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Hydrogen vehicles in urban logistics: A total cost of ownership analysis and policy 

implications 

Jones, J.1, Genovese, A.1, Tob-Ogu, A.1* 

 

 

Abstract: Freight transport accounts for 8-15% of total traffic flow in urban areas within the 

European Union. The majority of these deliveries are undertaken by diesel-powered vehicles 

with extremely disproportionate levels of CO2, NOx and particulate matter emissions. 

Accordingly, a variety of strategic option shave been advanced as key solutions for addressing 

fossil fuel demand and emissions in urban freight transport. This paper progresses the discourse 

on hydrogen vehicles as viable strategic options for addressing sustainability concerns in urban 

logistics by undertaking a comprehensive total cost of ownership analysis. Outcomes from this 

study not only support the economic competitiveness of hydrogen vehicles, but also analyse 

implications of several future policy and market scenarios. 

Highlights:  

 This paper advances a cost model for calculating the total cost of ownership, with results 

demonstrating highlighting the most competitive fuel vehicle options for commercial use in 

the UK, accounting for tax relief and grants for low emission vehicles. To the best of our 

knowledge, the proposed cost-model offers the most comprehensive model for evaluating 

economic competitiveness of alternative energy sources for transport vehicles. 

 Our research also presents evidence to validate subsidies and other reliefs as critical to 

improving the competitiveness of battery-electric and hydrogen fuel cell vehicles for 

commercial use.  

 Finally, the paper, informs on the importance of combined policy tools for promoting and 

achieving low carbon energy adoption in urban logistics and transport operations. 

Keywords: Urban Logistics; Freight Transport; Alternative Vehicles; Total Cost of Ownership, 

Hydrogen, Policy 
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HFCV 

Hydrogen fuel cell vehicle 

ICE 

Internal combustion energy  

kWh 

Kilowatt-hour 

LCV 

Light commercial vehicles 

LEZ 

Low emission zone 

MPG 

Miles per gallon 

NOx 

Nitrogen oxide 

OLEV 

Office for low emission vehicle 

PHEV 

Plug-in hydrogen electric vehicle 

TCO 

Total cost of ownership 

UK 

United Kingdom 

ULEV 

Ultra-low emission vehicle 

US/ USA 

United States (America) 

VAT 

Value added tax 
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1.0 Introduction  

Logistics and freight activities in cities are at heightened levels due to increased trade 

volumes and purchase behavioural shifts towards e-commerce options have intensified last-

mile delivery activities [1]. Freight transport accounts for 8-15% of total traffic flow in urban 

areas within the European Union (EU) [2], and the  majority of these deliveries are 

undertaken by diesel powered vehicles with extremely disproportionate levels of CO2, NOx 

and particulate matter emissions (25%, 33%, and 50%) [3]. Accordingly, a variety of strategic 

options (infrastructure; equipment; governance; modality and policy) have been advanced as 

key solutions for addressing fossil fuel demand and emissions in urban freight transport [4]–
[6]. In spite of the understanding that policy is critical to the adoption of sustainable transport 

strategies, much of the discussion in this area has focused on general or passenger transport as 

opposed to freight related last mile logistics. 

This paper progresses the discourse on alternative fuel vehicles as viable strategic options for 

addressing sustainability concerns in urban logistics. Buoyed by the understanding that a 

critical component of sustainable logistics solutions is the economic cost implications for 

concerned stakeholders, particularly for freight transport operators, this study offers a robust 

economic cost model that is applied to a contingent scenario to support policy decision 

making. The importance of this component is widely recognised as evidenced by ubiquitous 

policy based subsidies that support alternative vehicle and energy initiatives across the globe. 

Although studies have explored the cost competitiveness of battery electric vehicles (BEVs), 

there are gaps related to the cost competitiveness of hydrogen fuel cell vehicles (HFCVs) in 

logistics despite their weight, space and emissions advantages over BEVs [7], [8]. The 

outcomes from this study not only support the economic competitiveness of HFCVs but also 

provide sensitivity impact implications from changes in the value of market condition factors 

on cost competitiveness. 

The remainder of this paper is organised as follows: the next section provides a review of the 

literature, followed by an overview of the methodology. Section 4 is devoted to an 

examination of the findings; Section 5 presents some scenario analysis, while conclusions are 

summarised in section 6.   

