
This is a repository copy of A Geochemical Modelling of Multi-minerals Evolution for a 15 
Months Experiment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/153518/

Version: Accepted Version

Article:

Baqer, Y, Chen, X orcid.org/0000-0002-2053-2448 and Thornton, S (2023) A Geochemical 
Modelling of Multi-minerals Evolution for a 15 Months Experiment. Environmental 
Geotechnics, 10 (6). pp. 400-408. ISSN 2051-803X 

https://doi.org/10.1680/jenge.19.00081

© ICE Publishing, all rights reserved. This is an author produced version of a paper 
published in Environmental Geotechnics. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Accepted manuscript 
doi: 10.1680/jenge.19.00081 

1 

 

 

Accepted manuscript 

As a service to our authors and readers, we are putting peer-reviewed accepted manuscripts 

(AM) online, in the Ahead of Print section of each journal web page, shortly after acceptance. 

 

Disclaimer 

The AM is yet to be copyedited and formatted in journal house style but can still be read and 

referenced by quoting its unique reference number, the digital object identifier (DOI). Once the 

AM has been typeset, an ‘uncorrected proof’ PDF will replace the ‘accepted manuscript’ PDF. 

These formatted articles may still be corrected by the authors. During the Production process, 

errors may be discovered which could affect the content, and all legal disclaimers that apply to 

the journal relate to these versions also. 

 

Version of record 

The final edited article will be published in PDF and HTML and will contain all author 

corrections and is considered the version of record. Authors wishing to reference an article 

published Ahead of Print should quote its DOI. When an issue becomes available, queuing 

Ahead of Print articles will move to that issue’s Table of Contents. When the article is 

published in a journal issue, the full reference should be cited in addition to the DOI. 

Downloaded by [ University of Leeds] on [23/10/19]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.19.00081 

2 

 

 

Submitted: 27 March 2019 

Published online in ‘accepted manuscript’ format: 11 October 2019 

Manuscript title: A Geochemical Modelling of Multi-minerals Evolution for a 15 Months 

Experiment 

Authors: Yousef Baqer1, XiaoHui Chen1, Steven Thornton2
 

Affiliations: 1School of Civil Engineering, University of Leeds, Leeds, UK. 2Groundwater 

Protection and Restoration Group, Dept. of Civil and Structural Engineering, The University of 

Sheffield, Sheffield, UK. 

Corresponding author: XiaoHui Chen, School of Civil Engineering, University of Leeds, 

Leeds, UK. Tel.: +44 (0)113 3430350 

E-mail: x.chen@leeds.ac.uk 

Downloaded by [ University of Leeds] on [23/10/19]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.19.00081 

3 

 

 

Abstract 

The impact of hyper alkaline leachate released from the cementitious barrier of a geological 

disposal facility (GDF) on the host rock is a significant issue for the safety assessment of 

long-term nuclear disposal. However, modelling of multi-mineral transformations, multiple 

chemical reactions and multiple secondary phase pathways remains a challenge due to 

uncertainties in parameters and a limited available database describing the kinetics of 

dissolution/precipitation reactions. In this study a new modelling approach, Mixed 

Kinetic-Equilibrium (MKE), has been employed to study the complex reactions occurring in an 

experimental system consisting of Borrowdale Volcanic Group rocks permeated with a 

hyper-alkaline leachate over 15 months. The modelling suggests that dissolution of primary 

dolomite, quartz, calcite and K-feldspar in the host rock initially drives the chemical evolution 

of this system. The subsequent precipitation of several secondary phases, including calcite, 

brucite, talc and calcium-silicate-hydrate (CSH) phases, is predicted to control the long-term 

chemical equilibria and mineralogical composition of the host rock impacted by the alkaline 

leachate. The results from the modelling provides a deeper understanding of the long-term 

interactions between the host rock and high pH leachate, with dolomite predicted to be a major 

controlling phase on the geochemical evolution of the system. 
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Notation 

 

A0 Initial Surface area 

2 2
, , ,H O OH COH

f f f f  Inhibition factors 

IAP

K
 Ion activity divided by equilibrium constant, equal to the saturation 

ratio (SR) of the reactant 

kk Reactant empirical constant 

2 2
, , ,H O COH OH

k k k k   Solutes rate coefficients 

k1, k2, k3, k4 Rate constants 

mk Moles of reactant at a given time  

m0k Initial moles of reactant 

n Order of reaction constant (Crystal grain size distribution) 

