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ITERATED CHROMATIC LOCALISATION

N. P. STRICKLAND AND N. BELLUMAT

Abstract. We study a certain monoid of endofunctors of the stable homotopy
category that includes localizations with respect to finite unions of Morava
K-theories. We work in an axiomatic framework that can also be applied
to analogous questions in equivariant stable homotopy theory. Our results
should be helpful for the study of transchromatic phenomena, including the
Chromatic Splitting Conjecture. The combinatorial parts of this work have
been formalised in the Lean proof assistant.

1. Introduction

Fix a prime p, and let B denote the category of p-local spectra.
The Bousfield localisation functors LK(n) : B → B and Ln = LK(0)∨···∨K(n)

play a central role in chromatic homotopy theory. It is a well-known and useful
fact that LnLm = Lmin(n,m) and LnLK(n) = LK(n). It is not hard to see that
LK(n)LK(m) = LK(n)Lm = 0 when n > m. Two versions of the Chromatic Splitting
Conjecture of Hopkins involve the functors Ln−1LK(n) and LK(n−1)LK(n), and the

latter can naturally be compared with LK(n−1)∨K(n). Spectra such as LK(m)Ê(n) =
LK(m)LK(n)E(n) (for m < n) occur naturally in the transchromatic character
theory of Stapleton, and also in work of Torii. To encompass all these examples,
we make the following definitions:

Definition 1.1. Given a finite subset A ⊂ N, we put

K(A) =
∨

a∈A

K(a) ∈ B,

and we let λA : B → B denote the Bousfield localisation functor with respect to
K(A). Fix n∗ ≥ 1, and put N = {0, . . . , n∗ − 1}. Let Λ denote the monoid of
endofunctors of B generated by all the λA for A ⊆ N .

Our original goal was to describe the structure of Λ. It turns out to be natural to
consider instead a certain monoid Q that acts on B and includes all the functors λA.
This differs from Λ in that (a) we do not know whether the map Q→ π0 End(B) is
injective, and (b) the image of Q is strictly larger than Λ.

We will take an axiomatic approach, which will also cover some non-chromatic
examples. However, in this introduction we will focus on the chromatic case. As
an example, consider the functor

F = λ013λ023 = LK(0)∨K(1)∨K(3)LK(0)∨K(2)∨K(3),

and the submonoid 〈F 〉 ≤ Λ that it generates. We do not know a very easy way to
see that |〈F 〉| is even finite, but we will show that in fact |〈F 〉| = 3.
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2 N. P. STRICKLAND AND N. BELLUMAT

In order to motivate our general approach, we recall the theory of chromatic
fracture squares. As a special case of a fact that was already known to Bousfield,
for all m < n and X ∈ B, there is a homotopy cartesian square

LK(m)∨K(n)X LK(n)X

LK(m)X LK(m)LK(n)X,

which exhibits LK(m)∨K(n)X as the homotopy inverse limit of a certain subdiagram
of ψ(X). By the same methods, if |A| = d then one can exhibit a homotopy
cartesian hypercube of dimension d, which expresses λAX as a homotopy inverse
limit of terms of the form LK(t1) · · ·LK(tr)X . We will again call this phenomenon
chromatic fracture.

We now give an initial version of our main definitions and results. To make them
precise, we will need a significant amount of foundational work, as will be discussed
below.

Definition 1.2. Let P be the set of subsets of N , ordered by inclusion. For
A,B ∈ P, we write A∠B if a ≤ b for all a ∈ A and b ∈ B. If A = {a1, . . . , ar} with
a1 < · · · < ar, we put

φA(X) = LK(a1) · · ·LK(ar)X.

Remark 1.3. Note that A∠B is vacuously satisfied if A = ∅ or B = ∅, and because
of this, the relation is not transitive. (It is not reflexive or symmetric either.)

Definition 1.4. Let Q be the set of all subsets of P that are closed upwards,
ordered by reverse inclusion. We define u : P→ Q by uA = {B | A ⊆ B}, so u is a
morphism of posets. We also define v : P → Q by vA = {B | B ∩ A 6= ∅}, so v is
order-reversing.

Remark 1.5. In P, the smallest element is ∅ and the largest element is N . In Q,
the smallest element is u∅ = P and the largest element is ∅. The element uN is
second-largest in Q, in the sense that every element U ∈ Q with U 6= ∅ satisfies
U ≤ uN .

Lemma 1.6. There is a map µ : Q×Q→ Q of posets given by

µ(U, V ) = U ∗ V = {A ∪B | A ∈ U, B ∈ V, A∠B}.

This operation is associative, with

U ∗ V ∗W = {A ∪B ∪ C | A ∈ U, B ∈ V, C ∈ W, A∠B, A∠C, B∠C},

and u∅ is a two-sided identity element. Moreover it is distributive on both sides
with respect to the union.

Proof. Suppose that A ∈ U , B ∈ V , A∠B and A ∪ B ⊆ C. We can then choose t
such that a ≤ t for all a ∈ A, and t ≤ b for all b ∈ B. We put A′ = {c ∈ C | c ≤ t}
and B′ = {c ∈ C | t ≤ c}. Then A ⊆ A′ so A′ ∈ U , and B ⊆ B′ so B′ ∈ V . We
also have C = A′ ∪B′ with A′∠B′, so C ∈ U ∗ V . This proves that U ∗ V is closed
upwards, so we have indeed defined a map µ : Q×Q→ Q. It is clear that if U ⊆ U ′

and V ⊆ V ′ then U ∗ V ⊆ U ′ ∗ V ′, so µ is a morphism of posets. All remaining
claims are also easy. �
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Remark 1.7. We can define κ : Q → P by κ(U) = {n | {n} ∈ U}. This is
order-reversing and satisfies κ(U ∗ V ) = κ(U) ∩ κ(V ) and κ(vA) = A and

κ(uA) =





N if A = ∅

A if |A| = 1

∅ if |A| > 1.

However, κ is very far from being injective, so this gives only crude insight into the
monoid structure of Q. We do not know any better example of a homomorphism
to a more familiar monoid.

It is familiar that we can regard posets as categories with hom sets of size at
most one. The above lemma then makes Q into a monoidal category. We also
have a monoidal category End(B) of endofunctors of B, with composition as the
monoidal product.

We now give a preliminary statement of our main result. This will be imprecise
in various ways, to be discussed below; the imprecision will be removed in the main
body of the paper.

Theorem 1.8. There is a strong monoidal functor U 7→ θU from Q to End(B), with
θuA = φA and θvA = λA. We therefore have θUθV (X) ≃ θU∗V (X), and there are
compatible natural maps θU (X) → θV (X) whenever U ≤ V in Q, or equivalently
U ⊇ V . The definition is that θU (X) is the homotopy inverse limit of the objects
φA(X) for A ∈ U .

As Q is finite and the image of θ contains the generators of Λ, we see in particular
that Λ is finite. We do not know whether θ is injective. We can spell out the
relationship between Q and Λ a little more explicitly as follows:

Definition 1.9. Let A = (A1, . . . , Ar) be a list of subsets of N . A thread for A is
a list (a1, . . . , ar) with ai ∈ Ai for all i and a1 ≤ a2 ≤ · · · ≤ ar. A thread set for A
is a subset A∗ ⊆ N such that there exists a thread contained in A∗. We write T (A)
for the set of all thread sets. This is clearly closed upwards, so T (A) ∈ Q. We also
write λA for the composite λA1 · · ·λAr

.

Proposition 1.10. In Q we have T (A) = vA1 ∗ · · · ∗ vAr. Thus, Theorem 1.8
implies that λA = θT (A).

Proof. This follows from the definitions by a straightforward induction. �

Example 1.11. We previously mentioned the functor F = λ013λ023. This is θU ,
where

U = v{0, 1, 3} ∗ v{0, 2, 3} = T ({0, 1, 3}, {0, 2, 3})

= {A | 0 ∈ A or 3 ∈ A or {1, 2} ⊆ A}.

A check of cases shows that U ∗U = v{0, 3} and then that U∗k = v{0, 3} for k ≥ 2.
Thus, the monoid generated by F is {1, F, λ03}.

Example 1.12. Take N = {0, 1, 2} and U = {{0, 1}, {1, 2}, {0, 1, 2}} ∈ Q. We
claim that U 6= T (A) for any A, so Q really is different from Λ. Indeed, suppose
that U = T (A) with A = (A1, . . . , Ar). Then {1} 6∈ T (A), so we can choose m
with 1 6∈ Am. On the other hand, we have {0, 1} ∈ T (A), which means that there
exists p with 1 < p ≤ r and 0 ∈ Ai for i < p and 1 ∈ Ai for i ≥ p. From this it
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is clear that p > m. Similarly, as {1, 2} ∈ T (A) there must exist q with 1 ≤ q < r
and 1 ∈ Ai for i ≤ q and 2 ∈ Ai for i > q. From this we see that q < m and so
q ≤ p− 2. It follows in turn that {0, 2} ∈ T (A), contradicting our assumption that
T (A) = U .

One problem with our preliminary statement is that the formation of homotopy
limits requires diagrams that commute in some underlying model category, whereas
localisation functors are merely characterised by a homotopical universal property.
To avoid these issues, we will need some foundational work with derivators and
anafunctors. For any X , we would like to construct a coherent diagram containing
all of the objects θUX and all the natural morphisms between them. Instead of
constructing this directly, we will define a category of potential candidates (Defi-
nition 8.1), and prove that an appropriate forgetful functor to B is an equivalence
(Proposition 8.4). To make this work smoothly, we need a version that works uni-
formly when X is not just a single spectrum, but is itself a coherent diagram. This
is precisely the kind of issue for which the theory of derivators is designed. However,
it will still work out that θU is not really an honest functor, but is instead a kind
of fraction in which we formally invert an equivalence of derivators. We will also
need some foundational work to support this.

Remark 1.13. This paper contains a number of results about the combinatorial
homotopy theory of P, Q and various other posets constructed from these. All
of these results have been formalised in the Lean proof assistant. A snapshot of
the code will be deposited on the arXiv. Active development will continue at
https://github.com/NeilStrickland.

2. Basic definitions

Definition 2.1. We will fix a compactly generated triangulated category B. We
also fix an integer n∗ ≥ 1 and putN = {0, . . . , n∗−1} as before. We then fix a family
of homology theories K(n)∗ : B → Ab∗ for n ∈ N and put K(A)∗ =

⊕
a∈AK(a)∗

for any A ⊆ N . We let λA denote the localisation with respect to the localizing
subcategory of K(A)∗- acyclics. We assume the following condition, which we call
the fracture axiom: if A is a nonempty subset of N , and b ∈ N with b > max(A),
then K(b)∗λA(X) = 0 for all X .

Remark 2.2. Since later we will employ the theory of stable derivators we need
to assume that our triangulated category B is the underlying category of a stable
derivator, i.e. B ≃ C(e) for some derivator C. This condition is not too restrictive
and it is verified if B has a geometric model (see [2, Theorem 6.11] or the easier
result [7, Proposition 1.36] for combinatorial model categories).

Lemma 2.3. The fracture axiom implies the following statement (which we call
the extended fracture axiom): if A,B ⊆ N with A∠B and K(B)∗(X) = 0, then
K(B)∗(λA(X)) = 0.

Proof. If A = ∅ then K(A)∗ = 0 and so λA = 0 and everything is trivial. We can
thus assume that A 6= ∅, so max(A) is defined. The assumption A∠B then means
that b ≥ max(A) for all b ∈ B. We are given that K(B)∗(X) = 0, or in other words
that K(b)∗(X) = 0 for all b ∈ B. We want to prove that K(b)∗(λA(X)) = 0. If
b > max(A) then this is immediate from the fracture axiom. This just leaves the
case where b = max(A), so b ∈ A. The map X → λA(X) is a K(A)-equivalence,

https://github.com/NeilStrickland
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so it is a K(b)-equivalence (because b ∈ A), and K(b)∗(X) = 0 by assumption, so
K(b)∗(λA(X)) = 0 as required. �

All our examples will be verified using the following result:

Proposition 2.4. Let B be a stable homotopy category as in [12] (so it has a
closed symmetric monoidal structure compatible with the triangulation). Suppose
we have N as before and objects K(n) ∈ B representing the homology theories
K(n)∗(X) = π∗(K(n) ∧X). Suppose we also have objects T (n) ∈ B, and that the
following axioms are satisfied:

(a) T (n) is dualizable for all n.
(b) For m < n we have K(m) ∧ T (n) = 0.
(c) For any object X and any n we have K(n)∗(X) = 0 iff K(n) ∧ X = 0 iff

K(n) ∧ T (n) ∧X = 0.

Then the fracture axiom is satisfied.

Proof. Suppose that b > max(A). We need to show that K(b) ∧ λA(X) = 0, and
by axiom (c) it will suffice to show that K(b) ∧ T (b) ∧ λA(X) = 0. For this it will
suffice to show that T (b)∧ λA(X) = 0, or that the identity map of T (b)∧ λA(X) is
zero, or that the adjoint map

DT (b) ∧ T (b) ∧ λA(X)→ λA(X)

is zero. Here K(A) ∧ T (b) = 0 by axiom (b), so the source of the above map is
K(A)-acyclic, whereas the target is K(A)-local; this implies that the map is zero
as required. �

Example 2.5. For the simplest example, let B be the derived category of modules
over Z(p), and put

K(0) = Q K(1) = Z/p

T (0) = Z(p) T (1) = Z/p.