2.0 Theory 

2.1 The role of equipment and technology 

Alternative fuel vehicles (AFVs) have been shown to reduce greenhouse gas emissions and 

lead to an improvement in air quality as well as offering a number of advantages. For 

example, electrification has been suggested as a way to reduce emissions [6], [9], although 

HFCVs  have also been identified as offering some added benefits compared to BEVs in 

terms of their weight, space, refuelling time, lifecycle emissions savings [10], [11]. With 

AFVs in generally, the main advantages include high efficiencies, low emissions, and low 

levels of noise [12], (Table 2 for vehicle emissions output). Despite these reported 

advantages, the literature suggests that there are moderating factors that impact these 

advantages, with several studies advancing evidence to show that AFVs using fuel produced 

with non-renewable sources offer minimal advantages whether as hybrid electric vehicles or 

pure HFCVs for use in urban environments [13][14]. The implication here points to the 

importance of AFVs in terms of the sources of the energy as being renewable, emission-free 

and viable sources of energy for logistics and transport [7][14].  
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In terms of logistics application, the potency of AFVs have been investigated. For example, 

powering on-board appliances with hydrogen fuel cell power units in long-haul diesel trucks 

could lead to an 80% reduction in diesel consumption[15]. Additionally, the literature has 

identified reductions in air and noise pollutions as some outcomes of the AFVs [16]. Despite 

the position of the extant literature, we observe that there are still concerns regarding the 

adoption rates with seemingly slow uptake for AFVs amongst logistics firms[17]. One of the 

core barriers identified relates to cost where economic competitiveness is of increasing 

importance to decisions and practice [8], [18].  

2.2 Cost studies 

HFCV components are high-cost and less durable than ICE ones, meaning they must be 

replaced more often, driving up costs [19]; however, costs are falling for HFCVs and there is 

need to update the literature on their competitiveness [20]. To address this, da Silva Veras et 

al. investigate the production of hydrogen from endothermal and exothermal applications as 

well as renewable sources, highlighting differences in hydrogen (H2) yields. Consequently, 

they link the uncertainties around HFCVs to the lacking technologies and limited insight on 

its economic competitiveness, recommending additional research on the economic 

competitiveness of HFCVs [8]. Furthermore, the establishment of total cost of ownership 

(TCO) information has been found to increase consumers’ preferences for hybrids and BEVs 
in small-medium size vehicle classes [18]. 

In line with the cost focus, Al-Alawi and Bradley [21] reviewed cost models for PHEVs and 

found that typically fewer cost components were considered than for ICE vehicles. Their 

principal finding was that under the correct conditions BEVs could be cheaper than hybrids 

and conventional vehicles. Similarly, Offer et al. [22] advance a TCO model considering 

HFCVs and BEVs was constructed and a 2030 scenario discussed. In the 2030 modelled 

scenario both BEVs and HFCVs exhibited higher capital costs than ICE vehicles, although 

technological developments did reduce the difference. However, once fuel costs over the 

lifetime of the vehicle were considered they found that both BEV and hybrid HFCVs 

appeared cheaper than ICE and pure HFCVs. They noted however that both the HFCV and 

the ICE case were highly sensitive to fuel costs and that accurate predictions of future fuel 

costs are not possible. Additionally, Contestable et al. [23] compared BEVs, HFCVs, and 

biofuel passenger vehicles in a TCO model and found there was no significant difference in 

predicted cost by 2030. They conclude that smaller BEVs offer cost advantages when 

operating on a low-energy driving cycle. They made clear that such models should not be 

considered predictive due to the difficulty in predicting technological developments. Wu et al. 

[24] also produced a probabilistic model to simulate the TCO of both BEVs and ICE vehicles, 

concluding that BEVs have a good probability of becoming the most cost-efficient for smaller 

vehicles operating in urban contexts. 

In terms of logistics, Davis and Figliozzi [25] focussed exclusively on ICE and BEV delivery 

trucks operating in urban environments (the last-mile scenario). They noted that electric 

trucks are more expensive for almost all cases but the possibility of rising energy costs and 

development of battery technology could lead to a situation where electric trucks would be 

competitive in most cases.  

As part of previous literature on TCO analysis as per fiscal incentives that favour low 

emission activities, it is considered that  they impact driving and business decisions in areas 

where implemented [17]. One example is congestion charging which discourages use of 

specific roads and thereby reduces both traffic and pollutant emission. As such, Börjesson et 

al. [26] assessed the impact of congestion charges in Stockholm and found that as a measure 
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for incentivising a switch to alternative fuel vehicles congestion charges are effective. Also, 

Hidrue et al. [27]and Lévay et al. [28] analysed the demand for BEVs and buyers’ attitudes in 
the USA and Norway and found that subsidies and tax relief were key to achieving BEV 

competitiveness, however the literature on the impact of subsidies on HFCV competitiveness 

is limited.  