2COP  Partial pressure of carbon dioxide 

Rk Reactant overall dissolution rate 

rk Reactant specific reaction rate 

rf Forward reaction 

SI Saturation index 

SR Saturation ratio 

V Solution volume 

[X] Ion activity of the element X 
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Introduction 

In the UK the concept of multilayer barrier developed by Nirex (Francis et al., 1997) has been 

adopted for intermediate/low level waste disposal. A location hundreds of meters below the 

biosphere is to be selected for a deep geological waste repository, with wastes interred within 

stainless-steel containers encapsulated within a cementitious engineered barrier at the site. A 

hyper-alkaline plume may be generated by groundwater in contact with the cement barrier, 

creating a chemical disturbed zone (CDZ) (Chen et al., 2015, Chen et al., 2016, Chen and 

Thornton, 2018, Corkhill et al., 2013). The influence of the CDZ on the host rock for an 

intermediate/low level waste disposal facility in the UK has been summarized in the BIGRAD 

report (Small et al., 2016). In addition, significant effort has been made by the wider waste 

management community in the past two decades, in terms of experimental analysis (at lab scale, 

field scale and on natural analogues), as well as in terms of modelling, to investigate the 

long-term interaction between cement materials and potential host rock. The mechanisms and 

modelling of waste-cement and cement-host rock interactions have been summarized in a 

special issue of Physics and Chemistry of the Earth (Jacques et al., 2014). 

In the field of geochemical modelling considerable research has been conducted based on 

the concept of thermodynamic equilibrium (Westall, 1986, Bethke, 1994, Bethke, 1996, Van 

der Lee, 1997). However, in a disposal site with natural water dominant, this assumption may 

not be valid for slow reaction processes. Therefore, an improved modelling approach 

incorporating non-equilibrium and kinetically controlled precipitation and dissolution was 

developed by (Soetaert et al., 1996) to illustrate kinetics processes in terms of first or second 
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order formulations. However, even with this model, values of kinetic parameters such as 

surface area, initial and final moles of reactants, reaction and precipitation rates cannot easily 

be obtained from experimental study. For example, (Parkhurst and Appelo, 1999) have 

attempted to address this using the geochemical model of PHREEQC as the framework for the 

complex geo-reaction system, however the database only covers a rates for a limited number of 

minerals such as calcite and K-feldspar, for example. 

Recently, a Mixed Kinetic-Equilibrium approach (MKE) was introduced to combine the 

advantages of both kinetic and equilibrium laws and enable modelling of very complex 

multi-mineral and multi-component reaction systems (Chen and Thornton, 2018, Van der Lee, 

1998, Bethke, 1996). The new approach enables faster reactions using the equilibrium concept 

with slower kinetically-limited reactions. In addition, it allows existing models developed on 

the thermodynamic equilibrium approach to be re-evaluated. Nevertheless, this requires a full 

understanding of the chemical reaction system (e.g. which reaction is faster and slower, etc.) 

and the availability of appropriate kinetic data. This paper illustrates the application of the 

MKE approach in the interpretation of multi-mineral reactions that may occur in Borrowdale 

Volcanic Group rocks during experimental permeation with a model hyper-alkaline leachate 

originating from the cementitious barrier of a geological disposal facility for intermediate-level 

nuclear waste (ILW). 

 

Experimental study 

A 15 year experiment, starting in 1995, was conducted by the British Geological Survey 

(Rochelle et al., 2001, Moyce et al., 2014, Rochelle et al., 2016) to examine the chemical 
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behaviour of the Borrowdale Volcanic Group (BVG) rock sample in contact with young 

near-field porewater (YNFP) or evolved near-field groundwater (ENFG) intended to represent 

model fluid compositions released from cementitious barrier materials used for ILW disposal. 

The rock sample used in the experiment was taken from a hydrologically fracture zone in 

Ordovician volcanic rocks in the UK. A 150 ml and 100 ml pressure vessels were used for the 

solution with, and without, BVG rock, respectively. 

The original 15 year experiment was divided into two time periods with different targets. 

The first period, from 0-15 months, investigated short term mineral evolution, whereas the 

second period, from month 15 to year 15, investigated the long-term mineral evolution. The 

modelling study described in this paper considers the first period of the experiment from 0 to 

15 months, and is focused on chemical interactions occurring between the YNFP and BVG 

rock only (YNFP characteristics are given in Table 1). 

