numerically or easily simu-

lated.

Remark 4 As mentioned in Introduction, a robust distance statistic can also be used to

test (9); however, the resulting statistic would not be asymptotically distribution-free

as the following proposition shows for the simple null hypothesis H0 : α (u) = α0 (u)

and K (·) symmetric. Let

D = −2

n∑

i=1

δi

π̂ (X2i , Ui )

(
ζ

(
Yi , η

(
X i , âM

1π̂

))
− ζ (Yi , η (X i , α0 (u)))

)

ω (X i ) Kh (Ui − u) .

Proposition 3 Under the same assumptions of Proposition 1

D
d
→

k∑

j=1

λ jχ
2
j (1) ,

where λ j are the eigenvalues of �πζ0 (u) Ŵζ0 (u)−1 .

4 Example andMonte Carlo

4.1 Robust generalized estimating equations (GEE) estimation

This section considers estimation of a varying coefficient GEE model for longitudinal

data [see, for example, Liang and Zeger (1986) for GEE estimation with unknown

finite-dimensional parameters]. Suppose that

E (Y |X) = η

(
X T α0 (U )

)
,

where Y is an m-dimensional random vector (m is the number of subjects or clus-

ters) and η
(
X T α (U )

)
=

[
η

(
X T

1 α (U1)
)
, . . . , η

(
X T

mα (Um)
)]T

. In this example, the

robust estimating equations μω (·) are
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δ

π
μω (Y , η (X , α (U )))

= η′
(

X T α (U )

)T

V (η, β0)
−1 ��(δ, X2, U )

×
[
ψ

(
A−1/2

(
Y − η

(
X T α (U )

)))
− Gω

(
Y , η

(
X T α (U )

))]
,

where V (η, β0) = R (β0) A
1/2
0 , R (β0) is the working correlation matrix indexed by

the q-dimensional unknown parameter β0, ψ (.) is a robust function such as the Huber

function defined as

ψc (t) =

{
t if |t | ≤ c,

csign (t) if |t | > c
(15)

with tuning constant c,

A0 = φ0diag
(

Var
(
η

(
X T

1 α0 (U )

))
, . . . , Var

(
η

(
X T

mα0 (U )

)))
,

� = diag (ω (X1) , . . . , ω (Xm)) ,

� (δ, X2, U ) = diag (δ1/π (X12, U1) , . . . , δm/π (Xm2, Um)) ,

φ0 is the unknown dispersion parameter,

Gω

(
Y , η

(
X T α (u)

))
= E

[
ψ

(
A−1/2

(
Y − η

(
X T α (U )

)))]

is the correction factor used to achieve Fisher consistency and a monotone missing

data pattern4 is assumed, that is, for δ1 ≥ δ2 ≥ · · · ≥ δm , δ1 = 1,

π (Xk2, Uk) = Pr (δk = 1|Xk2, Uk) =

k∏

l=1

Pr ((δl = 1|δl−1, Xl2, Ul)) .

Calculations show that

μπω1 (Y , η (X , aW ))

=

2k∑

j=1

∂η′
(
Y , η

(
X T aW

))

∂a j

V (η, β)−1 ��(δ, X2, U )

×
[
ψ

(
A−1/2

(
Y − η

(
X T aW

)))
− Gω

(
Y , η

(
X T aW

))]

4 The monotone missing data pattern assumption is fairly common in missing data models for longitudinal

studies, see, for example, Ibrahim and Molenberghs (2009) for a review. For nonmonotone missing data

patters, the IPW estimation method of this paper is still valid; however, the estimation of the selection

probabilities is substantially more challenging. One possible method is to use the randomized monotone

missingness model proposed by Robins and Gill (1997), which is unfortunately quite complex to implement

in practice and computationally intensive, see Lia et al. (2013) for further details.
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+ η′
(

X T aW
)T

V (η, β)−1 ��(δ, X2, U )

×

[
∂

∂a
ψ

(
A−1/2

(
Y − η

(
X T aW

)))
− G ′

ω

(
Y , η

(
X T aW

))]
,

Ŵμ0 (u)

= E

[
η′

(
X T α0 (U )

)T

V (η, β0)
−1 �sα (X , U )

×
∂

∂α
ψ

(
A−1/2

(
Y − η

(
X T α0 (U )

)))
|U = u

]

�πμ0 (u)

= E

{
η′

(
X T α0 (U )

)T

V (η, β0)
−1 ��(δ, X2, U )2 ×

−
[
ψ

(
A−1/2

(
Y − η

(
X T α0 (U )

)))
− Gω

(
Y , η

(
X T α0 (u)

))]
|U = u}⊗2 ,

where sα (X , U ) = ∂ log f (Y |X , U ) /∂α and f (Y |X , U ) is the joint conditional

density of the response Y . Consistent estimators for Ŵμ0 (u) and �πμ0 (u) can be

found in the supplemental appendix.