It is then straightforward to check the hypotheses of Proposition 2.4, so the fracture
axiom is satisfied.

Example 2.6. For the motivating example, fix a prime p. Let B0 denote the
category of symmetric spectra of simplicial sets, equipped with the p-localisation of
the usual model structure. Put B = Ho(B0) (so this is the usual stable homotopy
category of p-local spectra). For any n ∈ N = {0, . . . , n∗ − 1}, let K(n) denote the
Morava K-theory spectrum of height n at the prime p, and let T (n) be any finite
p-local spectrum of type n. It is again straightforward to check the hypotheses of
Proposition 2.4, so the fracture axiom is satisfied.

Example 2.7. For another example, fix a cyclic group G of order pd for some
prime p and d ≥ 0. Put N = {0, . . . , d}. For n ∈ N let Hn be the unique subgroup
of order pd−n in G, and put Qn = G/Hn, so that |Qn| = pn. In the G-equivariant
stable homotopy category, put T (n) = (Qn)+ and

K(n) = (Qn)+ ∧ Σ̃EQn+1,
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where Σ̃ denotes the unreduced suspension. For the case n = d, this should be
interpreted as K(d) = (Qd)+ = G+. We find that the geometric fixed points are

φHmT (n) =

{
0 if m < n

(Qn)+ if m ≥ n,
φHmK(n) =

{
0 if k 6= n

S0 if k = n.

Recall that φHm preserves smash products, and that X = 0 iff φHm(X) = 0 (in the
nonequivariant stable category) for all m. Using this, it is not hard to check the
hypotheses of Proposition 2.4, and we again see that the fracture axiom is satisfied.

Remark 2.8. It would of course be interesting to see what one could say about
more general finite groups, where the subgroup lattice is more complicated. We
suspect that this will be substantially harder; we may return to the question in
future work.

3. Derivators and homotopy (co)limits

We will use the theory of stable derivators, mostly following [7].

Definition 3.1. Let POSet denote the strict 2-category of finite posets, so the
0-cells are finite posets, and the 1-cells are nondecreasing maps. Given two non-
decreasing maps u, v : P → Q, there is one 2-cell from u to v if u(p) ≤ v(p) for all
p, and no 2-cells otherwise. We write [n] for the set {0, . . . , n} with its usual order,
so [n] ∈ POSet. Note that [0] is the terminal poset, which will also be denoted by
e.

Definition 3.2. For us, a prederivator is a strict 2-functor C : POSetop → CAT.
More explicitly, it consists of

(a) For every finite poset P , a category C(P ).
(b) For every morphism u : P → Q, a functor u∗ : C(Q) → C(P ), such that

1∗ = 1 and (v ◦ u)∗ = u∗v∗ on the nose.
(c) For every inequality u ≤ v between morphisms P → Q, a natural map

u∗ → v∗, satisfying some evident axioms.

(By restricting attention to finite posets rather than more general categories, we
are following [7, Remark 1.8].)

Remark 3.3. For any prederivator C we have a category C(e), which we call the
underlying category of C. We will often think of this as the key ingredient, with the
other categories just adding extra structure to C(e) in some sense.

Definition 3.4. A derivator is a prederivator in which all the functors u∗ have left
and right adjoints with certain compatibility properties, as specified in [7, Definition
1.10]. These adjoints can be thought of as homotopy right and left Kan extensions.
A stable derivator is a derivator C subject to some additional conditions:

(a) C should be strong. To explain this, note that for any P there are evident
inclusions i0, i1 : P → [1] × P with i0 ≤ i1. We therefore have functors
i∗0, i

∗
1 : C([1] × P ) → C(P ), together with a natural map between them.

These can be combined in an obvious way to get a functor C([1] × P ) →
C(P )[1], and the strongness condition is that this functor should be full and
essentially surjective (for all P ). This is [7, Definition 1.13].
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(b) C should be pointed, which means that C(e) should have an object that is
both initial and terminal. Many consequences of this condition are investi-
gated in [7, Section 3].

(c) Homotopy pushouts squares in C must coincide with homotopy pullback
squares, in the sense spelled out in [7, Definition 4.1].

Remark 3.5. If C is a derivator and P is a finite poset, then we can define a
new derivator CP by CP (Q) = C(P ×Q). This is called a shifted derivator and it is
often a useful device. In [7], Theorem 1.31 proves that CP is indeed a derivator, and
Proposition 2.6 proves that for any u : P → Q, the resulting morphism u∗ : CQ → CP

preserves left and right homotopy Kan extensions.

Remark 3.6. For every derivator C there is a dual derivator Cop(P ) = C(P op)op,
as in [7, Definition 1.15] and surrounding discussion.

Definition 3.7. Let C be a derivator. Let P be a finite poset, and let c be the
unique morphism P → e, so we have functors c!, c∗ : C(P ) → C(e). We define
holim
−→ P

X = c!(X) and holim
←− P

(X) = c∗(X).

Definition 3.8. Let f : P → Q be a morphism of finite posets, and suppose that
q ∈ Q. We use the following notation for comma posets:

f/q = {p ∈ P | f(p) ≤ q}

q/f = {p ∈ P | q ≤ f(p)}.

Remark 3.9. We can now recall the key axiom from [7, Definition 1.10], which is
known as the Kan formula. Suppose we have a morphism f : P → Q, a derivator
C, an object X ∈ C(P ), and an element q ∈ Q. The element q gives iq : e →
Q, and we want to understand the object i∗qf∗X ∈ C(e). There is an evident
inclusion j : q/f → P so we have j∗X ∈ C(q/f) and holim

←− q/f
j∗X ∈ C(e). Using

various adjunctions one can write down a natural map i∗qf∗(X) → holim
←− q/f

j∗X ,

and the axiom says that this should be an isomorphism. Dually, the natural map
holim
−→ f/q

j∗X → i∗qf!(X) should also be an isomorphism.

This is a direct generalization of the Kan formula for Kan extensions of functors
in the usual categorical setting. That is, for a type of derivators called represented,
the above isomorphisms are exactly the expression of right or left Kan extenions
via limits and colimits respectively. See the discussion following [7, Definition 1.9].

Theorem 3.10. Let C be a stable derivator. Then each category C(P ) has a natural
structure as a triangulated category. Moreover, for each u : P → Q, the correspond-
ing functor u∗ : C(Q) → C(P ) has a canonical natural isomorphism u∗Σ → Σu∗

with respect to which it is an exact functor, and the same applies to the left and
right adjoint functors u!, u∗ : C(P )→ C(Q).

Proof. This is [7, Corollary 4.19]. �

Definition 3.11. Let C be a stable derivator, and let P be a finite poset. Each
p ∈ P gives a morphism ip : e → P and thus a functor i∗p : C(P ) → C(e). Given
X ∈ C(P ), we writeXp for i

∗
p(X) ∈ C(e). We also put supp(X) = {p | Xp 6= 0} ⊆ P ,

and call this the support of X . Given Q ⊆ P , we say that X is supported in Q
if supp(X) ⊆ Q. We write CQ(P ) for the full subcategory of C(P ) consisting of
objects supported in Q.
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Remark 3.12. Derivators are defined in [7, Definition 1.10], and the second axiom
says that a morphism f : X → Y in C(P ) is an isomorphism iff fp : Xp → Yp is an
isomorphism for all p. From this we see that supp(X) = ∅ iff X = 0. Similarly, for
anyM ⊆ P we have an inclusion j : M → P and we write X |M for j∗(Q). We then
find that X is supported in Q iff X |P\Q = 0.

Definition 3.13. Let P be a finite poset, and let Q be a subset of P .

(a) We say that Q is a sieve if it is closed downwards, so that whenever p ≤ q
with q ∈ Q we also have p ∈ Q.

(b) We say that Q is a cosieve if it is closed upwards, so that whenever q ≤ p
with q ∈ Q we also have p ∈ Q.

If Q ⊆ P is a (co)sieve, we also say that the inclusion morphism Q → P is a
(co)sieve. More generally, if i : Q → P is an embedding (so i(q) ≤ i(q′) iff q ≤ q′)
and i(Q) is a (co)sieve, we say that i is a (co)sieve. This is the finite poset version
of [7, Definition 1.28].

Lemma 3.14. If C is a derivator and j : Q → P is an embedding then the counit
map j∗j∗X → X and the unit map X → j∗j!X are both isomorphisms (for all
X ∈ C(Q)). Thus, the functors j∗ and j! are both full and faithful embeddings. In
particular, this holds if j is a sieve or a cosieve.

Proof. We first consider the counit map j∗j∗X → X . By the derivator axiom
Der2, it will suffice to prove that the induced map (j∗X)j(q) = (j∗j∗X)q → Xq

is an isomorphism in C(e) for all q ∈ Q. Put j(q)/j = {a ∈ Q | j(q) ≤ j(a)}
and let k : j(q)/j → Q be the inclusion. The Kan formula identifies (j∗X)j(q) with
the homotopy limit of k∗(X) ∈ C(j(q)/q). Note that q is initial in j(q)/j, so the
inclusion iq : e → j(q)/j is left adjoint to c : j(q)/j → e, so the homotopy limit
functor c∗ is the same as i∗q by [7, Lemma 1.23]. This gives (j∗X)j(q) = c∗k

∗(X) =
(kiq)

∗(X) = Xq as required. This proves that the counit map j∗j∗X → X is an
isomorphism. To prove that the unit map X → j∗j!X is also an isomorphism, we
can either give a similar argument, or take adjoints, or appeal to a kind of self-
duality of the theory of derivators. From the isomorphism X ≃ j∗j!X we obtain
[W,X ] ≃ [W, j∗j!X ] = [j!W, j!X ], so j! is full and faithful. A similar argument
shows that j∗ is full and faithful. �

Proposition 3.15. Let C be a stable derivator, and let j : Q→ P be a sieve. Then:

(a) The functor j∗ : C(Q)→ C(P ) has a right adjoint denoted by j!, as well as
the left adjoint j∗ that exists by the definition of j∗.

(b) The unit map X → j!j∗(X) is an isomorphism (as are the unit map X →
j∗j!X and the counit map j∗j∗X → X, as we saw in Lemma 3.14).

(c) The functor j∗ gives an equivalence from C(Q) to CQ(P ), with inverse given
by j∗ or j!.

(d) If Y ∈ C(Q) corresponds to X ∈ CQ(P ) then holim
←− Q

(Y ) ≃ holim
←− P

(X).

Proof. Most of parts (a) to (c) can be obtained by combining Definition 3.4, Propo-
sition 3.6 and Corollary 3.8 from [7]. More specifically, 3.6(ii) says that j∗ is full and
faithful with CQ(P ) as the essential image, and 3.8 gives us the functor j!. From
Lemma 3.14 we have 1 ≃ j∗j∗, and by taking right adjoints we get 1 ≃ j!j∗. We
leave it to the reader to check that this natural isomorphism is just the unit map.
Given this, the claim (d) just reduces to (cP )∗j∗ ≃ (cQ)∗, where cP and cQ are the
unique morphisms P → e and Q→ e. But this is clear because cP j = cQ. �
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Proposition 3.16. Let C be a stable derivator, and let i : R → P be a cosieve.
Then:

(a) The functor i! : C(R) → C(P ) has a left adjoint denoted by i?, as well as
the right adjoint i∗ that exists by the definition of i!.

(b) The counit map i?i!(X) → X is an isomorphism (as are the unit map
X → i∗i!X and the counit map i∗i∗X → X, as we saw in Lemma 3.14).

(c) The essential image of i! is precisely CR(P ), so in fact we have an equiva-
lence C(R) ≃ CR(P ).

(d) If Z ∈ C(R) corresponds to X ∈ CR(P ) then holim
−→ R

(Z) ≃ holim
−→ P

(X).

Proof. This is dual to the previous proposition. �

Proposition 3.17. We now want to combine the above two propositions. Suppose
that Q ⊆ P is a sieve, and let R = P \ Q be the complementary cosieve. Let

Q
j
−→ P

i
←− R be the inclusions, so we have functors as follows, with each functor

left adjoint to the one below it.

C(Q) C(P ) C(R)

j!

j∗

j∗

j!

i?

i∗

i!

i∗

(a) The composites i?j!, j
∗i!, i

∗j∗ and j
!i∗ (obtained by composing two functors

at the same level in the diagram) are all zero. (We have nothing systematic
to say about any other composite functors between C(Q) and C(R).)