Fluid and rock samples were collected from these vessels at 4, 9 and 15 months for 

chemical and mineralogical analysis. Before analysis, the rock samples were washed in 

isopropanol, milled and micro ionised in acetone with the addition of 10% corundum  

as an internal standard. The rock samples were then placed in a stainless-steel holder and 

analysed using a PANalytical X’Pert Pro diffractometer. The final analysis process was then 

performed using the PANalytical X’Pert Highscore Plus software (Moyce et al., 2014, Rochelle 

et al., 2016). Other than the analysed samples, the experiment was continued in parallel for a 

much longer reaction period of 15 years (Moyce et al., 2014, Chen and Thornton, 2018). 
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Mineralogical analysis and kinetic information for BVG rock 

The mineralogical composition of BVG rock is given in Table 2. Note here that the fracture fill 

and clay phases have not been considered despite that the starting material has indicated their 

presence. Six minerals are presented in BVG rock, all of which can dissolve and react with 

YNFP. Based on the mineral weight percentage values, the initial mass for each reactant is 

calculated for 35g of rock sample, based on the original experiment (Rochelle et al., 2016). 

The overall dissolution rates of minerals may be described by (Appelo and Postma, 

2005): 

 

In which  is initial surface area (m2) / volume of solution (L), is moles of 

solid at a given time / initial moles of solid, n=2/3 (for uniformly dissolving spheres and cubes, 

generally obtained from experiments),  is a specific reaction rate (mol/m2/s) with various 

forms. The general formulation below is proposed by (Rimstidt and Barnes, 1980): 

 

Where kk is an empirical constant for a reactant and  (ion activity divided by equilibrium 

constant) is equal to the saturation ratio (SR) of the reactant. The kinetic information for the 

minerals in BVG rock obtained from the literature is summarised below, and the rates and 

surface areas used for the modelling are provided in Table 3. 

 

Downloaded by [ University of Leeds] on [23/10/19]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.19.00081 

9 

 

Quartz (SiO2)  

The dissolution function of quartz may be described by (Merkel et al., 2005): 

 

and, as per equation (1) and (2), the overall dissolution kinetic equation for quartz will be: 

 

where R is overall quartz dissolution rate (mol L-1 s-1), A0 is the initial surface area of quartz 

(m2), V is the solution volume (L), m is the moles of quartz at a given time, m0 is the initial 

moles of quartz ; k is the specific dissolution rate = 10-12.2 mol/m2/s at 70oC (Worley, 1994), 

is equal to the SR value of quartz. 

 

Orthoclase (KAlSi3O8) K-feldspar 

K-feldspar (KAlSi3O8), also known as orthoclase, is 12% of the BVG rock. Preliminary rate 

expressions for K-feldspar may be found in the literature (Sverdrup, 1990, Brantley et al., 

1993). The general form of the overall dissolution rate proposed by (Appelo and Postma, 2005) 

is used to simulate K-feldspar reaction at specific temperatures and pH value: 

 

where 

 

where  is the specific reaction rate (mol m-2 s-1), ki are the solute rate coefficients 

(mol m-2 s-1), and fi are inhibition factors. 
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Calcite (CaCO3) 

(Appelo and Postma, 2005, Parkhurst and Appelo, 1999, Plummer et al., 1978) have described 

the dissolution rate of calcite in a solution using the following expression which is suitable for 

both dissolution and precipitation reaction: 

 

and then simplified in a calcite-water system as: 

 

The overall dissolution rate of calcite will then be: 

 

The value of the coefficients k1, k2 and k3 in equation (7) are obtained from the literature 

(Plummer et al., 1978). 

 

Dolomite CaMg(CO3)2 

The dissolution kinetics of dolomite has been analysed by (Busenberg and Plummer, 1982) and 

found to be much slower than that for calcite. The rate expression for dolomite dissolution may 

also be found from the saturation index , as below (Appelo and Postma, 2005, 

Parkhurst and Appelo, 1999, Appelo et al., 1984): 

 

Downloaded by [ University of Leeds] on [23/10/19]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.19.00081 

11 

 

 

Hematite (Fe2O3) and Muscovite [KAl3Si3O10(OH)2] 

The dissolution behaviour of hematite (Fe2O3) has been investigated intensively in low pH 

conditions (Sidhu et al., 1981, Schwertmann, 1984, Torrent et al., 1987). However, few studies 

have been done at high pH. The dissolution kinetics of muscovite has been discussed by 

(Knauss, 1989) as a function of pH and time. Since the percentage of hematite in the rock 

sample is very low (2%) and it does not present significant influence on the mineral evolution 

process in the experiment (Rochelle et al., 2016), and muscovite (a clay mineral presented in 

the fracture of the BVG rock) has not been the attention of the initial experiment (Rochelle et 

al., 2001, Moyce et al., 2014), therefore both phases are not modelled to simply the discussion. 