Despite the positive indicators, the link between subsidies, costs, hydrogen-powered light 

commercial vehicles (LCVs) and their role in last-mile or urban deliveries is yet to be 

explored in the literature, yet LCVs remain critical to the attainment of sustainable urban 

transport. As such, in this paper a TCO model is constructed that, unlike prior studies, 

includes HFC-LCVs operating in the UK and takes into consideration the indicators common 

to the models discussed previously as well as the impact of fiscal incentives. Our material and 

methods section below expands further on the components of our model. 

3.0 Materials and Methods 

A Total Cost of Ownership (TCO) approach models the costs of ‘buying’ a good or service 
from a particular supplier and includes the overall life costs associated with the ownership of 

a product. TCO models are traditionally implemented using aggregated forecast and historical 

data to establish costs [29], [30]. 

For this study, we selected 13 vehicles to reflect BEVs, PHEVs and ICEs, all with similar 

functionality, size, interiors and EU classifications (Table 2). To support comparison, annual 

mileage of 12921 miles was allocated per vehicle adopting industry assumptions2 [31]. 

In line with our objective of modelling operating costs, the cost assumptions encompass 

critical operator costs for typical last mile fleet activities, deriving from the Office for 

National Statistics [32]. 

Ownership costs reflect those that are commonly accrued through usage over the lifetime of 

the vehicle and these costs are dependent on period of ownership, annual mileage, or both. 

Capital costs include typical upfront purchase costs associated with each vehicle; in the case 

of subsidies, these can be negative. 

In this paper, the approach shown in Figure 1 was utilised in order to develop the employed 

calculation model, distinguishing between Capital Costs and Ownership Costs. 

 

Figure 1 – Employed TCO approach 

                                                 
23.8 million licensed vans in the UK, driving a total of 49.1 billion miles. Per vehicle mileage average of 12,921.05  

was chosen as our annual mileage variable 
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As a result, the following formula was used3: 

  𝑇𝐶𝑂 =   (𝐶𝐸 − 𝑅𝑉 − 𝑃𝑆) + ∑ ∑ (𝐶𝑥𝑛 × 1(1 + 𝑟)𝑛) 9
𝑛=0

5
𝑥=1   

The components of the formula are illustrated, in detail below. 

CE represents capital expenditure; this included initial asset or purchase costs exclusive of 

VAT per HMRC regulations (businesses can reclaim VAT on business vehicles as long as 

they are not for private use). These reflect the initial purchases cost of the vehicles as 

advertised by the manufacturers. One-off payment costs were adopted, as financing options 

would be impossible to account for with the range of variable interests accessible. Where 

applicable, the costs were converted from EUR to £ (e.g. the Renault Kangoo Z.E and Symbio 

HYKangoo).  

RV represents residual value, computed using average depreciation factors [33]. Although the 

market for alternative vehicles remains largely underdeveloped, it was suggested that 

depreciation values for these vehicles converged overtime [33]. Residual values were 

computed as NPV of capital costs * residual % for period n, where n=10.4  

Table 1 - Residual values with corresponding age 

Age of car in years 0 1 2 3 4 5 6 7 8 9 10 

Residual value 1.00 0.66 0.54 0.44 0.38 0.34 0.31 0.27 0.25 0.22 0.2 

 

PS represents purchase subsidy. The UK government offers grants for vehicles with ultra-low 

emissions, the amount of which depends on the amount of emissions the vehicle produces. 

Eight different vans are listed on OLEV’s release, including the three BEVs and the fuel cell 
conversion vehicle under consideration in this study5. The grant allows for a 20% reduction in 

the purchase price of the vehicle, up to a maximum of £8,000. The value of the grant is 

deducted from the upfront cost of the car at the point of sale and includes VAT, thus a factor 

of 0.20 will be applied to the after tax purchase cost of the vehicle to determine the magnitude 

of grant available. In the event of this value exceeding £8,000, it s corrected to £8,000.  