(b) The six adjunctions in the diagram involve six (co)unit maps to or from
the identity functor of C(P ). These fit into a diagram as follows, in which
every straight line is part of a natural distinguished triangle:

1 j∗j
∗

j∗j
!i!i

?

i!i
∗

i∗i
∗ j!j

∗

Proof. This is just a reorganisation of information extracted from [7, Example 4.25].
We will explain some parts of the argument. The Kan formula expresses the object
(j∗i!Z)q = (i!Z)j(q) as a homotopy colimit over a certain comma poset, but the
(co)sieve properties of i and j ensure that this comma poset is empty, so j∗i! = 0.
By taking left and right adjoints repeatedly we deduce that the other composites
in (a) are also zero. The horizontal composite f : i!i

∗ → j∗j
∗ is adjoint to a map

i∗ → i∗j∗j
∗, and i∗j∗ = 0, so it follows that f = 0. The same kind of argument

shows that the two other straight line composites are also zero. For the remaining
points we refer to [7], and to the paper [11] that is cited there. �
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4. Homotopy theory of partially ordered sets

Definition 4.1. Let POSet(P,Q) be the set of monotone maps from P to Q. We
give this the partial order such that f ≤ g iff f(p) ≤ g(p) in Q for all p ∈ P . It
is easy to see that this makes the category of finite posets into a cartesian closed
category.

Definition 4.2. Let P be a finite poset. Recall that a subset σ ⊆ P is a chain if
the induced order on σ is total. Given a map x : P → [0, 1], we define supp(x) =
{p | x(p) > 0}. We define |P | to be the set of maps x : P → [0, 1] such that
supp(x) is a chain and

∑
p∈P x(p) = 1. We call this the geometric realisation

of P . A standard argument shows that this gives a functor POSet → Top that
preserves finite coproducts and finite limits. In particular, we can apply geometric
realisation to the evaluation map POSet(P,Q) × P → Q, and then take adjoints,
to get a continuous map

|POSet(P,Q)| → Top(|P |, |Q|).

Definition 4.3. For any finite poset P , we define π0(P ) to be the quotient of P
by the smallest equivalence relation such that p ∼ q whenever p ≤ q. This is easily
seen to be the same as the set of path components of |P |. It gives a functor from
finite posets to finite sets, which preserves finite products and coproducts. It follows
formally that we can construct a quotient category of POSet with morphism sets
π0(POSet(P,Q)). We call this the strong homotopy category of finite posets. It also
follows that if f and g lie in the same equivalence class of π0(POSet(P,Q)) then
the resulting maps |f | and |g| are homotopic (by a straight-line homotopy, in the
basic case where f ≤ g or g ≤ f). Thus, geometric realisation gives a functor from
the strong homotopy category of posets to the homotopy category of topological
spaces.

Remark 4.4. Suppose we have morphisms f : P → Q and g : Q → P that are
adjoint, in the sense that f(p) ≤ q iff p ≤ g(q). We then have (co)unit inequalities
1 ≤ gf and fg ≤ 1, showing that fg and gf give identities in the strong homotopy
category, and thus that f and g are strong homotopy equivalences.

Definition 4.5. We say that P is strongly contractible if the map cP : P → e is a
strong homotopy equivalence.

We note that this holds if P has a smallest element or a largest element. We
also note that if P is a strongly contractible poset, then |P | is a contractible space.

Definition 4.6. Consider a morphism f : P → Q in POSet, and note that cQf =
cP : P → e. For any derivator C and any X,Y ∈ C(Q) we therefore get a map

f∗ : C(Q)(c∗QX, c
∗
QY )→ C(P )(c∗PX, c

∗
PY ).

We say that f is a D-equivalence if this map is bijective for all C, X and Y . We
also say that P is D-contractible if the map cP : P → e is a D-equivalence, or
equivalently the functor

c∗P : C(e)→ C(P )

is full and faithful.

Remark 4.7. Groth uses the term homotopy contractible rather thanD-contractible.



ITERATED CHROMATIC LOCALISATION 11

Proposition 4.8. If [f ] = [g] in π0(POSet(P,Q)) then

f∗ = g∗ : C(Q)(c∗QX, c
∗
QY )→ C(P )(c∗PX, c

∗
PY ).

Thus, f is a D-equivalence iff g is a D-equivalence.

Proof. We can reduce easily to the case where f ≤ g. As C : POSetop → CAT is
a strict 2-functor, the following diagram of categories and functors must commute
on the nose:

POSet(P,Q) × POSet(Q, e) POSet(P, e)

[C(Q), C(P )]× [C(e), C(Q)] [C(e), C(P )].

compose

compose

The inequality f ≤ g gives a morphism (f, cQ)→ (g, cQ) in the category POSet(P,Q)×
POSet(Q, e), and this becomes the identity morphism of cP in POSet(P, e). The
claim now follows by chasing the diagram. �

Corollary 4.9. If f : P → Q is a strong homotopy equivalence, then it is a D-
equivalence. In particular:

(a) If f has a left or right adjoint, then it is a D-equivalence.
(b) If P is strongly contractible, then it is D-contractible. �

The following definitions are taken from [10, Section 3]:

Definition 4.10.

(a) We say that a map f : Q→ P is homotopy final if the natural map

holim
−→
Q

f∗(X) = (cQ)!f
∗(X) = (cP )!f!f

∗(X)→ (cP )!(X) = holim
−→
P

(X)

is an isomorphism for all derivators C and all objects X ∈ C(P ).
(b) Dually, we say that a map f : Q → P is homotopy cofinal if the natural

map

holim
←−
P

(X) = (cP )∗(X)→ (cP )∗f∗f
∗(X) = (cQ)∗f

∗(X) = holim
←−
Q

f∗(X)

is an isomorphism for all derivators C and all objects X ∈ C(P ).

We do not really need the following result, but it helps to clarify the relationship
between our definitions.

Proposition 4.11. If f : Q → P is homotopy final or homotopy cofinal then it is
a D-equivalence.

Proof. We will just treat the final case, as the other case is dual. TakingX = c∗P (U)
in the definition, we see that the natural map (cQ)!c

∗
Q(U) → (cP )!c

∗
P (U) is an

isomorphism. This gives an isomorphism

C(e)((cP )!c
∗
P (U), V ) ≃ C(e)((cQ)!c

∗
Q(U), V )

for any V . By adjunction, we get an isomorphism

C(P )(c∗P (U), c∗P (V )) ≃ C(Q)(c∗Q(U), c∗Q(V )).

We leave it to the reader to check that this is just f∗, as required. �



12 N. P. STRICKLAND AND N. BELLUMAT

Proposition 4.12. The map f is homotopy final iff p/f is strongly contractible
for all p, and this holds if f has a left adjoint. Dually, f is homotopy cofinal iff
f/p is strongly contractible for all p, and this holds if f has a right adjoint.

Proof. See [10, Corollary 3.13] and surrounding discussion. �

Proposition 4.13. Consider a commutative square

P Q

R S,

t

u v
α

w

and the resulting Beck-Chevalley transform α∗ : w
∗v∗ → u∗t

∗ between morphisms
CQ → CR. For any r ∈ R we have comma posets r/u and w(r)/v, and using t and
α we can produce a morphism tr : r/u→ w(r)/v. If this is homotopy cofinal for all
r, then α is an isomorphism.

Proof. We must show that for any T and any X ∈ CQ(T ) = C(Q × T ), the map
(α∗)X : w∗v∗X → u∗t

∗X is an isomorphism in C(R × T ). After replacing C by CT

we can assume that T = e, so X ∈ C(Q) and (α∗)X is a morphism in C(R). It will
suffice to show that i∗r(α∗)X is an isomorphism for all r ∈ R. The Kan formula
expresses the source and target of i∗r(α∗)X as homotopy limits over comma posets.
In more detail, there is a projection πr : w(r)/v → Q, and the source of i∗r(α∗)X
is the homotopy limit of π∗rX , whereas the target is the homotopy limit of t∗rπ

∗
rX .

The homotopy cofinality condition says that the natural map between these is an
isomorphism. �

Definition 4.14. Recall that a subset σ ⊆ P is a chain if the induced order on σ
is total. If σ is a chain, we write dim(σ) = |σ| − 1. We put

s(P ) = { nonempty chains σ ⊆ P}

sd(P ) = {σ ∈ s(P ) | dim(σ) = d}

s≤d(P ) = {σ ∈ s(P ) | dim(σ) ≤ d}.

Note that every nonempty chain σ has a largest element, which we denote by
max(σ). We order s(P ) by inclusion, which ensures that max: s(P ) → P is a
morphism of posets.

This construction gives a functor s : POSet → POSet, and max: s(P ) → P is
natural. However, if f ≤ g then it is typically not the case that s(f) ≤ s(g). This
makes the following proof more complex than one might expect.

Proposition 4.15. If [f ] = [g] in π0(POSet(P,Q)), then [s(f)] = [s(g)]. Thus, s
induces an endofunctor of the strong homotopy category.

Proof. We can easily reduce to the case where f ≤ g. We then choose a minimal
element p1 in P , then a minimal element p2 in P \ {p1} and so on, giving an
enumeration P = {p1, . . . , pm−1} say. We define φ : P → [m] = {0, . . . ,m} by
φ(pi) = i (so φ is injective and monotone, and 0 and m are not in the image). Then
for 0 ≤ k ≤ m we define uk, vk : s(P )→ s(Q) by

uk(σ) = {f(p) | p ∈ σ, φ(p) < k} ∪ {g(p) | p ∈ σ, φ(p) ≥ k}

vk(σ) = {f(p) | p ∈ σ, φ(p) ≤ k} ∪ {g(p) | p ∈ σ, φ(p) ≥ k}.
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We find that uk(σ) and vk(σ) are nonempty chains in Q, so we really do have
maps uk, vk : s(P )→ s(Q) as advertised. It is also clear that when σ ⊆ τ we have
uk(σ) ⊆ uk(τ) and vk(σ) ⊆ vk(τ), so uk and vk are maps of posets. Next, we
find that uk, uk+1 ≤ vk, which implies that all the maps uk and vk lie in the same
path component. Finally, we have u0 = s(g) and um = s(f), so [s(f)] = [s(g)] as
claimed. �

Lemma 4.16. The map max: s(P ) → P is homotopy cofinal (and so is a D-
equivalence).

Proof. Fix p ∈ P ; it will suffice to show that the poset

U = max /p = {σ ∈ sP | max(σ) ≤ p}

is strongly contractible. Put

V = {σ ∈ sP | max(σ) = p} = {σ ∈ U | p ∈ σ} ⊆ U.

As {p} is smallest in V , we see that V is strongly contractible. We can define a
poset map t : U → V by t(τ) = τ ∪ {p}, and we find that this is left adjoint to the
inclusion V → U , so the inclusion is a strong homotopy equivalence by Remark 4.4.
It follows that U is also strongly contractible. �

Lemma 4.17. The map |max | : |s(P )| → |P | is a homotopy equivalence.

Proof. We can define a barycentric subdivision map β : |s(P )| → Map(P, [0, 1]) by

β(w)(p) =
∑

p∈σ

|σ|−1w(σ).

It is well-known that this gives a homeomorphism |s(P )| → |P |. A typical simplex
τ of s(P ) is a chain {σ0, . . . , σd} where each σi is a nonempty chain in P and
σ0 ⊂ · · · ⊂ σd. It is easy to see that both β and |max | send |τ | into |σd|, so the
straight-line homotopy between β and |max | stays within |P |. This means that
|max | is homotopic to a homeomorphism, and so is a homotopy equivalence. �

Definition 4.18. The weak homotopy category of finite posets is obtained from
the strong homotopy category by inverting the maps max: s(P )→ P . Thus every
morphism P → Q in the weak homotopy category can be represented as f ◦max−r

for some f : sr(P )→ Q, with f ◦max−r = g ◦max−s iff [f ◦maxs+t] = [g ◦maxr+t]
in π0(POSet(sr+s+t(P ), Q)) for sufficiently large t.

Remark 4.19. Using Lemma 4.17 we see that geometric realisation gives a functor
from the weak homotopy category to the homotopy category of finite simplicial
complexes. A slight variant of the standard simplicial approximation theorem shows
that this functor is an equivalence. However, we do not need this, so we will not
spell out the details.

We will also use some theory of total fibres. We recall some basic ideas.

Definition 4.20. Let R be a finite set, and let PR be the poset of subsets of
R. Let j : e → PR correspond to ∅ ∈ PR, and put P ′R = PR \ {∅}, and let
i : P ′R→ PR be the inclusion. As j is a sieve, Proposition 3.15 gives us a functor
j! : C(PR)→ C(e) that is right adjoint to j∗. We also write tfib(X) or tfibR(X) for
j!(X), and call this the total fibre of an object X ∈ C(PR). We also say that X is
cartesian if it is in the essential image of i∗ : C(P

′R)→ C(R).



14 N. P. STRICKLAND AND N. BELLUMAT

Lemma 4.21. X is cartesian iff tfib(X) = 0.

Proof. We use Proposition 3.17. Part (a) of that result includes the relation j!i∗ =
0, which means that tfib is trivial on cartesian objects. For the converse, part (b)
tells us that the fibre of the unit map X → i∗i

∗(X) is j∗j
!(X), so if j!(X) = 0 we

see that X ≃ i∗i
∗(X) and so X is cartesian. �

Lemma 4.22. tfib(X) is the fibre of the natural map X∅ → holim
←− P ′R

j∗X.