 

Modelling methodology 

Conceptual model 

PHREEQC, a geochemical modelling tool developed by the USGS (U.S. Geological Survey) 

(Parkhurst et al., 1980) with functions such as aqueous, mineral, surface-complexion, and 

ion-exchange equilibrium, etc, was used with a modified database (entitled as llnl-BGS) that 

included additional kinetic information based on the LLNL (Lawrence Livermore National 

Laboratory) aqueous model parameters database. Thermodynamic information (reactions and 

equilibrium constants) for the major minerals is included in Table 4 of the appendix (Chen and 

Thornton, 2018). Note here that there are other databases available, such as Thermoddem and 

Thermoddem DB (Blanc et al., 2012) for low temperature water/rock interactions and waste 

materials, and CEMDATA DB (Lothenbach et al., 2019) specifically for cement materials 
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supporting state-of-the-art models for C-A-S-H phases as solid solution (with variable C/S 

ratio). As this paper is focused on the mixed equilibrium and kinetics approach, and the control 

mineral function of dolomite, the modified PHREEQC database was used for convenience. The 

complex potential interactions between primary and secondary phases are described in Figure 

(1). 

Figure (2) shows the modelling process developed in this study. Initially, a conceptual 

model was established based on information from both theoretical and experimental analysis. 

The kinetic information was obtained from published databases or literature. During this 

process reaction rates were compared in terms of the timescale, to identify the quickest or 

slowest rates of minerals and to provide supporting information for the modelling approach 

(e.g. either kinetics or equilibrium, or a mix of both). In the case where the kinetics of any 

minerals are not available, or there is a large difference between rates (e.g. more than 10^2), 

then the mixed kinetics and equilibrium approach may be preferred. Finally, potential 

secondary phases, obtained by using information from either the experiment or published 

literature, were used to refine the model. 

 

Secondary phases 

Over a long period several dissolution and precipitation reactions may occur as the chemical 

system evolves. The potential secondary phases selected in this study include brucite, talc, 

calcite and CSH phases, according to experimental observations and theoretical considerations 

of interactions between the host rock and cement leachate (Small et al., 2016). Although 

PHREEQC can represent the thermodynamics of brucite, talc and calcite equilibria, the 
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relevant data required to simulate CSH reactions is lacking. For this reason, more investigation 

needs to be performed on this topic. 

 can be used to describe the general CSH phase in which silicate in 

Portland cement reacts with water. The chemical reaction which will generate CSH phases is 

usually described as (Peterson et al., 2005): 

 

More than 30 calcium silicate hydrate phases exist (also known as C-S-H or CSH) 

(Taylor, 1997). The structural complexity of this silicate makes it difficult to know the exact 

precipitated phase since the reactions will create several secondary phase compositions (Chen 

et al., 2004). For simplicity, tobermorite was selected to represent CSH phases since the ratio 

of Ca:Si was observed to be variable during the reaction in the experiment. The formation and 

precipitation of CSH phase are outside the scope of this study; for this the reader is referred to 

the original 15 years experiment study (Moyce et al., 2014, Chen and Thornton, 2018). 

 

Results and discussion 

Modelling of short-term experiment (0 months to 15 months) 

Calcite, quartz, K-feldspar and dolomite have all been modelled in the first 15 months using 

the mixed equilibrium and kinetics approach. Changes in the concentration of Ca, Mg, Na, Si, 

CO3 and pH, as measured from the experiment, were analysed in the modelling simulations. 

Since all the 6 minerals involved in the dissolution do not contain Na+, and the potential 

secondary phases do not also consume Na+, then Na+ remains constant over time, in good 

agreement with the experimental results (Figure 3). Ca2+ decreases significantly in the initial 
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few months due to precipitation of CaCO3 (Figure 4), which has a SI above zero (Figure 9). 

Silicon (Si) (Figure 5) increases due to dissolution of both quartz and K-feldspar (both have SI 

below zero as in Figure 9) and then decreases due to precipitation of talc and some CSH phases. 