4.2 Monte Carlo results

This section investigates the finite sample performance of the estimator and test statistic

max j W
(
u j

)
given in Proposition 2 for the GEE model considered in the previous

section using a varying coefficient logit regression

logit (E (Y = 1|X , U )) = X1α10 (U ) + X2α20 (U ) ,

where Y is a three-dimensional binary response variable Y (i.e., m = 3 is number of

subjects or clusters), the covariates X = [Xk1, Xk2]T (k = 1, 2, 3) are independently

normally distributed with mean zero and unit variances, the three-dimensional covari-

ate U is independent of X and uniformly distributed between 0 and 1 and α0 (U ) =

[sin (πU/2) , cos (πU )]T . To generate the responses with an exchangeable covari-

ance structure (with correlation coefficient set equal to 0.3), Parzen (2009) approach

is used, in which a random effect is added to the marginal probability of success

mki =
1

1 − exp (Xk1iα10 (Uki ) + Xk2iα20 (Uki ))
(k = 1, 2, 3) .

The selection probabilities for subjects k = 2 and k = 3 are specified as

Pr (δ2 = 1|X22, U2, Y1) =
exp (γ10 + γ20 X22 + γ30U2 + γ40Y1)

1 + exp (γ10 + γ20 X22 + γ30U2 + γ40Y1)
,

Pr (δ3 = 1|X32, U3, Y2, Y1) =
exp (γ10 + γ20 X32 + γ30U3 + γ40Y1 + γ50Y2)

1 + exp (γ10 + γ20 X32 + γ30U3 + γ40Y1 + γ50Y2)

(16)
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with
[
γ10, γ20, γ30, γ40, γ50

]T
= [1, 1.5, 0.3, 1, 0.7]T , which implies that the average

percentages of missing are about 25% for k = 2 and 20% for k = 3. We consider

three cases: the first one (case 0) has no missing values nor outliers; the second one

(case C0) has missing values but no outliers; and finally the last case (case C3) has

both missing values and outliers generated as

(C3) Xk2 j ∼ N (10, 1) (k = 1, 2, 3; j = 1, . . . , 10) ,

that is in (C3) the first ten elements of the three covariates Xk2 are outliers. The com-

putation of âZ
π̂ is carried out under the working independence assumption with φ0 = 1

using the Huber function (15) with c = 1.2 and the Newton–Raphson algorithm. In

the simulations, the Epanechnikov kernel is used, whereas the weight function is

ω (X) =

(
1 +

∥∥∥S−1 (X − M)

∥∥∥
2
/2

)−1/2

, (17)

where M and S are robust location-scatter estimators such as the minimum covariance

determinant estimator (MCD), see, for example, He et al. (2005). The MCD estimator

is computed using the R routine CovNAMcd, which uses imputation to deal with miss-

ing observations. The bandwidth h is selected by a robust cross-validation procedure in

which in the first step for a given h, t̂−i =
∑n

j �=i �π̂c

(̂
t j , u

)
/n = 0 and in the second

step the robust bandwidth is chosen as ĥ = arg minh

∑n
i=1 δiζω

(̂
t−i

)
/π̂ (X2i , Ui ) ,

that is ĥ is the minimizer of the robust quasi deviance. Note that the selection proba-

bilities (16) are estimated only using the robust parametric logit estimator.

Table 1 reports the mean absolute bias (B)

B
(
â1k j

)
=

1

n

n∑

i=1

∣∣̂a1k j (Ui ) − αk0 (Ui )
∣∣ for k = 1, 2

and standard deviation (SD) of four different estimators of αk0 (·): the robust local

complete case estimator â1kc—that is the estimator based on the sample where all the

missing observations are dropped, the IPW local robust estimator â1kπ̂ p with robust

logit estimation of π (X2i , Ui ) and their nonrobust analogs computed with the Huber

function (15) set to c = ∞, no correction term Gω (·) and an ordinary logit estimator

for π (X2i , Ui ) .