Proof. Let c and c′ be the maps PR → e and P ′R → e, so cj = 1 and ci = c′.
Proposition 3.17(b) gives us a distinguished triangle j∗j

!X → X → i∗i
∗X . The

functor c∗ : C(PR) → C(e) is exact by [7, Corollary 4.19]. We can therefore apply
it to get a distinguished triangle c∗j∗j

!X → c∗X → c∗i∗i
∗X . As cj = 1, the first

term is just j!X = tfib(X). As j is left adjoint to c, we can identify c∗ with j
∗ (as

in [7, Lemma 1.23]), so the middle term is j∗X = X∅. As ci = c′, the last term is
c′∗i
∗X = holim

←− P ′R
i∗X . �

We now want to discuss another description of tfib(X). Suppose that r ∈ R, and
put R0 = R \ {r}. Define k−, k+ : PR0 → PR by k−(T ) = T and k+(T ) = T ∪ {r}.
As k− ≤ k+ we have a natural map k∗−X → k∗+X in C(R0), and thus a map
tfib(k∗−X)→ tfib(k∗+X).

Proposition 4.23. There is a natural distinguished triangle

tfib(X)→ tfib(k∗−X)→ tfib(k∗+X)→ Σ tfib(X).

Proof. We can regard X as an object of CPR0(P{r}). From this point of view
k∗−X is just X∅, and P ′{r} ≃ e so k∗+X is just holim

←− P ′{r}
j∗X . We also see

that k!−X = tfib{r}(X). Lemma 4.22 therefore gives us a distinguished triangle

k!−X → k∗−X → k∗+X . Now let i0 : e → PR0 correspond to ∅, and apply the

exact functor i!0 to the above triangle. As k−i0 = i : e → PR, the first term is
i!X = tfib(X). The other two terms are tfib(k∗−X) and tfib(k∗+X), as required. �

Proposition 4.24. Let t : e→ PR correspond to the element R ∈ PR. Then there
is a natural isomorphism tfib(t!X) ≃ Ω|R|(X).

Proof. We can split R as R0 ∐ {r} as before, and let t0 : e → PR0 correspond to
R0 ∈ PR0, and put n0 = |R0|. It is then easy to identify k∗+t!(X) with (t0)!(X),
so by induction we have tfib(k∗+(t!(X))) = Ωn0(X). On the other hand, we can
check that k∗−(t!(X)) = 0, so tfib(k∗−(t!(X))) = 0. Now Proposition 4.23 tells us
that tfib(t!(X)) is the fibre of 0→ Ωn0(X), which is Ωn0+1(X) as required. �

The following proposition is a derivator version of a standard result about ho-
motopy limits in simplicial or topological categories.

Proposition 4.25. Let n be the maximum length of any chain in P . Then for all
stable derivators C and objects X ∈ C(P ) there is a natural tower

holim
←−
P

(X) = T n(X)→ T n−1(X)→ · · · → T 0(X)→ T−1(X) = 0

and natural distinguished triangles
⊕

σ∈sd(P )

ΩdXmax(σ) → T d(X)→ T d−1(X).
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Proof. Put Y = max∗(X) ∈ C(s(P )). Lemma 4.16 identifies holim
←− P

(X) with

holim
←− s(P )

(Y ), so we will work with Y from now on.

Let jd : s≤d(P ) → s(P ) be the inclusion, and put T d(X) = holim
←−

j∗d(Y ). Note

that T n(Y ) = holim
←− s(P )

Y = holim
←− P

X .

Now fix d and consider the object Z = j∗≤d(Y ) and the inclusions j : s≤(d−1)(P )→
s≤d(P ) and i : sd(P ) → s≤d(P ). Proposition 3.17 gives a distinguished triangle
i!i
∗(Z) → Z → j∗j

∗(Z). If we let c be the map s≤d(P ) → e and apply c∗, we
get a distinguished triangle c∗i!i

∗(Z) → T d(X) → T d−1(X). Now note that the
order on sd(P ) is discrete: for σ, τ ∈ sd(P ) we can only have σ ≤ τ if σ = τ .
Because of this, we see that C(sd(P )) ≃

∏
σ∈sd(P ) C(e). Because of this, we can

write i∗(Z) as a coproduct of objects W (σ), where W (σ)τ = 0 for τ 6= σ, and
W (σ)σ = Zσ = Yσ = Xmax(σ). It will now suffice to identify c∗i!W (σ) with ΩdYσ.
Here i is a cosieve, and it follows that for τ ∈ s≤d(P ) we have

(i!W (σ))τ =

{
Yσ if τ = σ

0 otherwise .

The poset {τ ∈ s(P ) | τ ⊆ σ} is naturally identified with P ′(σ). Let k : P ′(σ) →
s≤d(P ) be the inclusion, which is a sieve. As the support of i!W (σ) is contained
in the image of k, we see from Proposition 3.15 that the unit map i!W (σ) →
k∗k
∗i!W (σ) is an isomorphism. It follows that c∗i!W (σ) is the homotopy limit

of k∗i!W (σ). Here it is easy to see that the object k∗i!W (σ) ∈ C(P ′(σ)) is the
restriction to P ′(σ) of the object t!W (σ) appearing in Proposition 4.24. That
proposition tells us that the total fibre of t!W (σ) is Ωd+1Yσ. On the other hand,
Lemma 4.22 tells us that the total fibre is the same as the fibre of the natural
map from (t!W (σ))∅ = 0 to holim

←−
k∗i!W (σ), which is Ω holim

←−
k∗i!W (σ). As we are

working with stable derivators we know that Ω is an equivalence of categories, so
holim
←−

k∗i!W (σ) = ΩdYσ as required. �

Corollary 4.26. Let n be the maximum length of any chain in P . Then for all
stable derivators C and objects X ∈ C(P ) there is a natural diagram

0 = T−1(X)→ T0(X)→ · · · → Tn(X) = holim
−→
P

(X)

and natural distinguished triangles

Td−1(X)→ Td(X)→
⊕

σ∈sd(P )

ΣdXmax(σ).

Proof. Apply the proposition to the dual derivator. �

Proposition 4.27. For any map u : Q → P of finite posets, the functors u∗, u!
and u∗ all preserve arbitrary products and coproducts.

Proof. The functors u∗ and u! have right adjoints, so they preserve coproducts. The
functors u∗ and u∗ have left adjoints, so they preserve products. The key point is
to prove that u∗ preserves coproducts. Consider a family of objects Xα ∈ C(Q),
and the resulting map f :

⊕
α u∗(Xα) → u∗ (

⊕
αXα). We want to prove that f

is an isomorphism, and it will suffice to show that i∗p(f) is an isomorphism for all
p ∈ P . We have already observed that i∗p preserves coproducts, and we have a Kan



16 N. P. STRICKLAND AND N. BELLUMAT

formula expressing i∗pu∗ as a homotopy limit over p/u. It will therefore suffice to
show that all homotopy limit functors preserve coproducts. Note that the functor
Ω: C(e)→ C(e) is an equivalence of categories, so it certainly preserves coproducts.
It follows that all functors of the form X 7→ ΩdXq also preserve coproducts. It
then follows by induction that the functors T d in Proposition 4.25 all preserve
coproducts. By taking d sufficiently large, we see that homotopy limits preserve
coproducts as required. This completes the proof that u∗ preserves coproducts, and
we can apply that to the dual derivator to see that u! preserves products. �

5. Thick subderivators

Definition 5.1. Let C be a stable derivator. By an thick subderivator E ⊆ C we
mean a system of full subcategories E(P ) ⊆ C(P ) for all P , such that:

(a) Each category E(P ) is closed under finite coproducts (including the empty
coproduct, so 0 ∈ E(P )).

(b) Whenever X
j
−→ Y

q
−→ X in C(P ) with qj = 1, if Y ∈ E(P ) then X ∈ E(P ).

In other words, E is closed under retracts. In particular, if X ≃ Y and
Y ∈ E(P ) then X ∈ E(P ).

(c) For any morphism u : P → Q of finite posets, we have u∗E(Q) ⊆ E(P ) and
u!E(P ) ⊆ E(Q) and u∗E(P ) ⊆ E(Q). More briefly, we say that the functors
u∗, u∗ and u! preserve E .

Definition 5.2. Let C be a stable derivator, and let E1 be a thick subcategory of
C(e). For any finite poset P and any p ∈ P we have a corresponding map ip : e→ P .

(a) We put

(γ0E1)(P ) = {X ∈ C(P ) | i
∗
p(X) ∈ E1 for all p ∈ P}

(b) We let (γ1E1)(P ) denote the smallest thick subcategory of C(P ) containing
(ip)!(E1) for all p.

(c) We let (γ2E1)(P ) denote the smallest thick subcategory of C(P ) containing
(ip)∗(E1) for all p.

Theorem 5.3. The subcategories (γiE1)(P ) are the same for i = 0, 1, 2 (so we will
just write (γE1)(P ) in future). The map γ gives a bijection from thick subcategories
of C(e) to thick subderivators of C. Moreover, if E is a thick subderivator of C, then
E(P ) is a thick subcategory of C(P ) for all P .

The proof will be given after some lemmas.

Remark 5.4. It is important here that our derivators are indexed on finite posets
rather than more general categories; the theorem would not be true without some
restriction of this kind. In particular it would fail for derivators indexed by finite
groups; this is related to the fact that classifying spaces of finite groups are infinite
complexes.

Lemma 5.5. If E ⊆ C is a thick subderivator, then E(P ) is a thick subcategory of
C(P ) for all P , and

(γ1E(e))(P ) ∪ (γ2E(e))(P ) ⊆ E(P ) ⊆ (γ0E(e))(P ).

Proof. The triangulation of C(P ) is defined in terms of operations of the form u∗,
u!, u∗, u

! and u?. However, the operations u! and u? are themselves defined in
terms of v∗, v∗ and v! for various auxiliary morphisms v, as discussed in [7, Section
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2]. From this it follows that E(P ) is closed under the suspension functor and its
inverse, and under cofibrations, so it is a thick subcategory. From the definitions
we also know that the functors (ip)! preserve E , so E(P ) contains the generators of
(γ1E(e))(P ), so it contains the whole of (γ1E(e))(P ). It also contains (γ2E(e))(P )
by essentially the same argument. On the other hand, the functors i∗p also preserve
E , and this means that E(P ) ⊆ (γ0E(e))(P ). �

Lemma 5.6. If E1 is a thick subcategory of C(e), then γ0E1 is a thick subderivator
of C, with (γ0E1)(e) = E1.

Proof. Suppose we have a morphism u : Q → P of finite posets. It is clear from
the definitions that u∗((γ0E1)(P )) ⊆ (γ0E1)(Q), or more briefly that u∗ preserves
γ0E1. We claim that the functors u∗ and u! also preserve γ0E1. In the case Q = e,
this follows easily from Proposition 4.25 and Corollary 4.26. We can use the Kan
formulae to deduce the general case from the case Q = e. It is also easy to check
that γ0E1 is closed under retracts, so γ0E1 is a thick subderivator of C. The relation
(γ0E1)(e) = E1 is clear. �

Corollary 5.7. If E1 is a thick subcategory of C(e), then (γ1E1)(P ) ∪ (γ2E1)(P ) ⊆
(γ0E1)(P ) for all P .

Proof. Lemma 5.6 allows us to apply Lemma 5.5 to the case E = γ0E1. �

Lemma 5.8. If E1 is a thick subcategory of C(e), then all functors u! preserve γ1E1,
and all functors u∗ preserve γ2E1.

Proof. Fix a map u : P → Q, and put U = {X ∈ C(P ) | u∗(X) ∈ (γ1E1)(Q)}. It
is easy to see that U is thick. As uip = iu(p) : e → P we see that u!(ip)! = (iu(p))!,
and it follows that (ip)!(E1) ⊆ U for all p ∈ P . It follows that (γ1E1)(P ) ⊆ U ,
which means that u∗ preserves γ1E1 as required. Dually, we see that u∗ preserves
γ2E1. �

Lemma 5.9. If E1 is a thick subcategory of C(e), then γ0E1 = γ1E1 = γ2E1.

Proof. We will write Γi = γiE1 for brevity. It will be enough to prove that Γ0 = Γ1,
as duality then gives Γ0 = Γ2. We already know from Corollary 5.7 that Γ1(P ) ⊆
Γ0(P ) for all P , so it will suffice to prove that Γ0(P ) ⊆ Γ1(P ). This is clear if
P is empty. If P is nonempty, we can choose a minimal element a ∈ P and put
Q = P \ {a}. Let j : e → P correspond to a, and let i : Q → P be the inclusion.
Consider an object Y ∈ Γ0(P ); we must show that Y ∈ Γ1(P ). Put X = j!j

∗(Y ),
and let Z be the cofibre of the counit map X → Y . From Lemma 3.14 we have
j∗j! = 1 and so j∗Z = 0, so the support of Z is contained in i(Q). As i is a cosieve,
we see that Z ≃ i!i

∗(Z). Now i∗(Z) ∈ Γ0(Q), and we can assume by induction
that Γ0(Q) ⊆ Γ1(Q), so Z ∈ i!Γ1(Q) ⊆ Γ1(P ). From the definitions we also have
j∗(X) ∈ E1 and X ∈ Γ1(P ). As Γ1(P ) is thick and contains X and Z, it also
contains Y as required. �

Proof of Theorem 5.3. First suppose that we start with a thick subcategory E1 ⊆
C(e). Lemma 5.9 tells us that the γiE1 are all the same, so we can just write γE1.
Lemma 5.6 tells us that this is a thick subderivator, with (γE1)(e) = E1.