The magnesium (Mg) in the original solution decreases before the fourth month (nearly 

matching the timing of peak Si values due to quartz dissolution) as a result of precipitation of 

secondary talc  and brucite  phases (both have above zero SI 

at the beginning of the reaction, Figure 6 and 9). Carbon trioxide (CO3) concentration increases 

in the solution as a result of dolomite dissolution (Figure 7). The pH decreases due to the 

precipitation of secondary phases (Figure 8) and may also subsequently influence the 

dissolution or precipitation of some secondary phases. 

Figure 9 shows the evolution of some primary phases and selected secondary phases. As 

there was an initial concentration of Ca, CO3 and Mg in the YNFP at time zero (Rochelle et al., 

2016), dolomite CaMg(CO3)2, calcite (CaCO3) and talc are oversaturated in the solution and 

hence start to precipitate during the initial few weeks. After some time, dolomite reaches a SI 

of 0 but then starts to dissolve, allowing other minerals to reach equilibrium. Since dolomite 

forms 29% of the BVG rock and can provides a pool of Ca, Mg and CO3, calcite and talc both 

reach equilibrium, whereas dolomite will keep dissolving with a positive slope to reach 

equilibrium as well. Since the dissolution rate of dolomite is very small, its SI is below 0 until 

month 15 (Figure 9). As a CSH phase, tobermorite-11A is unlikely to precipitate due to a 

deficiency in Ca related to calcite precipitation. K-feldspar initially has a negative SI and then 

follows the dissolution kinetics to reach equilibrium. 
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From the analysis, dolomite is proved to be a major controlling phase on the geochemical 

evolution of BVG rock minerals interaction with the young cement leachate. The findings from 

the numerical modelling and theoretical analysis have provided an in-depth understanding of 

the long-term interactions between the host rock and alkaline leachate. The modelling results in 

line with experimental further support the concept of Mixed Kinetic-Equilibrium (MKE) 

approach to interpret the evolution of multiple mineral phases. 

 

Limitations and challenges of modelling the experiment 

Whether an experiment of this type can be modelled correctly by numerical methods depends 

on (1) the experimental data obtained, (2) the modelling tools and methods, (3) the theoretical 

analysis, and (4) the relationship between the experiment and modelling (some parameters 

might be important for modelling, however, is not necessary for experiment). One of the 

challenges of modelling this experiment was the unknown parameters, which was caused by 

the different scientific focus for the experiment. For example, the experimental study was 

focused on mineral evolution, instead of dissolution/precipitation kinetics, with no interest in 

dissolution parameters such as surface area. However, such information is essential for 

modelling dissolution kinetics. At least 3 parameters (e.g. empirical constant, initial surface 

area and moles of solids at a given time) may be needed to simulate the dissolution kinetics of 

one mineral; hence at least 18 uncertain parameters must be considered to model the reaction 

kinetics of 6 minerals in this study, a significant uncertainty. Such a challenge shows the 

importance of applying "mixed kinetics and equilibrium methods" to interpret the evolution of 

multiple mineral phases, which should be based on proper assumptions in order to achieve a 
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reasonably accurate prediction. 

 

Conclusion 

A new approach, “mixed kinetic and equilibrium method”, has been implemented to model the 

reaction of Borrowdale Volcanic Group (BVG) rock in contact with Young Near-Field 

Porewater (YNFP) over 15 months. The aim was to study the influence of high pH alkaline 

leachate on the chemical dissolution of the host rock in a geological disposal facility. The 

results indicate that (1) dolomite equilibria will be the most significant control during the 

reaction of this pore fluid with the BVG rock, (2) Na is not involved in mineral alteration 

reactions, and (3) Ca2+ from dissolution of dolomite will be precipitated in the reaction, 

forming a variety of secondary mineral phases. Modelling multi-mineral evolution in the CDZ 

surrounding a nuclear waste geological disposal facility, characterised by both equilibrium and 

kinetic reactions, remains a challenging field. However, the results of this study suggest that 

the new approach adopted offers greater insight into the long-term interactions between the 

high pH alkaline leachate and host rock for this scenario. 
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Appendix 1 Thermodynamic database 

 
Table 4. Reactions and equilibrium constants for minerals used in the calculations 

 