r represents the discount rate; in line with LCV operation periods average 10 years, the 

applied discount rate followed a 10-year gilt, supported by a three-month average from 

historical data (adjusted to 1.2) to three significant figures [34], [35]. 𝐶𝑥𝑛represents operating costs x, for year n; in particular, the following costs are considered;  𝐶1𝑛 represents the cost of road tax (Vehicle Excise Duty, a compulsory duty on operational 

vehicles within the UK) for year n. Road taxes are pro-rated according to CO2. Where 

applicable, data from the Department for Transport or calculated the applicable road tax by 

                                                 
3 It is assumed that all costs rise in-line with inflation such that their present value remains the same, not including 

the discount rate. The exception to this assumption is the residual value, for which the depreciation rate considered 

is set in terms of present value 
4 For the purpose of this study, we have excluded capital gains tax, as these are commercial vehicles used solely 

for business.  
5 It is assumed that the H350 will qualify for this grant as it meets all over criteria but is presumably not listed as 

it is not on general sale in the UK at the time of publication 
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using the given emissions range of the vehicles and allocated charges.  Discounted lifetime 

costs were calculated by discounting the given rates. 

Table 2 – Vehicle Exercise Duty values for different Category N vehicles. 

Vehicle Fuel Type CO2 emissions, g/km (use) 
First year tax 

rate/£ 
Annual rate (£) 

Renault Kangoo Z.E. BEV 0 0 0 

Peugeot ePartner BEV 0 0 0 

Nissan e-NV200 BEV 0 0 0 

Renault Trafic ICE 170 500 140 

Peugeot Boxer ICE 158 500 140 

Citroen Berlingo ICE 112 160 140 

Peugeot Partner ICE 110 140 140 

Ford Transit Connect ICE 129 160 140 

Vauxhall Vivaro ICE 170 500 140 

Ford Transit Trend ICE 185 800 140 

Ford Transit Custom ICE 163 500 140 

HyKangoo PHEV 0 0 0 

Hyundai H350 HFCV 0 0 0 

 𝐶2𝑛  represents fuel costs for year n. These were calculated for each vehicle in the form of 

pounds per mile (£/mi) using current diesel prices and MPG values from manufacturer 

specifications.   

Similarly, electricity price averages for 6 small businesses [36] were adopted, accounting for 

the £ per kWh and premise standing charges. After averaging the costs for all 6 small 

businesses a £/mile figure was calculated which was then scaled up to an annual cost using 

the chosen annual mileage.  

Table 3 – Consumption values for electric vehicles6
 

Vehicles 

Estimates 

£/Litre 
Urban miles 

per litre 
£/Mile £/kWh 

Urban  Consumption 

per mile 
£/Mile 

Renault Trafic 1.38 9.6 0.144 n/a n/a n/a 

Peugeot Boxer 1.38 11.5 0.121 n/a n/a n/a 

Citroen Berlingo 1.38 14.6 0.095 n/a n/a n/a 

Peugeot Partner 1.38 15.6 0.089 n/a n/a n/a 

Ford Transit Connect 1.38 11.7 0.119 n/a n/a n/a 

Vauxhall Vivaro 1.38 9.6 0.145 n/a n/a n/a 

Ford Transit 1.38 9.6 0.145 n/a n/a n/a 

Ford Transit Custom 1.38 10.2 0.136 n/a n/a n/a 

Renault Kangoo n/a n/a n/a 0.111 0.192 0.021 

Peugeot ePartner n/a n/a n/a 0.111 0.222 0.025 

Nissan e-NV200 n/a n/a n/a 0.111 0.226 0.025 

 

In order to find the cost for the HFCVs, we assumed (per Hyundai H350 Concept) that fuel 

consumption guides in the technical specification were applicable as averages. First we 

reflected mileage consumption in kilograms (kg) and employed the listed vehicle capacities to 

determine consumption. Next we factored the cost of hydrogen (£10 per kg), therefore the 

                                                 
6 The £/mi costs include VAT at 20%, however the VAT rate on electricity used for charging battery electric 

/vehicles is set at 5%. Thus, the values were multiplied by 1.05/1.20 to obtain a new value inclusive of 5% VAT. 
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costs for the HFCVs were computed as a product of annual mileage, miles per kilometre, and 

GBP per kilometre7.  𝐶3𝑛  represents maintenance, repair, and tyre (MRT) costs for year n. This reflects the costs 

that a user would incur in operating the vehicle due to both maintenance, repairs and regular 

tyre replacements. MRT estimates for diesel vehicles were calculated by adding repair cost 

using pence per mile (5.2ppm) and tyre replacement costs (1.4ppm), i.e. 6.6ppm for diesel 

vehicles. Typical electric and hydrogen vehicles MRT costs have been pegged at 50% and 

70% of ICEV types respectively, therefore we allocated this at 3.3ppm and 4.62ppm [33]. 