Suppose instead that we start with a thick subderivator E ⊆ C, and we put
E1 = E(e). Lemma 5.5 tells us that E(P ) is a thick subcategory of C(P ) for all P ,
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and in particular that E1 is a thick subcategory of C(e). We can therefore apply
Lemma 5.9 to E1 and combine this with Lemma 5.5 to see that E = γE1. �

Corollary 5.10. Let E be a thick subderivator of C, and let X be an object of C(P ).
Suppose that P =

⋃
i Pi for some family of subposets Pi. Then X lies in E(P ) iff

X |Pi
∈ E(Pi) for all i.

Proof. The identity E = γE(e) means that X ∈ E(P ) iff i∗p(X) ∈ E(e) for all p ∈ P .
Similarly, X |Pi

∈ E(Pi) iff i∗p(X) ∈ E(e) for all p ∈ Pi. The claim is clear from
this. �

Definition 5.11. Let T be a triangulated category with arbitrary coproducts.
Recall that a localising subcategory of T is a thick subcategory that is closed under
arbitrary coproducts. Similarly, if C is a stable derivator, a localising subderivator
is a thick subderivator E ⊆ C such that the subcategory E(P ) ⊆ C(P ) is closed
under arbitrary coproducts for all P .

Proposition 5.12. The map γ gives a bijection between localising subcategories of
C(e) and localising subderivators of C, with inverse E 7→ E(e).

Proof. Firstly, if E is a localising subderivator of C, then it is immediate from the
definitions that E(e) is a localising subcategory of C(e).

In the opposite direction, suppose that E1 is a localising subcategory of C(e). Let
(Xα) be a family of objects of (γ0E1)(P ), so i∗p(Xα) ∈ E1 for all α and all p ∈ P .
As i∗p has a right adjoint we see that it preserves coproducts, so i∗p(

⊕
αXα) =⊕

α i
∗
p(Xα) ∈ E1. As this holds for all p we see that

⊕
αXα ∈ (γ0E1)(P ). This

shows that γE1 is a localising subderivator, as required. �

Lemma 5.13. Let C be a stable derivator, and let E(P ) be a thick subcategory of
C(P ) for all P . Suppose that for every u : Q→ P , the functors u! and u

∗ preserve
E. Then E = γE(e), so in particular E is a thick subderivator.

Proof. Put E ′ = γE(e) = γ0E(e) = γ1E(e). We now claim that E(P ) ⊆ E ′(P ) for all
P . Using the description E ′ = γ0E(e), this reduces to the claim that i∗pE(P ) ⊆ E(e)
for all p, which is true because i∗p preserves E by assumption. In the opposite direc-
tion, we know that the functors (ip)! preserve E , which means that E(P ) contains all
the generators of E ′(P ) = (γ1E(e))(P ). As E(P ) is assumed to be thick, it follows
that E ′(P ) ⊆ E(P ). �

Definition 5.14. Let T be a triangulated category with coproducts. We say that
an object X ∈ T is compact if the natural map

⊕
α[X,Yα] → [X,

⊕
α Yα] is an

isomorphism for every family of objects Yα. We write Tc for the full subcategory of
compact objects (which is easily seen to be thick). If T = C(P ) for some derivator
C, then we will write Cc(P ) rather than C(P )c. We say that T is compactly generated
if

(a) The category Tc is essentially small (so there is a skeleton that has a set of
objects, rather than a proper class); and

(b) T is the only thick subcategory of T that is closed under arbitrary coprod-
ucts and contains Tc.

Lemma 5.15. Let T be a triangulated category, let G be a set of objects of T , and
let U be the smallest thick subcategory containing G. Then U is essentially small.
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Proof. Define full subcategories Un as follows. Start with U0 = G ∪ {0}. Let Un+1

consist of
⋃
k∈Z Σ

kUn, together with a choice of cofibre for every morphism in Un,
and a choice of splitting for every idempotent morphism in Un. Put U∞ =

⋃
n Un.

We then find that U∞ has only a set of objects, and contains a representative of
every isomorphism class in U . �

Proposition 5.16. Cc(P ) is a thick subderivator of C (and so is the same as
γCc(e)).

Proof. Put E = γCc(e), which is a thick subderivator; it will suffice to show that
this is the same as Cc.

If F is left adjoint to G and G preserves coproducts then for small X we have

[FX,
⊕

α

Yα] = [X,G
⊕

α

Yα] = [X,
⊕

α

GYα] =
⊕

α

[X,GYα] =
⊕

α

[FX, Yα],

so FX is small. Using this, we see that u! and u∗ preserve Cc. The claim now
follows from Lemma 5.13. �

Corollary 5.17. If C(e) is compactly generated, then C(P ) is compactly generated
for all P .

Proof. First, we can choose a small skeleton G for Cc(e), and then put

G(P ) = {(ip)!(X) | p ∈ P, X ∈ G} ⊆ Cc(P ).

From the description Cc(P ) = (γ1Cc(e))(P ) we see that Cc(P ) is generated by G(P ),
and so is essentially small by Lemma 5.15.

Now let T be a localising subcategory of C(P ) that contains Cc(P ). Put

U = {X ∈ C(e) | (ip)!(X) ∈ T for all p ∈ P}.

This is easily seen to be a localising subcategory of C(e) containing Cc(e), so U =
C(e). From Theorem 5.3 it follows that γU = C, so in particular C(P ) = (γ1U)(P ).
However, from the definition of U it is clear that (γ1U)(P ) ⊆ T , so T = C(P ) as
required. �

Definition 5.18. We say that C is compactly generated if it satisfies the equivalent
conditions of Corollary 5.17.

Definition 5.19. Let U be a thick subcategory of a triangulated category T . We
then write

U⊥ = {Y ∈ T | [U, Y ] = 0 for all U ∈ U}

⊥U = {X ∈ T | [X,U ] = 0 for all U ∈ U}.

Similarly, if E is a thick subderivator of a stable derivator C, we put E⊥(P ) = E(P )⊥

and (⊥E)(P ) = ⊥(E(P )).

Proposition 5.20. E⊥ and ⊥E are thick subderivators, so E⊥ = γ(E(e)⊥) and
⊥E = γ(⊥E(e)).

Proof. Suppose that X ∈ (⊥E)(P ) and u : P → Q. For V ∈ E(Q) we have u∗(V ) ∈
E(P ) and so [u!(X), V ] = [X,u∗(V )] = 0. From this we see that u! preserves

⊥E . As
u∗ is left adjoint to u∗ and u∗ preserves E , we see in the same way that u∗ preserves
⊥E . It therefore follows from Lemma 5.13 that ⊥E is a thick subderivator. A dual
argument shows that E⊥ is also a thick subderivator. �
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6. Anafunctors for derivators

Suppose we have morphisms of derivators

C
F
←− X

G
−→ D

in which F is an equivalence (which means that F : C(P )→ X (P ) is full, faithful and
essentially surjective for all P ). We could choose an inverse for F and thus obtain
a morphism GF−1 : C → D. However, we prefer not to make arbitrary choices, so
we will instead treat GF−1 as a formal fraction, or anafunctor. The bicategory
DER′ of derivators and anafunctors is thus obtained from the bicategory DER of
derivators by inverting the equivalences. A formal framework for bicategories of
fractions is given in [16, Section 2], and extended in [18]. To apply this framework
to derivators, we need the following result:

Lemma 6.1. The 2-category DER admits 2-pullbacks along equivalences.

Proof. Consider a span D
F
−→ F

G
←− E , in which G is an equivalence of derivators.

We will provide an explicit model for the 2-pullback. For each finite poset P we

have a span of categories D(P )
FP−−→ F

GP←−− E(P ), in which GP is an equivalence.
We define P(P ) to be the usual 2-pullback of this span. Explicitly, the objects
are triples (X,Y, α) where X ∈ D(P ), Y ∈ E(P ) and α : FP (X) → GP (Y ) is an
isomorphism in F(P ). A morphism (f, g) : (X,Y, α) → (X ′, Y ′, α′) consists of a
pair of morphisms f : X → X ′ and g : Y → Y ′ respectively in D(P ) and E(P ) such
that the diagram

FPX FPX
′

GPY GPY
′

α

FAf

α′

GP g

commutes. Now suppose we have a monotone map u : P → Q. We define u∗ : P(Q)→
P(P ) as follows. On objects we set u∗(X,Y, α) = (u∗X,u∗Y, αu∗) where the iso-
morphism αu∗ is the unique one making the following square commute

FPu
∗X GPu

∗Y

u∗FQX u∗GQY.

αu∗

γF
u

u∗α

γG
u

On morphisms we set u∗(f, g) = (u∗f, u∗g). It is immediate that this is strictly
functorial in u, so we have defined a prederivator. There are projections π1 : P → D
and π2 : P → E , and we can define an invertible modification ϕ : Fπ1 → Gπ2 by
ϕ(X,Y,α) = α. We thus have a diagram as follows:

P E

D F

P2

P1 G
ϕ

F

That this square provides a model for the 2-pullback of prederivators is a bother-
some computation that we leave to the reader.
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From the fact that G is an equivalence, it follows in a standard way that P1 is
an equivalence. As D is a derivator, it follows that P is a derivator. Thus, we have
a 2-pullback in the bicategory of derivators. �

We can now argue as in [18, Prop. 2.8] to justify the existence of the right calculus
of fractions with respect to the class of equivalences in DER. The preferred squares
we use for the composition of fractions are the explicit 2-pullbacks constructed
above.

Remark 6.2. We will need two key features of the resulting bicategory, as follows.
Firstly, suppose we have a diagram of derivators as follows, which commutes on the
nose:

C X

Y D

F
≃

J
GH ≃

K

Here it is assumed that F and H are equivalences, and it follows that J is also an
equivalence. The diagram then gives rise to an isomorphism between the anafunc-
tors GF−1 and KH−1.

Next, suppose we fix an equivalence F : X → C, and consider various different
functors Gi : X → D. Then any natural transformation α : G0 → G1 gives rise to a
morphism G0F

−1 → G1F
−1 of anafunctors, and this is functorial in α.

7. The anafunctors φA

We now explain our preferred framework for Bousfield localisation in the con-
text of derivators. This will rely on facts about Bousfield localisation in compactly
generated triangulated categories. For the homotopy category of spectra, all state-
ments are well-known with very classical proofs that rely on having an underlying
geometric category of spectra. There are also proofs of similar results in more ax-
iomatic frameworks, relying only on the theory of triangulated categories. These
are typically formulated in the context of well-generated categories as defined by
Neeman [14], and the proofs are somewhat complex. It is well-known to experts
that everything becomes much simpler, and much closer to the original results for
the category of spectra, if we restrict attention to compactly generated categories.
However, it seems surprisingly hard to find an full account of this in the literature.
We have therefore provided one in Appendix A.

Definition 7.1. Let C be a compactly generated stable derivator, and letK : C(e)→
Ab be a homology theory. As usual, we extend this to a graded theory K∗ : C(e)→
Ab∗ by Kn(X) = K(Σ−nX). For X ∈ C(P ) define KP (X) =

⊕
p∈P K(Xp), and

note that this is again a homology theory. Using Theorem 5.3 we see that the
subcategories ker(KP

∗ ) ⊆ C(P ) form a localising subderivator of C, which we will
just call ker(K∗).

Now suppose we have an object X ∈ C([1]×P ). This gives a morphism u : X0 →
X1 in C(P ) in the usual way. We say that X is a localisation object if fib(u) ∈
ker(KP

∗ ) and X1 ∈ ker(KP
∗ )
⊥. We write L(P ) for the subcategory of localisation

objects in C([1] × P ). This is clearly a subprederivator of C[1], and we have a
morphism i∗0 : L → C of prederivators.
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Proposition 7.2. L is a thick subderivator of C[1], and i∗0 : L → C is an equivalence
of derivators.

Proof. We know from Theorem 5.3 and Proposition 5.20 that ker(K∗) and ker(K∗)
⊥

are thick subderivators. Together with the results that we recalled in Theorem 3.10,
this implies that L is a thick subderivator of C[1]. Now consider the functor
i∗0 : L(P ) → C(P ). Given X ∈ C(P ), we can find a distinguished triangle CX →
X → LX with CX ∈ ker(KP

∗ ) and LX ∈ ker(KP
∗ )
⊥, by Theorem A.4 and Proposi-

tion A.8. By the strongness condition (Definition 3.4(a)), we can find Y ∈ C([1]×P )
such that the resulting morphism Y0 → Y1 is isomorphic to X → LX . This proves
that i∗0 is essentially surjective. Now suppose we have X,Y ∈ L(P ). Proposi-
tion 3.17 gives us a distinguished triangle i1!i

∗
1(Y ) → Y → i0∗i

∗
0(Y ). By applying

[X,−] to this and using various adjunctions we obtain an exact sequence

[i?1X, i
∗
1Y ]→ [X,Y ]

i∗0−→ [i∗0X, i
∗
0Y ]→ [i?1X, i

∗
1ΣY ].

Kere i?1X is just the cofibre of i∗0X → i∗1X , which lies in ker(KP
∗ ) becauseX ∈ L(P ).

Also, because Y ∈ L(P ) we have i∗1Y ∈ ker(KP
∗ )
⊥, so [i?1X, i

∗
1Y ] = [i?1X, i

∗
1ΣY ] = 0.