Mineral Reaction Log Keq 

Calcite CaCO3 + H+ = Ca++ + HCO3
- 1.8487 

Muscovite KAl3Si3O10(OH)2 +10H+ = K++           3Al+++ + 3SiO2 + 6H2O 13.5858 

Kaolinite Al2Si2O5(OH)4 +6H+ =   +2Al+++ + 2SiO2 + 5H2O 6.8101 

Chalcedony SiO2 = +1.0 SiO2 -3.7281 

Sepiolite Mg4Si6O15(OH)2:6H2O +8H+ = +4Mg++ + 6SiO2 + 11H2O 30.4439 

Brucite Mg(OH)2 +2H+  =  + 1.0 Mg++ + 2H2O 16.2980 

Ettringite Ca6Al2(SO4)3(OH)12:26H2O +12H+ = +2Al+++ + 3SO4
-- + 6Ca++ + 38H2O 62.5362 

Tobermorite-11A Ca5Si6H11O22.5 +10H+ = +5Ca++ + 6SiO2 + 10.5H2O 65.6121 

Tobermorite-14A Ca5Si6H21O27.5 +10H+ = +5Ca++ + 6SiO2 + 15.5H2O 63.8445 

Tobermorite-9A Ca5Si6H6O20 +10 H+ = + 5Ca++ + 6SiO2 + 8H2O 69.0798 

Portlandite Ca(OH)2 +2H+  =  + 1.0Ca++ + 2H2O 22.5552 

Gypsum CaSO4:2H2O = + 1.0 Ca++ + 1.0 SO4
-- + 2H2O -4.4823 

Hillebrandite Ca2SiO3(OH)2:0.17H2O +4H+ = SiO2 + 2Ca++ + 3.17 H2O 36.8190 

Foshagite Ca4Si3O9(OH)2:0.5H2O +8H+ = +3SiO2 + 4Ca++ + 5.5H2O 65.9210 
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Table 1. Recipes for young near-field porewater (YNFP) prepared by the British Geological 

Survey (Rochelle et al., 2016) 

 
Chemical component Concentration (mg/L) 

Br 0.5 
Ba 0.01 

CO3 166 
Ca 51.8 
Cl  63.7 
F 19 
Fe 0.1 
K 3230 

Mg 0.089 
Mn 0.01 
Na 1890 
SO4 1 
NO3 1 
Si 9.2 
Sr 0.018 

pH (at 70ºC) * 11.67 
* Adjusted using NaOH, 1.5137 g required for the YNFP 
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Table 2. Quantitative XRD analysis of unreacted BVG rock starting material conducted by the 

British Geological Survey (Rochelle et al., 2001, Rochelle et al., 2016). m0 is calculated based 

on a 35g rock sample 

 
Mineral Weight % m0 (g) 

Orthoclase 12 4.2 

Quartz 41 14.35 

Dolomite 29 10.15 

Muscovite 13 4.55 

Hematite 2 0.7 

Calcite 3 1.05 
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Table 3. Modelling parameters for the BVG rock 

 
Mineral Weight % Solution 

Volume (L) 

Surface area 

(m2/g) 

Rate constant 

Orthoclase 12  

 

 

 

 

0.15  

(Rochelle et 

al., 2016) 

0.02 (De Windt 

et al., 2008) 

k (using equation 6) 

(Appelo and Postma, 2005) 

Quartz 41 0.02 (De Windt 

et al., 2008) 

k = 1x10-12.2 (70oC) (Worley, 1994) 

 

 

Dolomite 

 

 

29 

 

 

0.02 (De Windt 

et al., 2008) 

k= 1.2x10-10 (Appelo and Postma, 2005, 

Appelo et al., 1984). This value was 

lowered one order of magnitude to fit 

well with the experimental data (k= 

1.2x10-11) 

Muscovite 13 NA NA 

Hematite 2 NA NA 

 

 

Calcite 

 

 

3 

 

 

0.02 (De Windt 

et al., 2008) 

k1 = 10^(0.198 - 444.0 / (273.16 + T) ) 

k2 = 10^(2.84 - 2177.0 / (273.16 + T) ) 

k3 = 10^(-1.1 - 1737.0 / (273.16 + T) ) 

in which T denotes temperature. 

(Appelo and Postma, 2005, Plummer et 

al., 1978) 
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Figure 1. Conceptual model for geochemical modelling of BVG reaction with YNFP 
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Figure 2. Modelling process adopted 
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Figure 3. Na concentration variation over time 
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Figure 4. Ca concentration variation over time 
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Figure 5. Si concentration variation over time 
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Figure 6. Mg concentration variation over time 
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Figure 7. CO3 concentration variation over time 
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Figure 8. pH variation over time 
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Figure 9. Variation in minerals saturation indices (SI) over time 
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