Inference is based on the statistic max1≤ j≤s W
(
u j

)
(with s = 5) for the hypothesis

Hγ k :

[
α1

(
uk j

)

α2

(
uk j

)
]

=

[
α10

(
uk j

)

α20

(
uk j

)
]

+ γ

[
α̂Z

1π̂ − α10

(
uk j

)

α̂Z
2π̂ − α20

(
uk j

)
]

(k = 1, 2, 3) , (18)

where uk j = [0.1, 0.3, 0.5, 0.7, 0.9], α10

(
uk j

)
= [0.156, 0.453, 0.707, 0.891, 0.987]

and α20

(
uk j

)
= [0.951, 0.587, 0, 0.587, 0.951] (k = 1, 2, 3) (that is, there are six

parameters), α̂Z
π̂ is the parametric estimator defined in (12) and γ ∈ R index the

departure from the null hypothesis (corresponding to γ = 0). The upper 10% and 5%

critical values of the nonstandard distribution given in Proposition 2 are calculated
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Table 1 Bias (B) and standard

deviation (SD) for robust and

nonrobust estimators in the GEE

example

n 200 500 200 500

B SD B SD B SD B SD

0(N R) 0(R)

k = 2

â11c
.091 .327 .061 .163 .109 .357 .070 .175

â11π̂ p – – – – – – – –

â12c .103 .324 .069 .157 .109 .341 .074 .162

â12π̂ p – – – – – – – –

k = 3

â11c .109 .315 .077 .152 .119 .337 .082 .162

â11π̂ p – – – – – – – –

â12c
.117 .310 .067 .145 .126 .326 .073 .156

â12π̂ p
– – – – – – – –

C0(N R) C0(R)

k = 2

â11c
.139 .507 .087 .281 .145 .527 .092 .292

â11π̂ p
.110 .518 .072 .289 .120 .531 .074 .299

â12c .137 .499 .077 .256 .139 .521 .080 .273

â12π̂ p .114 .510 .063 .265 .122 .527 .070 .281

k = 3

â11c .126 .495 .081 .269 .136 .502 .086 .279

â11π̂ p .106 .510 .070 .277 .113 .524 .075 .288

â12c
.130 .484 .080 .248 .132 .494 .081 .259

â12π̂ p
.110 .496 .066 .254 .118 .509 .069 .264

C3(N R) C3(R)

k = 2

â11c
.197 .628 .162 .456 .150 .538 .099 .301

â11π̂ p
.216 .657 .169 .470 .122 .543 .080 .310

â12c .193 .621 .162 .447 .143 .532 .084 .290

â12π̂ p .204 .638 .159 .455 .124 .540 .074 .296

k = 3

â11c .199 .631 .145 .481 .146 .541 .090 .289

â11π̂ p .214 .654 .153 .488 .128 .536 .080 .295

â12c .195 .625 .151 .470 .137 .533 .084 .273

â12π̂ p
.205 .640 .165 .483 .121 .531 .073 .278

N R nonrobust estimation, R robust estimation
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Table 2 Finite sample size for robust and nonrobust tests in the GEE example

n 200 500 200 500

0(N R) 0(R)

max j Wco

(
u j

)
.113 .061 .108 .057 .117 .065 .112 .062

C0(N R) C0(R)

max j Wco

(
u j

)
.120 .065 .110 .060 .121 .068 .112 .061

max j Wπ̂ p

(
u j

)
.116 .062 .108 .058 .120 .065 .110 .059

C3(N R) C3(R)

max j Wco

(
u j

)
.174 .125 .172 .120 .122 .068 .113 .062

max j Wπ̂ p

(
u j

)
.190 .138 .182 .121 .119 .063 .110 .059

N R nonrobust estimation, R robust estimation

using 105 simulations and are [11.307, 13.452] for n = 200 and [11.077, 13.168] for

n = 500. Table 2 reports the finite sample size at the 0.10 and 0.05 nominal level of

max1≤ j≤5 W
(
uk j

)
based on the four estimators and the three cases (0, C0 and C3)

used in Table 1.