Annual MRT costs were set using the product of the relevant ppm value and annual mileage.  𝐶4𝑛  represents insurance costs for year n; a variation of input data was used to inform 

insurance quotes for a typical UK based business van insurance in 2017. To support our data 

evaluation, we used a price comparison site (www.comparethemarket.com) to generate 

quotes. To account for difficulties of new models, we made some further adjustments to 

accommodate gaps in the returned quotes8. 𝐶5𝑛represents battery costs for year n. As battery costs remain high, manufacturers offer a 

variety of purchase options to support customers; one such option is battery leasing whereby 

users pay a monthly fee that covers ownership and replacements. For example, the cost for the 

Renault Kangoo Z.E. 33 is determined by contract length and mileage, and it was this cost 

model that was used to estimate battery cost gaps for similar vehicles.  Annual battery costs 

could then be deduced and subject to the discount rate at each year. 

Table 4: Notation Summary Table 

Notation  
 

CE Capital Expenditure: Purchase cost excluding VAT 

RV 
Residual Value: Depreciating asset value @ 20% of asset purchase value (straight 

line) 

PS Purchase Subsidy: Fixed at 20% up to £8000 max.  

r Discount rate: U.K bond average (10 year gilt based on data and 3MA values) 𝐶𝑥𝑛  Operating costs total 𝐶1𝑛  Road tax – Given by DfT or calculated using CO2 output 𝐶2𝑛  
Fuel costs @ estimate unit cost per Kwh, with adjustments for VAT differences 

on engine types.  𝐶3𝑛   Maintenance, repair and tyre: Vehicle ppm * mileage 𝐶4𝑛   Insurance costs for year n.  𝐶5𝑛  Battery cost for year n @ r, based on contract * mileage assumptions. 

 

3.1 Sensitivity Analysis 

                                                 
7 Kangoo, operates using both battery electric means and hydrogen fuel cell, we assumed a ratio of energy draw 

was the same as the ratio of the ranges, i.e. hydrogen range at 180 miles and battery mode at 106 miles (180:106 

or 62.9% hydrogen and 37.1% battery). 
8 This assumption is valid as an estimate as the same stock vehicle is used in both cases, with the HyKangoo having 

an aftermarket fuel cell conversion. For the H350 vehicle, the powertrain and vehicle allowed its estimation, and 

we used an average from the cost of the other BEVs to estimate the insurance cost for the H350. All prices were 

considered fixed for the 10-year period. 

http://www.comparethemarket.com/
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Additionally, the computation outcomes were subjected to ‘what if’ sensitivity analysis 
evaluating the impact of cost variable changes in determining outcomes for the different 

vehicles. The preliminary results presented in Figure 2 were used as baseline data.  The 

sensitivity analysis focused on two main criteria: in the first instance, we adjusted for changes 

in operating conditions where all the market conditions remained the same (relationship 

between usage and cost). In the second instances, we adjusted for changes in market 

conditions where all operating elements remained unchanged. With respect to the operating 

variable, mileage was adjusted to explore cost competitiveness (mileage is considered a 

predictable control variable) and in the other market instances, we adjusted the prices for fuel 

duty and hydrogen fuel in order to explore the potential impact on the costs for operators.  

Our analysis was performed using MS Excel Scenario Manager Tool and the results are 

reported below.  

4.0 Results 

 

The computation model shows that typically, diesel vehicles offer lower TCO compared to 

the electric and fuel cell options. Our data shows insurance as the largest factor in this regard, 

constituting, on average, 64% of the total cost for BEVs and HFCVs. We project that this cost 

will reduce overtime as the market matures and insurers are better able to compute risks of 

coverage. Our data also suggests that the effect of ‘duties’ as a moderator is relatively limited 
in this regard. 

As depicted in Figure 2, HFCVs remain the most expensive options without the OLEV grant, 

however our findings suggest that the grant effectively supports the competitiveness of 

HFCVs. Additionally, results highlight greater overall capital expenditure costs for the 

hydrogen options as opposed to the electric and diesel vehicles. It is possible that the cost 

implications will be steeper as our model assumes a relatively competitive residual value 

component for the HFCVs and this assumption may not always hold true since the market is 

still growing. Full results are shown in Figure 2. 