It follows that the map i∗0 : [X,Y ]→ [i∗0X, i
∗
0Y ] is an isomorphism as required. �

We will sometimes need a slightly more general statement.

Lemma 7.3. Suppose that X,Y ∈ C[1](P ), giving maps u : X0 → X1 and v : Y0 →
Y1 in C(P ). Suppose that fib(u) ∈ ker(KP

∗ ) and Y1 ∈ ker(KP
∗ )
⊥. Then the map

i∗0 : C([1]× P )(X,Y )→ C(P )(X0, Y0)

is bijective.

Proof. These weakened hypotheses are all that was used in the proof of Proposi-
tion 7.2 �

Definition 7.4. We define LK to be the anafunctor i∗1(i
∗
0)
−1, and call this Bousfield

localisation with respect to K.

We now return to a framework similar to that of Section 2: we assume that
we have a compactly generated stable derivator C together with homology theories
K(i) on C(e) for i ∈ N , where N is a finite, totally ordered set. As before, we define
P to be the poset of subsets of N (ordered by inclusion). We also define Q to be
the poset of upper sets in P (ordered by reverse inclusion), and define u : P→ Q by
uT = {U | T ⊆ U}.

Definition 7.5. Consider a finite poset R and an object X ∈ C(P× R). Suppose
that t ∈ N and U ⊆ N with t < u for all u ∈ U . We then write tU for {t} ∪ U ,
so we have U < tU in P, giving maps ft,U,r : XU,r → XtU,r in C(e). We say that
X is (t, U)-localising if ft,U is a K(t)-localisation. Equivalently, XtU,r should be
K(t)-local, and the fibre of ft,U,r should be K(t)-acyclic. We also say that X is
fully localising if it is (t, U)-localising for all t and U . We write P(R) for the full
subcategory of fully localising objects in C(P × R). There is an evident inclusion
i∅ : R→ P×R, which gives a functor i∗∅ : P(R)→ C(R).

Example 7.6. Consider the case N = {0}, and suppose that our derivator C
arises from a stable model category C0. An object of P(R) is then a diagram
X : [1] × R → C0 such that the morphisms X0r → X1r are all localisations with
respect to K(0). Informally, we can therefore say that an object of P is a diagram
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of type (X → LK(0)X). In the same sense, if N = {0, 1} then an object of P is
essentially a diagram of the following type:

X LK(0)X

LK(1)X LK(0)LK(1)X

X φ0X

φ1X φ01X

Here the right hand diagram is just alternate notation for the left hand one. For
N = {0, 1, 2}, the diagram is as follows:

φ12X φ012X

φ2X φ02X

φ1X φ01X

X φ0X

Proposition 7.7. P is a thick subderivator of CP, and i∗∅ : P → C is an equivalence
of derivators.

Proof. The claim is clear if N = ∅. If N 6= ∅, we let n0 ∈ N be the smallest element,
so N can be decomposed as {n0} ∐ N1 say. This gives an obvious decomposition
P = [1]× P1. We can define P1 ⊆ CP1 using N1, and by induction we can assume
that this is a thick subderivator with i∗∅ : P1 → C being an equivalence.

Now define L as in Definition 7.1, with respect to the homology theory K(n0)
for the derivator P1. We find that

P(R) = {X ∈ L(P1 ×R) | i
∗
0(X) ∈ P1(R)},

and the claim now follows from Proposition 7.2 together with the induction hy-
pothesis. �

Again, we will sometimes need a slightly more general statement.

Lemma 7.8. Suppose that X,Y ∈ CP(R). Suppose that for t, U and r as before,
the map ft,U,r : XU → XtU is a K(t)-equivalence, and the object YtU is K(t)-local.
Then the map

i∗∅ : C(P×R)(X,Y )→ C(R)(X∅, Y∅)

is bijective.

Proof. As above taking n0 the minimum of N we get a decomposition P = [1]×P1

and arguing by induction we can assume the map C(P1×R)(X0, Y0)→ C(R)(X∅, Y∅)
is a bijection. Now we have just to compose this with C(P × R)(X,Y ) → C(P1 ×
R)(X0, Y0) which is an isomorphism by Lemma 7.3. �

Definition 7.9. For A ⊆ N we consider the diagram

C
i∗∅←− P

i∗A−→ C

and define an anafunctor φA : C → C by φA = i∗A ◦ (i
∗
∅)
−1.
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Remark 7.10. Suppose that A = {a1, . . . , ar} with a1 < · · · < ar. It is then not
hard to see from the definitions that in some sense we have

φA ≃ LK(a1) · · ·LK(ar),

so that Definition 7.9 is a more precise version of Definition 1.2 in the introduction.
A rigorous formulation with anafunctors will be given in Corollary 7.18.

Proposition 7.11. The anafunctor φ{a} is equivalent to LK(a).

Proof. Define j : [1] → P by j(0) = ∅ and j(1) = {a}. This gives a morphism
j∗ : CP → C[1]. If we define L as in Definition 7.1 with respect to K(a), we find that
j∗ restricts to give a morphism P → L. This fits into a diagram as follows, which
commutes on the nose:

P C

C L

i∗{a}

j∗

≃
i∗∅ ≃

i∗0

≃

i∗1

From this it is clear that the anafunctor φ{a} = i∗{a}(i
∗
∅)
−1 is equivalent to LK(a) =

i∗1(i
∗
0)
−1. �

Now let j be the inclusion of P′ = P \ {∅} in P, and consider the fibration

tfib(X) −→ i∗∅(X)→ holim
←−
P′

j∗(X)

as in Lemma 4.22.
We can now give a derivator formulation of the chromatic fracture argument.

Proposition 7.12. For any X ∈ P(R), the above morphism i∗∅(X)→ holim
←− P′

j∗(X)

is a localisation with respect to K(N) =
⊕

n∈N K(n).

Proof. From the definition of P(R) we see that for all T ∈ P′, the object j∗(X)T
is local with respect to K(min(T )) and thus with respect to K(N). Proposi-
tion 5.20 tells us that the K(N)-local objects form a thick subderivator, so the
object LX = holim

←− P′
j∗(X) is K(N)-local. It will therefore suffice to show that

the fibre tfib(X) = fib(X∅ → LX) is K(N)-acyclic, or equivalently, that it is K(i)-
acyclic for all i. Let Yr be the total fibre of the subdiagram indexed by subsets of
{r+1, . . . , n∗−1}, so Yn∗−1 = 0 and Y−1 = tfib(X). Let Zr be the total fibre of the
subdiagram indexed by subsets of {r, . . . , n∗−1} containing r, so that Yr → Zr is a
K(r)-localisation, and the fibre is Yr−1 by Proposition 4.23. This shows that Yi−1
is K(i)-acyclic. The fracture axiom then tells us that Zi−1 is also K(i)-acyclic, and
Yi−2 is the fibre of the map Yi−1 → Zi−1 so it is again K(i)-acyclic. By iterating
this, we find that Y−1 is K(i)-acyclic as required. �

Definition 7.13. We say that an object X ∈ C(P× P×R) is doubly localising if

(a) X is fully localising relative to P×R, so it lies in P(P×R).
(b) The restriction to {u∅} × P×R ≃ P×R lies in P(R).

We write P2(R) for the full subcategory of doubly localising objects in C(P×P×R).
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Proposition 7.14. P2 is a thick subderivator of CP×P, and i∗(∅,∅) : P2 → C is an

equivalence.

Proof. The first claim follows from Theorem 5.3. The two properties of the previous
definition easily imply that the equivalence i∗∅ : P → C of Proposition 7.7 (shifted
by a P component) restricts to an equivalence P2 → P , compose this again with i∗∅
and the second claim is verified. �

It is easy to see that X ∈ C(P× P× R) = CR(P× P) is doubly localising iff the
following conditions are satisfied:

(a) For all a,A,B with {a}∠A, the mapXA,B → X{a}∪A,B is aK(a)-localisation.
(b) For all b, B with {b}∠B, the map X∅,B → X∅,{b}∪B is a K(b)-localisation.

This essentially means that if A = {a1 < · · · < ap} and B = {b1 < · · · < bq} we
must have

XA,B = LK(a1) · · ·LK(ap)LK(b1) · · ·LK(bq)X(∅,∅).

In particular, we see that X(A,B) = 0 unless A∠B. This motivates the following
construction.

Definition 7.15. We put M = {(A,B) ∈ P × P | A∠B}, and define σ : M → P
by σ(A,B) = A ∪ B. We say that an object X ∈ C(M × R) = CR(M) is doubly
localising if

(a) For all a,A,B with {a}∠A and {a} ∪A∠B, the map XA,B → X{a}∪A,B is
a K(a)-localisation.

(b) For all b, B with {b}∠B, the map X∅,B → X∅,{b}∪B is a K(b)-localisation.

We write P ′2(R) for the subcategory of doubly localising objects.

Proposition 7.16. P ′2 is a thick subderivator of CM, and the inclusion inc : M→
P× P induces mutually inverse equivalences

P ′2
inc∗−−→ P2

inc∗
−−→ P ′2,

and the morphism i∗(∅,∅) : P
′
2 → C is also an equivalence. Moreover, the map σ : M→

P gives an equivalence σ∗ : P → P ′2 and thus an equivalence inc∗ ◦σ∗ : P → P2.

Proof. The subposet M ⊆ P×P is a sieve, so Proposition 3.15 gives mutually inverse
equivalences

C(M×R)
inc∗−−→ CM×R(P× P×R)

inc∗
−−→ C(M×R).

We have observed that if X is doubly localising then XA,B = 0 for (A,B) 6∈ M, so
X ∈ CM×R(P × P × R). It follows that inc∗ restricts to give an equivalence from
P2(R) to some subcategory of C(M × R), with inverse given by inc∗. It is easy
to check that the relevant subcategory is P ′2(R). We have now seen that in the
diagram

P2
inc∗
−−→ P ′2

i∗(∅,∅)
−−−→ C,

the first map and the composite are both equivalences of (pre)derivators, so the
second map is also an equivalence. From this it also follows that P ′2 is a derivator.
Finally, direct inspection of the definitions shows that σ∗(P) ⊆ P ′2, and i

∗
(∅,∅)σ

∗ =

i∗∅, which implies that σ∗ : P → P ′2 is an equivalence. �

Proposition 7.17. If A∠B then there is an equivalence of anafunctors φAφB ≃
φA∪B.
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Proof. Define jB : P→ P× P by jB(T ) = (T,B). Consider the following diagram:

C P

P2 C

P P ′2

C P

i∗A

i∗∅
≃

i∗(A,B)

inc∗

≃

i∗(∅,∅) ≃

j∗B

i∗∅

≃

i∗B

i∗∅

≃

i∗(∅,∅)

≃

i∗(A,B)

i∗∅

≃

i∗A∪B

σ∗

≃

Given that C is a strict 2-functor, we see that everything commutes on the nose.
Several morphisms have been marked as equivalences; these are justified by Propo-
sition 7.16. It follows that all routes from the middle bottom C to the middle right
C give the same anafunctor up to equivalence. If we go clockwise around the edge
of the diagram we get φAφB , and if we go anticlockwise we get φA∪B.

To be precise the composition of anafunctors φAφB is given by the following
composition of spans via pullback

P ×C P

P P

C C C

π1 π2

i∗∅ i∗B i∗∅ i∗A

The upper left part of the previous diagram means that we can easily produce an
isomorphism of anafunctors

P ×C P

C C

P2

i∗∅π1 i∗Aπ2

i∗(∅,∅)

ψ

i∗(A,B)

where ψ is obtained using i∗∅ and j
∗
B . �

Corollary 7.18. Suppose that A = {a1, . . . , ar} with a1 < · · · < ar. There is then
an equivalence of anafunctors

φA ≃ LK(a1) · · ·LK(ar).
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Proof. This follows by induction using Propositions 7.11 and 7.17. (The base case
A = ∅ says that φ∅ is equivalent to the identity, which is clear because φ∅ = i∗∅(i

∗
∅)
−1

by definition.) �

8. The anafunctors θU

We now start to define a more general class of iterated localisation functors.

Definition 8.1. Consider an object X ∈ C(Q×R), and the pullback (u×1)∗(X) ∈
C(P×R). We say that X is u-cartesian if the natural map

(u × 1)∗ : C(Q×R)(W,X)→ C(P×R)((u × 1)∗(W ), (u × 1)∗(X))

is an isomorphism for all W , or equivalently, X is in the essential image of the
functor

(u × 1)∗ : C(P×R)→ C(Q×R).

We say that X is a fracture object if it is u-cartesian, and (u × 1)∗(X) is fully
localising. We write F(R) for the subcategory of fracture objects in C(Q×R). We
also define j : R→ Q×R by j(r) = (u∅, R).

Remark 8.2. Because we have ordered Q by reverse inclusion, we have U ≤ uA
iff uA ⊆ U iff A ∈ U . Using this together with the Kan formula, the u-cartesian
condition becomes

XU = holim
←−
A∈U

XuA.

Example 8.3. Consider the case N = {0, 1}, and put

W = vN = u{0} ∪ u{1} = {A ⊆ N | A 6= ∅} ∈ Q.