A full evaluation of the finite sample power of max1≤ j≤5 W
(
uk j

)
under (18) is

not feasible as it would have to be calculated over the hypergrid γ × · · · × γ =

[−1,−0.75, . . . , 0, . . . 0.75, 1]4 (6, 561 evaluation points); therefore, Fig. 1 reports

the contour plots at the level 0.45 of the size-adjusted finite sample power curves

for the test of Hγ 2 (that is only for the second subject (or cluster)) over the grid

γ ×γ = [−1,−0.75, . . . , 0, . . . 0.75, 1] × [−1,−0.75, . . . , 0, . . . 0.75, 1] for the C0

and C3 cases. Note that smaller contour plots indicate higher finite sample power.

The results of Tables 1 and 2 (together with those of Tables 3–6 in the supplemental

appendix) can be summarized as follows: For estimation (Tables 1 and 3, 5 in the

supplemental appendix), first, without outliers and missing observations (case 0) the

nonrobust local estimators perform better than the robust ones both in terms of bias

and standard deviation, with the bias and standard deviation up to, respectively, 16%

and 8% smaller for the GEE example, 13% and 10% smaller for the Poisson regres-

sion example l and 7% and 11% smaller for the nonlinear regression example in the

supplemental appendix. Note that for both estimators the bias and standard deviation

decrease as the sample size increases, implying the validity of the asymptotic results

of Sect. 3. Second, without outliers but with missing observations (case C0) the per-

formance of the nonrobust and robust local estimators is fairly similar, with biases

and standard deviations being, respectively, between 1% and 8% smaller and 2% and

6% (for the Poisson regression example—see Table 3 in the supplemental appendix,

and the GEE example). Third, when outliers are present (case C3 and cases C1–C2

in the supplemental appendix) the robust estimators clearly outperform the nonrobust

ones with biases being up to 60% smaller and standard deviations up to 50% smaller.

Fourth, among the three robust local estimators, those based on the inverse probability

weighting perform better in terms of bias (for the GEE example on average around

123



Robust estimation and inference for general varying…

Fig. 1 Finite sample-adjusted power for the test statistic max1≤ j≤5 W
(
u j

)
; solid lines indicate

max1≤ j≤5 Wπ̂ p

(
u j

)
and dot dashed lines indicate max1≤ j≤5 Wco

(
u j

)
for the GEE example

18% smaller, for the Poisson regression example on average around 9% smaller and

for the nonlinear regression example on average around 10% smaller) but not in terms

of standard deviation (for the GEE example on average around 2%, for the Poisson

regression example on average around 1% and for the nonlinear regression example

on average around 2%) than those based on the complete case analysis, which is not

surprising because their asymptotic variance is affected by the estimated selection

probabilities in the denominator. Note, however, that in terms of the mean-squared

error (MSE) the local robust estimators have typically a smaller one than that of the

nonrobust estimators, the exceptions being the GEE and the Poisson regression exam-

ples both with 200 observations, where the MSEs are, respectively, 0.272 and 0.279

and 0.312 and 0.315 (for the IPW estimator with nonparametric estimation of the selec-

tion probabilities). Finally, between the two inverse probability weighting estimators,

those based on the parametric estimator of the selection probabilities seem to have an

edge over those based on the nonparametric estimator in terms of both bias and stan-

dard deviation, which is again not surprising, given that the selection probabilities are

estimated using the (robust) maximum likelihood estimator for a correctly specified

parametric model. For inference (Tables 2 and 4 and 6 in the supplemental appendix),

first, without outliers and missing observations (case 0) or without outliers but with

missing observations (case C0), the tests based on the nonrobust local estimators are

characterized by a slightly better (i.e., closer to the nominal level) size than that of

the tests based on the robust local estimators (up to 3% smaller for the GEE-based
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test with 200 observation). Second, when outliers are present (cases C1–C3) the size

distortion of the tests based on the nonrobust local estimators worsen significantly (up

to 30% larger size distortions in the GEE case with 200 observations), whereas that of

the tests based on the robust local estimator remain similar to that of case C0. Third

among the three test statistics, those based on the inverse probability weighting are

more accurate (that is they have the smallest size distortion) with those based on the

parametric estimator of the selection probabilities being the most accurate. Finally,

Fig. 1 (combined with Figures 3 and 4 in the supplemental appendix) shows that in

terms of finite sample power the tests based on the inverse probability weighting robust

local estimators have typically larger power compared to those based on the complete

case estimators both in the case of no outliers present (case C0) or with outliers (cases

C2 and C3).