4.1 Sensitivity to Operating Conditions (Mileage)  

Electric vehicles typically exhibit lower running costs with higher capital expenditure and it is 

expected that they become increasingly more competitive as the number of miles driven 

increases as indicated in Figures 2 and 3[28]. We also observe that all of the non-diesel 

vehicles exhibit higher pence per mile ownership costs than their diesel counterparts that are 

at lower end of the mileage scale. The exception to this is the Ford Transit Trend which 

remains disproportionately high, which can be explained by its high insurance cost; at £4157 

per year it is far higher than any other diesel vehicle to insure (usually range within £1995 to 

£2804). Furthermore, we observe that the pence per mile cost for the Renault Kangoo drops 

below all diesel vehicles at approximately 21,000 miles (Figure 3). 

HFCVs do not fare as well as BEVs with adjusted mileage. Disregarding the Transit Trend as 

an outlier, the pence per mile cost of the Hyundai H350 never falls into the range of the diesel 

vehicle costs and never becomes competitive, although the HyKangoo falls into the range, 

this occurs at approximately 37,000 miles where the cost is comparable with the Renault 

Trafic and the Vauxhall Vivaro (Figure 3). As mileage increases up to 100,000 miles, only the 

Peugeot Partner and the Citroen Berlingo offer lower pence per mile ownership costs than the 

HyKangoo. BEVs on the other hand become competitive with diesel alternatives at 

approximately 17,000 miles. Whilst it may be plausible for HFCVs to become competitive 

beyond the 100,000-mile range, our study did not account for periods beyond 100,000 p.a 
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limits, which we think is a boundary possibility for logistics vans. It is noteworthy that BEVs 

will tend to be the preferred option for operators looking to switch to low or ultra-low 

emission vehicles as they become competitive significantly sooner than the PHEVs.  These 

results are shown in further detail in Annex A.
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Figure 2 – Total cost of ownership results 
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Figure 3 – Sensitivity to Annual Mileage 

 

4.2 Sensitivity to Market conditions (Prices) 

In terms of market conditions, we determined fuel costs as a viable variable for controlling 

competitive market conditions. Fuel costs were broken down into three components; VAT, 

fuel duty, and the fuel cost. For example, in the UK, fuel duty is currently charged at 57.95 

pence per litre [37] which equates to 263.45 pence per gallon, and VAT is charged at 20% of 

the fuel cost plus the fuel duty, working out at 16.7% of the final price [32]. In this study the 

price per litre of diesel was set at £1.154/L or £5.246/gal, therefore the applicable cost for 

control within the market condition scenario planning (duty = £2.634, VAT = £0.876, Fuel 

cost = £1.735). 

 

Figure 4 shows the results of changes in fuel duty up to a maximum of £7 per gallon (up to 

£25 per gallon at which point all total costs for all diesel vehicles are greater than all other 

vehicles is presented in the Appendix). We observe that at £7, ICEs are still most competitive 

compared to PHEVs, whilst at £25, (a price that is perhaps unattainable but there are some 

valid findings from the adjustment), ICE becomes least competitive. For example, the table 

highlights the intersecting boundaries, dictating the price at which diesel vehicles are no 

longer competitive with BEVs and PHEVs.  An increase of about £2 per gallon can make 

BEVs significantly more compelling compared to their diesel counterparts.  
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Figure 4 - Sensitivity to fuel duty 

 

 

 
Figure 5 - Sensitivity to hydrogen fuel price 
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4.3 Sensitivity to Hydrogen Prices 

Figure 5 above reveals our findings on HFCVs competitiveness dues to changes in price. A 

comparison with one BEV is shown. Of all three models, the H350 concept exhibits a steeper 

gradient as it is powered solely by hydrogen fuel, whereas the HyKangoo has a 

supplementing battery pack and therefore we observe that the total cost drops less as 

hydrogen fuel cost drops. From the computations presented in Figure 5, it is noted that at 

£7/kg both vehicles fall beneath the total cost of the Ford Transit Trend, but neither will reach 

the next most expensive diesel vehicle, or the BEV, even with a complete removal of 

hydrogen cost. This raises some significant concerns about the technology’s feasibility as an 
alternative without cost penalties for operators. Observably, each £1 per kilo cost decrease 

results in a 1.29% and a 2.18% decrease in total ownership costs of the HyKangoo and H350 

respectively. Since generating hydrogen fuel requires electricity, perhaps an avenue to 

reducing the cost is to promote a reduction in electricity prices, although that would further 

increase the appeal of BEVs as opposed to increasing the attractiveness for HFCVs.  