We then have Q = {uA | A ∈ P} ∪ {W, ∅}, with partial order as shown on the left
below. A fracture object is as shown on the right.

u∅ u{0}

W

u{0, 1}

u{1} ∅

X φ0X

λ01X

φ01X

φ1X 0

Now consider the case N = {0, 1, 2}, where |P| = 8. It turns out that |Q| = 20,
with elements as follows:

• The smallest element is u∅ = P.
• The next smallest element is vN = {A ∈ P | A 6= ∅}.
• We write vij = v{i, j} = {A | i ∈ A or j ∈ A}.
• We write xi = {A | i ∈ A or {i}c ⊆ A}.
• We write ui = u{i} = v{i} = {A | i ∈ A}.
• We write wi = {A | A ⊃ {i}} (strict inclusion).
• We write uij = u{i, j} = {A | {i, j} ⊆ A} = {{i, j}, N}.
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• We write u012 = uN = {N}.
• We write y = {A | |A| ≥ 2}.
• The largest element is ∅.

The Hasse diagram for Q \ {u∅, vN, y, ∅} can be drawn in the plane as follows:

u012 u01

u02

u12

w0

w2

w1

u0

u2

u1

x0

x2

x1

v01

v02

v12

The remaining vertices fit in as follows. At the bottom we have u∅, which is covered
by vN , which is covered by the elements vij . At the top, u012 is covered by ∅. In
the middle, y covers the elements xi and is covered by the elements wi. The u and v
elements will correspond to functors φ and λ as we have discussed previously. One
can check that the remaining elements other than w1 can be factored as follows,
and so will also correspond to iterated localisation functors:

x0 = v01 ∗ v02 x1 = v01 ∗ v12 x2 = v02 ∗ v12

w0 = u0 ∗ v12 w2 = v01 ∗ u2 y = v01 ∗ v02 ∗ v12.

However, Example 1.12 shows that w1 cannot be factored in this way.

Proposition 8.4. F is a thick subderivator of CQ, and j∗ : F → C is an equivalence
of derivators.

Proof. Let E(R) be the subcategory of u-cartesian objects in C(Q × R), so the
functor (u × 1)∗ : E(R) → C(P × R) is an equivalence. An object is u-cartesian iff
the unit map X → (u × 1)∗(u × 1)∗(X) is an isomorphism, and from this we see
that E(R) is a thick subcategory of C(Q × R). (Here we have used Theorem 3.10,
as we will do repeatedly without further comment.)

Now consider a morphism f : R0 → R1 of finite posets. We know from [7,
Proposition 2.6] that the resulting derivator morphism f∗ : CR1 → CR0 preserves
homotopy Kan extensions, so it commutes (in an evident sense) with the functors
(u× 1)∗, so it restricts to give a functor f∗ : E(R1)→ E(R0). It is even clearer that
the functors (1× f)∗ commute with (u × 1)∗, so they restrict to give f∗ : E(R0)→
E(R1). By the dual of Lemma 5.13, we deduce that E is a thick subderivator of EQ.

Next, consider the preimage under u∗ : CQ → CP of the thick subderivator P ⊆
CP. Using [7, Proposition 2.6] again, we see that this preimage is again a thick
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subderivator. By intersecting this with E , we see that F is a thick subderivator as
claimed.

In conclusion we obtained the diagram of derivators

CP E

P F

u∗

u∗

where the vertical arrows are inclusions and the horizontal ones equivalences. Thus
composing the inverse equivalence u∗ : F → P with i∗∅ of Proposition 7.7 we get the
second claim. �

Definition 8.5. For U ∈ Q, we define θU : C → C to be the anafunctor

C
(j∗)−1

−−−−→ F ⊆ CQ
i∗U−→ C.

We also note that an inequality U ≤ V gives a natural transformation i∗U → i∗V and
thus a morphism θU → θV of anafunctors, as discussed in Remark 6.2.

Remark 8.6. Consider an object X ∈ C(R), and a fracture object Y ∈ F(R)
with j∗Y ≃ X . Then the object YU = i∗UY ∈ C(R) is a choice of θU (X). As Y is
u-cartesian we have

YU = holim
←−
U≤uA

YuA = holim
←−
A∈U

YuA.

Also, as u∗Y ∈ P(R) we know that YuA is a choice of φA(X). Thus, the basic idea
is that θU (X) = holim

←− A∈U
φA(X).

Remark 8.7. Consider the original chromatic context where the homology theory
K(n) is represented by a spectrum, so we can apply φA or θU to that spectrum. It is
easy to see that φA(K(n)) is K(n) if A ⊆ {n}, and φA(K(n)) = 0 in all other cases.
From this we find that θU (K(n)) is K(n) if {n} ∈ U , and θU (K(n)) = 0 in all other
cases. In other words, with κ as in Remark 1.7 we have κ(U) = {n | θU (K(n)) 6= 0}.
In particular, if κ(U) 6= κ(V ) then θU 6≃ θV . However, it is common for κ(U) to be
empty, so this is not a very strong result.

Lemma 8.8. If A = {a1, . . . , ar} with a1 < · · · < ar then there are equivalences of
anafunctors

θuA ≃ φA ≃ LK(a1) · · ·LK(ar).

Proof. We have a diagram as follows, which commutes on the nose:

F C

C P

i∗uA

j∗ ≃ u∗

≃

i∗(∅,∅)

≃

i∗A

This gives an equivalence i∗uA(j
∗)−1 ≃ i∗A(i

∗
(∅,∅))

−1 of anafunctors, or in other words

θuA ≃ φA. Moreover, Corollary 7.18 gives φA ≃ LK(a1) · · ·LK(ar). �

Lemma 8.9. The functor θ∅ is zero.
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Proof. Fix X ∈ C(R) and choose Y ∈ F(R) together with an isomorphism X ≃
j∗(Y ). It will suffice to prove that Y∅ = 0. The u-cartesian property of Y allows us
to write Y∅ as a homotopy limit over the comma poset ∅/u. However, ∅ is strictly
larger than everything in the image of u (with respect to the reversed inclusion
order that we are using on Q). Thus, this comma poset is empty and the homotopy
limit is zero as required. �

Proposition 8.10. For vA = {T ⊆ N | T ∩ A 6= ∅} we have θvA ≃ λA.

Proof. Let Y be any object of F(R). We claim that the morphism Yu∅ → YvA is a
localisation with respect to K(A). In order to simplify notation, we replace C by CR

and thus reduce to the case R = 1. As Y is a u-cartesian object, we see that YvA is
the homotopy inverse limit of (u∗Y )|vA. Let P ′ be the poset of nonempty subsets of
A. Note that the inclusion i : P ′ → vA is left adjoint to the map r : vA→ P ′ given
by rT = T ∩A. It follows from Proposition 4.12 that i is homotopy cofinal, so YvA
is also the homotopy inverse limit of (u∗Y )|P ′ . We can now apply Proposition 7.12
(with N replaced by A) to see that this homotopy limit is a K(A)-localisation, as
required.

Now define k : [1] → Q by k(0) = u∅ and k(1) = vA. This gives a morphism
k∗ : CQ → C[1], and the previous paragraph shows that this restricts to give a
morphism F → L (where L is as in Definition 7.1, for localisation with respect to
K(A)). We now have a diagram as follows, which commutes on the nose:

F C

C L

i∗vA

j∗ ≃ k∗

≃

i∗0

≃

i∗1

As i∗0 and j∗ are equivalences, we see that k∗ is also an equivalence. This gives an
isomorphism i∗vA(j

∗)−1 ≃ i∗1(i
∗
0)
−1 of anafunctors, or in other words θvA ≃ λA. �

We now want to prove the following result:

Theorem 8.11. The composite θUθV is naturally isomorphic to θU∗V .

The proof will be given after some preliminaries.
We start with the following result, which will be needed in the proof of The-

orem 8.11, and which also shows that Theorem 8.11 is consistent with Proposi-
tion 7.17.

Lemma 8.12. For A,B ∈ P we have

uA ∗ uB =

{
u(A ∪B) if A∠B

∅ otherwise.

Proof. By definition, we have

uA ∗ uB = {C ∪D | A ⊆ C,B ⊆ D,C∠D} ⊆ u(A ∪B).

If A∠B then we can choose k with a ≤ k for all a ∈ A, and k ≤ b for all b ∈ B.
Then any E ∈ u(A∪B) can be written as C∪D with C = {j ∈ E | j ≤ k} ⊇ A and
D = {j ∈ E | j ≥ k} ⊇ B, so E ∈ uA ∗ uB. We therefore have uA ∗uB = u(A∪B)
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in this case. On the other hand, if it is not true that A∠B then we can choose
a ∈ A and b ∈ B with a > b. If C and D are as in the definition then a ∈ C and
b ∈ D so it is not true that C∠D. From this it follows that uA ∗ uB = ∅. �

Definition 8.13. We say that an object X ∈ C(Q × Q × R) is a double fracture
object if

(a) X is a fracture object relative to Q×R, so it lies in F(Q×R).
(b) The restriction to {u∅} ×Q×R ≃ Q×R lies in F(R).

We write F2(R) for the full subcategory of double fracture objects in C(Q×Q×R).
We also define k, l : Q → Q × Q by k(V ) = (u∅, V ) and l(U) = (U, u∅). This gives
functors k∗, l∗ : F2(R) → C(Q × R). Finally, we define j2 : e → Q × Q to be the
map with image (u∅, u∅).

Proposition 8.14. F2 is a thick subderivator of CQ×Q, and the maps k and l give
equivalences as shown:

F2 F

F C.

k∗

≃

l∗ ≃
j∗2

≃
j∗≃

j∗
≃

Proof. Put E(R) = F(Q × R) ⊂ C(Q × Q × R) (so this is the subcategory of
objects satisfying condition (a)). From Proposition 7.12 we see that E is a thick
subderivator of CQ×Q and that k∗ : E → CQ is an equivalence of derivators. As F
is a thick subderivator of CQ, it follows that the preimage under k∗ of F is a thick
subderivator of E . However, this preimage is just F2, so F2 is a thick subderivator
as claimed. It is also clear from this that k∗ : F2 → F is an equivalence. We have
seen that j∗ : F → C is also an equivalence.

Next, recall again that F is a thick subderivator. Any monotone map f : R→ R′

gives a functor (1 × f)∗ : C(Q × R′) → C(Q × R), and the subderivator property
implies that (1 × f)∗(F(R′)) ⊆ F(R). Take R′ = Q × R and f(r) = (u∅, r);
the conclusion is then that l∗(E(R)) ⊆ F(R), and so l∗(F2(R)) ⊆ F(R). This
means that we have a diagram of functors as claimed, commuting up to natural
isomorphism. As j∗ and k∗ are equivalences, we can chase the diagram to see that
l∗ and i∗(u∅,u∅) are equivalences as well. �

Corollary 8.15. For any U, V ∈ Q, the composite anafunctor θUθV is isomorphic
to the fraction

C
(j∗2 )

−1

−−−−→ F2

i∗(U,V )
−−−−→ C

Proof. Note that if X ∈ F2(R) then X ∈ F(Q×R) and F is a subderivator so we
have i∗VX ∈ F(R). We can thus interpret i∗V as a morphism from F2 to F . It fits
into a diagram as follows, which commutes on the nose:
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C

F2 F

C F C

i∗(U,V )

i∗V

k∗≃
j∗2
≃

i∗U

j∗≃

j∗
≃

i∗V

The bottom edge represents the anafunctor θV , whereas the right hand edge rep-
resents θU . The claim is clear from this. �

Proposition 8.16. The morphism u2∗ : C
P×P → CQ×Q restricts to give an equiva-

lence P2 → F2, with inverse (u2)∗.

Proof. Before starting we warn the reader that in this proof all the restrictions will
be with respect the base derivator C, even if we will apply them to elements we will
prove are in the derivator of (doubly) localizing or fracture objects. This lets us
avoid awkward notation and it is not restricting at all since the above derivators
are subderivators of appropriate shifts of C.

We must show that P2(R) ≃ F2(R) for all R, but we can reduce to the case
R = e by replacing C with CR.

We will factor the map u2 : P × P → Q × Q as u2 = u1 ◦ u2, where u1 =
u × 1: P × Q → Q × Q and u2 = 1 × u : P × P → P × Q. We also use the maps
i∅ : P→ P× P and iu∅ : Q→ Q× Q given by i∅(B) = (∅, B) and iu∅(V ) = (u∅, V ).
These fit in a commutative diagram

Q×Q Q

P× P P

iu∅

u2

i∅

u

Note that an object X ∈ C(P × P) lies in P2(e) iff it satisfies the following
conditions:

(a) X ∈ P(P)
(b) i∗∅X ∈ P(e).

Similarly, by unwinding the definitions a little we see that an object Y ∈ C(Q×Q)
lies in F2(e) iff the following hold:

(c) u∗1Y ∈ P(Q)
(d) Y = (u1)∗(u

∗
1Y )

(e) i∗u∅Y ∈ F(e).