5 Empirical application

This section illustrates the applicability of the proposed estimation and testing methods

by considering the New York air quality measurements data (from May to September

1973, available in the R package datasetswhich consists of 154 daily observations

of mean ozone parts (per billion), solar radiations, wind speed (in mph) and temperature

(in degrees F) and contains 37 missing ozone part observations and 7 missing solar

radiation observations. The same data set was considered by Bianco and Spano (2019),

who fitted an exponential growth regression model between the ozone parts and the

temperature. Here, a linear varying coefficients specification is considered

Y = X T α0 (U ) + ε,

where Y represents the ozone parts, X = [1, X1, X2]T represent, respectively, the

solar radiation and temperature, U is the wind speed and ε is a standard normal. The

same Huber function with c = 1.2 and weight function ω (·) as those given in (15)

and (17) are used, with the computation of α̂π̂ (·) based on the Newton–Raphson

algorithm for the local estimating equations

1

n

n∑

i=1

δi

π̂ (X2i , Ui )
ψc (̂εi )

[
X i

X i (Ui − u) /h

]
ω (X i ) Kh (Ui − u) = 0, (19)

where ε̂i = Yi − X T
i âWi .

Figure 2 shows the three varying coefficients α̂ j (ui ) estimated using (19) with

the Bianco and Yohai (1996) robust logit estimator for the selection probabilities

π (X2i , Ui ) and their nonrobust analogs, together with their associated 95% confidence

intervals.

The first estimated coefficient (intercept) represents the direct effect of the wind

speed on the ozone parts and is a decreasing function of it. (The same decreasing

relationship was found by Bianco and Spano (2019).) The other two estimated varying

coefficients represent the combined effect on the ozone parts of the solar radiation and
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Fig. 2 Estimated varying coefficients for the New York air quality data. The solid line represents the robust

local estimator with 95% confidence interval (dashed lines). The dot dashed line represents the nonrobust

local estimator with 95% confidence interval (long dashed lines)

temperature with the wind speed. The former shows a clear decreasing relationship

between the ozone parts and the wind speed combined with the solar radiations up to

a speed of around 12 mph followed by a flatter relationship, whereas the latter shows

an initial increasing relationship between the ozone parts and the wind speed and the

temperature followed by a less clear relationship. Note that the robust local estimators

are characterized by a more regular (and therefore easier to interpret) pattern. In

terms of the mean effect (i.e., α̂ j =
∑n

i=1 α̂ j (Ui ) /n for j = 1, 2, 3), the nonrobust

estimation procedure has
[
α̂1, α̂2, α̂3

]T
= [−0.94, 0.08, 1.56]T , whereas the robust

one has
[
α̂1, α̂2, α̂3

]T
= [−0.84, 0.07, 1.36]T . For inference, the null hypotheses of

joint and individual constancy of the three varying coefficients are considered, that is

H0 :
[
α1

(
u j

)
− α10, α2

(
u j

)
− α20, α3

(
u j

)
− α30

]T
= 0T and

H0 :
[
αk

(
u j

)
− αk0

]
= 0 (k = 1, 2, 3)

are tested using the max1≤ j≤25 Wc

(
u j

)
statistic (2) evaluated at 25 points u j . The

sample values of max1≤ j≤25 Wc

(
u j

)
for the null hypotheses of joint and individual

constancy of the three varying coefficients are, respectively, 11.84, 7.84, 7.04 and

8.89 with corresponding p values of 0.028, 0.022, 0.028 and 0.016. Thus, the null

hypotheses of joint and individual constancy of the varying coefficients are rejected

at the 0.05 significance level.
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6 Conclusions

This paper has considered robust local estimation and inference for a general class of

varying coefficients models where some of the responses and covariates are missing

at random and outliers might be present. The paper has proposed a general estimation

method (and a computationally attractive one-step version of it) based on inverse

probability of weighting of the selection probabilities that can be used to obtain both M

and Z estimators and can accommodate longitudinal data. The paper has also proposed

two Wald statistics that can be used to test hypotheses on the infinite-dimensional

parameter, including that of constancy. A Monte Carlo study shows that the proposed

estimators and Wald statistics perform well in finite samples, while two empirical

applications illustrate their practical usefulness.
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