5.0 Scenario Analysis  

 

5.1 London Congestion Charge 

 

The congestion charge is charged daily, excluding weekends and public holidays, and applies 

to most vehicles that are driven in a designated zone (Annex B) within London. BEVs are 

exempt, as are vehicles that emit less than 75g CO2/km and meet the Euro 5 emissions 

standards. For this study, all diesel vehicles are liable for the congestion charge, whilst all 

BEVs and HFCVs are exempt. The fee is nominally £11.50 a day but can be reduced to 

£10.50 a day for business users or for individuals subscribing to the “autopay” system. It is 
assumed that there are 252 working days a year, as is the case in 2017. Inflation and discount 

rates are applied to future costs. 

A further charge that was considered for vehicles operating within London is the Low 

Emission Zone (LEZ). The LEZ boundaries are shown alongside the congestion charge zone 

in Annex B. LEZ restrictions apply for a greater period of time with charges valid every day 

of the year, including public holidays and weekends. The charge (£100 a day) applies to any 

diesel lorry, van, bus, or other larger vehicle that does not meet the Euro 3 emissions 

standards. While all diesel vehicles considered in this study are registered after this date, the 

charge will be considered here as it is possible that over time the threshold will drop until 

such a point that the considered vehicles are liable.  

Finally, annual mileage figures are altered to reflect urban use only. Using the same report 

that was used to set the original mileage variable, Department for Transport, [31], annual 

urban mileage was found to be 4342.11. The results for the London scenario are shown in 

Figure 6. The associated outcome of the congestion charge is highlighted as all diesel vehicles 

now exhibit a higher TCO than all BEVs. Furthermore, both HFCVs are within diesel cost 

ranges, making them competitive for use within London. Their competitiveness with BEVs 

remains unchanged however as both are exempt. 
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Figure 6 - TCO in London
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Applying the LEZ to all diesel vehicles renders them obsolete with all vehicles exhibiting 

TCOs of different magnitudes to the BEV and HFCVs, the plotted results can be found in 

Annex C.  

These results have policy implications for other cities within the UK as the magnitude of a 

congestion charge necessary to raise low emission vehicles’ competitiveness can be deduced. 
Utilising the Solver add-in for Excel the congestion charge value can be changed until such a 

point that all BEVs and HFCVs exhibit lower TCO than all diesel vehicles. Using this 

procedure, it was found that a congestion charge of £17.52 would be necessary to ensure 

competitiveness for all non-diesel vehicles. This represents an increase of 66.86% on the 

current congestion charge of £10.50. At its inception in 2003, the congestion charge was set at 

£5 and by 2005 it had raised to £8; a percentage increase of 60% [38]. As such a 66.86% 

change in order to obtain total competitiveness for non-diesel vehicles is not beyond the 

realms of possibility, although it should be noted that although the percentage increase is 

comparable the absolute increase in terms of GBP is larger and therefore may have different 

effects on elasticity (please see Annex C). 

5.2 Green Energy 

 

As was discussed in the previous sections, a vehicle with 0gCO2/km emissions can still have 

a carbon cost associated with it. If the electricity used to charge a BEV is sourced from a coal-

fired power station for example, there may be a hidden carbon footprint that an operator is not 

aware of. Electricity from a provider generating their electricity from 100% renewable energy 

sources can be more expensive and a decision to opt for this provider can have impacts on the 

TCO.  

Electricity prices were sourced using an electricity price aggregator, uswitch.com. Only 

providers utilising 100% renewable energy sources were selected for averaging. These values 

were then set as the respective variable values and the total cost results are shown in Annex 

D. 

As expected, the BEVs exhibit greater total costs than previously, there is also a slight 

increase in the HyKangoo total cost due to the supplementary battery pack.  The Kangoo Z.E, 

ePartner, and e-NV200 exhibit percentage increases in total cost of 1.16%, 1.03%, and 1.09% 

respectively. The HyKangoo sees a 0.32% increase. These increases have a minimal effect on 

their overall competitiveness and as such, switching to an all renewable energy provider is a 

viable decision for most operators wishing to reduce lifetime emissions of their vehicles. 

6.0 Conclusion 

 

This study found that diesel vehicles remain the most competitive option for commercial use 

in the UK, even after consideration of tax relief and grants for low emission vehicles. 

However, both BEVs and HFCVs, with these considerations, do fall within the total lifetime 

cost range of a number of diesel vehicles and can therefore be considered competitive under 

current conditions. Competitiveness can be accelerated with an increase in ULEV grant that 

was found to be crucial, especially for HFCVs. BEVs would remain competitive with a 

reduced grant, however it would obviously slow uptake.  

Analysis found that, due to lower running costs, the competitiveness of both BEVs and 

HFCVs was sensitive to mileage. On average, BEVs become more competitive than their 

diesel counterparts, once annual mileage surpasses 17,000 miles. For HFCVs, 

competitiveness did increase although for the H350 an increase in mileage was not enough to 
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result in overall competitiveness. It was found that congestion charges are incredibly effective 

in incentivising the use of low emission vehicles; also, the impact of low emission charges 

(which currently only applies to diesel vehicles failing to meet Euro 3 emission standards) 

was considered. Furthermore, it was shown that opting for electricity sourced only from 

renewable sources does little to dampen the competitiveness of BEVs. It follows that current 

market conditions dictate that electricity sourced from renewable methods of generation is not 

drastically more expensive, and as such hydrogen fuel production from renewable electricity 

should be encouraged. 

In terms of policy, this study should make the importance of the ULEV grant abundantly clear 

as it hugely increases the competitiveness of both BEVs and HFCVs. This tallies with the 

position in the literature where fiscal policy has been identified as impacting competitiveness 

of HFCVs [8], [14]. Furthermore, the analysis suggests a greater probability that the vehicle 

excise duty plays a relatively small role during the period of ownership and this poses a fresh 

perspective to policy approaches as the LEZ scenario input seemed to have greater impact on 

levelling ownership costs compared to duty. More specifically, our findings suggest that an 

average reduction of prices to £7.00 per kg in the fuel price of hydrogen would make both 

hybrid fuel cell and pure hydrogen vehicles competitive with diesel vehicles. Additionally, an 

emerging implication of the analysis is the importance of capital expenditure necessary for 

fuel cell vehicles with viable capital subsidies increasing the competitiveness of these AFVs.  

Our TCO model offers significant advantages in terms of supporting analytical flexibility, 

such as the scenario analysis, however a weakness of such models is the large number of 

assumptions, particularly later end cost assumptions that are impossible to predict perfectly. 

Additionally, since all the cases considered in the analysis section are univariate, future 

studies will do well to establish an optimum change in all constituent costs as this could yield 

much more applicable results with limited effect from the cost assumptions that may affect 

outcomes. 
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Annex A 

 
Figure 7 - Sensitivity to Mileage - Hydrogen vehicles and diesel vehicles 
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Figure 8 - Sensitivity to mileage - HyKangoo and diesel vehicles 

 

 
Figure 9a - Average sensitivity to mileage by vehicle class 
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Figure 9b – Extended average sensitivity to mileage by vehicle class 

 

 
Figure 10 – Extended sensitivity to fuel duty by vehicle class 

 

Annex B 

10.00

100.00

1000.00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

To
ta

l 
co

st
 o

f 
o

w
n

e
rs

h
ip

/p
e

n
ce

 p
e

r 
m

il
e

Annual Mileage/miles

Mileage Sensitivity Extended

Battery Electric Diesel Fuel cell

£50.00

£100.00

£150.00

£200.00

7 9 11 13 15 17 19 21 23 25 27

T
o

ta
l 

O
w

n
e

rs
h

ip
 C

o
st

s

0
0

0
s

Fuel Duty/ £ per Gallon

Fuel Duty Sensitivity Extended

Renault Kangoo Z.E 33
Peugeot ePartner Ev Se L1
Nissan e-NV200 Acenta Auto
Renault Trafic SWB 1.6 dCi (120ps) SL29 Business Van
Peugeot Boxer 2.0 BlueHDi (110ps) 330 L1 H1 Professional Van
Citroen Berlingo 1.6 BlueHDi L1 Enterprise (75ps)



23 

 

 

Figure 11 - Congestion charge zone map  [39] 

 

 
Figure 12 - Low emission zone boundaries (green), congestion charge zone (red)[40] 
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Annex C 

 
Figure 13 - TCO in London with low emission zone charge applied 
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Figure 14 - TCO with raised congestion charge 
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Annex D 

 
Figure 15 - TCO using renewable electricity 