Suppose that Y ∈ F2(e), so that (c), (d) and (e) are satisfied. Put X = (u2)∗Y ∈
C(P × P); we must show that X ∈ P2(e), or in other words that (a) and (b) are
satisfied. Note that X = u∗2(u

∗
1Y ) and u∗1Y ∈ P(Q) by (c) and P is a subderivator

so u∗2(u
∗
1Y ) ∈ P(P) so (a) is satisfied. Moreover, the diagram shows that i∗∅X =

i∗∅(u
2)∗Y = u∗i∗u∅Y , and i∗u∅Y ∈ F(e) by (e), so u∗i∗u∅Y ∈ P(e), so (b) holds.
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Suppose instead that we start with X ∈ P2(e), so that (a) and (b) hold. Put
Y = u2∗X ∈ C(Q × Q); we must then prove (c), (d) and (e). We first note that
Y = (u1)∗(u2)∗X and u1 is an embedding so u∗1(u1)∗

∼= 1 so u∗1Y
∼= (u2)∗X .

Moreover, we have X ∈ P(P) by (a) and P is a subderivator so (u2)∗X ∈ P(Q) and
this proves (c). Condition (d) is also clear from this discussion. For condition (e),
note that the diagram gives a Beck-Chevalley transformation

α : i∗u∅Y = i∗u∅u
2
∗X → u∗i

∗
∅X ∈ C(Q).

We know that i∗∅X ∈ P(e) by (b), and it follows that u∗i
∗
∅X ∈ F(e). For condi-

tion (e) it will therefore suffice to show that α is an isomorphism. For this it will
in turn suffice to check that i∗V α is an isomorphism in C(e) for all V ∈ Q. Put

B = {B ∈ P | V ≤ uB}

C = {(A,B) ∈ P× P | (u∅, V ) ≤ (uA, uB)}.

(These can in fact be simplified to B = V and C = P×V .) The map i∅ restricts to
give a map B→ C. The Kan formula tells us that the domain of i∗V α is holim

←− C
X ,

whereas the codomain is holim
←− B

i∗∅X . The evident projection C→ B is right adjoint

to i∅, so i∅ : B→ C is homotopy cofinal by Proposition 4.12, so α is an isomorphism
as required.

We now have morphisms u2∗ : P2 → F2 and (u2)∗ : F2 → P2 with (u2)∗u2∗ ≃ 1 by
Lemma 3.14. All that is left is to prove that when Y ∈ F2(e), the unit map Y →
u2∗(u

2)∗Y is an isomorphism. Put Z = u∗1Y , so condition (d) gives Y = (u1)∗Z. It
will suffice to show that Z = (u2)∗u

∗
2Z. Note that Z ∈ P(Q) by condition (c), and

P is a subderivator, so (u2)∗u
∗
2Z also lies in P(Q). As i∗∅ : P → C is an equivalence,

it will suffice to check that the map i∗∅Z → i∗∅(u2)∗u
∗
2Z is an isomorphism. For this,

we claim that i∗∅(u2)∗u
∗
2Z = u∗u

∗i∗∅Z. This can be checked using the Kan formula,

or by recalling that i∗∅ : C
P → C is a morphism of derivators and so is compatible

with u∗ and u∗. We must therefore check that the map i∗∅Z → u∗u
∗i∗∅Z is an

isomorphism. Here i∗∅Z = i∗∅u
∗
1Y = i∗u∅Y , and this lies in F(e) by condition (e), so

the claim follows from the definition of F . �

Definition 8.17. Given U, V ∈ Q we put

U ⊠ V = (U × V ) ∩M = {(A,B) ∈ P× P | A ∈ U, B ∈ V, A∠B}.

The definition of U ∗ V can then be written as

U ∗ V = {A ∪B | (A,B) ∈ U ⊠ V }.

Note that U ⊠ V and U ∗ V can be seen as subposets of M and P respectively. We
define σ : U ⊠ V → U ∗ V by σ(A,B) = A∪B, and note that this is a morphism of
posets.

Proposition 8.18. The map σ : U ⊠ V → U ∗ V is homotopy cofinal.

Proof. Consider an element C ∈ U ∗ V and the comma poset

σ/C = {(A,B) ∈ U ⊠ V | A ∪B ⊆ C}.

By Proposition 4.12, it will be enough to show that this is strongly contractible. For
−1 ≤ i ≤ n∗ we write C≤i = {c ∈ C | c ≤ i} and similarly for C≥i. As C ∈ U ∗ V
we can write C = A0 ∪B0 for some A0 ∈ U and B0 ∈ V with A0∠B0. This means
that we can choose k with a ≤ k for all a ∈ A0, and k ≤ b for all b ∈ B0. It follows
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that C≤k ∈ U and C≥k ∈ V . Let i be least such that C≤i ∈ U , and let j be largest
such that C≥j ∈ V . Trivially i ≤ k ≤ j, thus (C≤i, C≥j) ∈ σ/C. Now consider an
arbitrary element (A,B) ∈ σ/C. We define

φ(A,B) = (C≤max(A), C≥min(B)).

We use the conventions max(∅) = −1 and min(∅) = n∗ if necessary; this ensures
that max(A) ≤ min(B) in all cases, so C≤max(A)∠C≥min(B). It is also clear that
A ⊆ C≤max(A), so C≤max(A) ∈ U , and similarly C≥min(B) ∈ V . Thus, φ is a
morphism of posets from σ/C to itself, with φ ≥ 1. On the other hand, if we define
ψ : σ/C → σ/C to be the constant map with value (C≤i, C≥j), we find that ψ ≤ φ.
This gives the required contraction of σ/C. �

Proposition 8.19. Consider the map µ : Q × Q → Q (given by (U, V ) 7→ U ∗ V )
and the induced morphism µ∗ : CQ → CQ×Q. This restricts to give an equivalence
µ∗ : F → F2, making the following diagram commute up to natural isomorphism:

P F

P2 F2

u∗

≃

inc∗ σ
∗ ≃ µ∗≃

u2
∗

≃

Proof. By the usual reduction, it will suffice to work with P(e), F(e) and so on.
Proposition 7.16 gives the left hand equivalence, the top and bottom equivalences
are given by Proposition 8.4 and Proposition 8.16 respectively. We claim that for
X ∈ P(e), there is a natural isomorphism µ∗u∗X ≃ u2∗ inc∗ σ

∗X . Assuming this,
everything else follows easily by chasing the diagram. To prove the claim, we apply
Proposition 4.13 to the square

M P

Q×Q Q,

σ

u2◦inc u

µ

which commutes by Lemma 8.12. The square gives a Beck-Chevalley transform
α : µ∗u∗ → u2∗ inc∗ σ

∗, and the proposition tells us that this is an isomorphism
provided that the map

σ(U,V ) : (U, V )/(u2 ◦ inc)→ µ(U, V )/u

is homotopy cofinal for all U, V ∈ Q. By unwinding the definitions, we see that this
is just the map U⊠V → U ∗V whose cofinality was proved in Proposition 8.18. �

Proof of Theorem 8.11. Using Proposition 8.19 we obtain the following diagram,
which commutes on the nose:

F C

C F2

i∗U∗V

µ∗

≃
j∗≃

j∗2

≃

i∗(U,V )
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One route around the square gives θU∗V by definition, and the other gives θUθV by
Corollary 8.15. �

We conclude with an addendum to Proposition 8.18. We do not currently have
any use for this, but the method of proof is interesting so we have included it.

Proposition 8.20. The map σ : U ⊠ V → U ∗ V is also homotopy final.

The proof will be given after some preliminaries.

Definition 8.21. We also define maps αi, βi : M→ M as follows:

α2i(A,B) = (A<i, A≥i ∪B) α2i+1(A,B) = (A≤i, A≥i ∪B)

β2i(A,B) = (A ∪B<i, B≥i) β2i+1(A,B) = (A ∪B≤i, B≥i)

Here A>i means {a ∈ A | a > i}, and so on. We note that

α2i+2(A,B) = (A≤i, A>i ∪B)

β2i+2(A,B) = (A ∪B≤i, B>i).

Lemma 8.22. All the above maps αi and βi are poset maps, with σαi = σβi =
σγi = σδi = σ. The extreme cases are

α0(A,B) = (∅, A ∪B) α2n∗(A,B) = (A,B)

β0(A,B) = (A,B) β2n∗(A,B) = (A ∪B, ∅).

There are inequalities α2i ≤ α2i+1 ≥ α2i+2 and β2i ≤ β2i+1 ≥ β2i+2.

Proof. Straightforward from the definitions. �

Proof of Proposition 8.20. Consider C ∈ U ∗ V . By Proposition 4.12, it will suffice
to prove that the poset

C/σ = {(A,B) ∈ U ⊠ V | C ⊆ A ∪B}

is strongly contractible. As in the proof of Proposition 8.18, we can choose k
between 0 and n∗ − 1 such that C≤k ∈ U and C≥k ∈ V . We claim that for
all i ≥ 2k + 1, the map αi : M → M preserves C/σ. To see this, suppose that
(A,B) ∈ C/σ, so A ∈ U and B ∈ V and A∠B and A ∪ B ⊇ C. We have
αi(A,B) = (A<u, A≥v ∪ B) for some u, v with u > k. We have seen that αi
preserves M with σαi = σ, so the only point to check is that A≥v ∪ B ∈ V and
A<u ∈ U . The first of these is clear because B ∈ V and V is closed upwards. The
second is also clear if A<u = A. Suppose instead that A<u 6= A, so there exists
a ∈ A with a ≥ u. It follows that for b ∈ B we have b ≥ a ≥ u > k, so C≤k ∩B = ∅.
However, we have C≤k ⊆ C ⊆ A ∪ B by assumption, so C≤k ⊆ A≤k ⊆ A<u. As
C≤k ∈ U and U is closed upwards, we see that A<u ∈ U as required. A symmetrical
argument shows that βi preserves C/σ for i ≤ 2k + 1. As α2i ≤ α2i+1 ≥ α2i+2 we
see that [α2k+1] = [α2n∗ ] = 1 in the strong homotopy category. Similarly, we have
[β2k+1] = [β0] = 1 and thus [α2k+1β2k+1] = 1 in the strong homotopy category.
However, it is not hard to see that

α2k+1β2k+1(A,B) = ((A ∪B)≤k, (A ∪B)≥k) ≥ (C≤k, C≥k),

so α2k+1β2k+1 is equivalent to the constant map with value (C≤k, C≥k). �
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9. Monoidal structures

Definition 9.1. A symmetric monoidal derivator C is as specified in [8, Definition
2.4]. We will not give the full details, and we will use notation corresponding to
stable homotopy theory rather than derived algebra. The key points are as follows:

(a) Each category C(P ) has a symmetric monoidal structure, with unit denoted
by S and the monoidal product of X and Y called the smash product and
denoted by X ∧ Y .

(b) For each u : P → Q, the pullback functor u∗ : C(Q)→ C(P ) preserves smash
products up to isomorphism.

Remark 9.2. It will not typically be true that the natural morphism u!(X ∧
u∗(Y )) → u!(X) ∧ Y is an isomorphism. Similarly, even if there exist function
objects F (X,Y ) with [W,F (X,Y )] ≃ [W ∧ X,Y ], these will typically not satisfy
u∗F (X,Y ) ≃ F (u∗X,u∗Y ). These kinds of properties are valid for derivators
indexed by groups or groupoids, but posets are the other extreme from that.

For the rest of this section, we will assume that C is a symmetric monoidal
derivator. We will also assume that the homology theories K(n) have the property
that K(n)∗(X) = 0 implies K(n)∗(X ∧ Y ) = 0 for all Y . We will just give some
simple results about how the monoidal structure interacts with chromatic fracture.

Proposition 9.3. Suppose that X,Y, Z ∈ F(R). Then the natural map

C(Q×R)(X ∧ Y, Z)→ C(R)(j∗X ∧ j∗Y, j∗Z)

is bijective.

Proof. As Z is u-cartesian, we have

C(Q×R)(X ∧ Y, Z) = C(P×R)(u∗(X ∧ Y ), u∗Z).

Now just apply Lemma 7.8. �

We can use the above result to show that θU is lax monoidal, in the appropriate
sense for anafunctors. In more detail, consider the following diagrams:

C(R)× C(R)
j∗×j∗

←−−−− F(R)×F(R)
∧
−→ C(Q×R)

i∗U−→ C(R)

C(R)× C(R)
∧
−→ C(R)

j∗

←− F(R)
i∗U−→ C(R).

The leftward-pointing maps are equivalences, so we can invert them to get two
different anafunctors C(R)×C(R)→ C(R). Informally, these are (X,Y ) 7→ θU (X)∧
θU (Y ) and (X,Y ) 7→ θU (X ∧ Y ). We need to provide a morphism between these
anafunctors. For this, we introduce the category

P(R) = {(X,Y, Z, u) | X,Y, Z ∈ F(R), u : j∗(X) ∧ j∗(Y )
≃
−→ j∗(Z)},

and the diagram

P(R) F(R)

F(R)×F(R) C(Q×R) C(R)

C(R)× C(R) C(R).

l

r

inc

j∗×j∗

∧ i∗U

j∗

∧
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Here l(X,Y, Z, u) = (X,Y ) and r(X,Y, Z, u) = Z. Using the fact that j∗ : F(R)→
C(R) is an equivalence, we find that l is also an equivalence and the rectangle formed
of the two squares is a homotopy pullback. Because of this, our two anafunctors
can be described as follows: we invert the equivalence P(R)→ C(R)× C(R), then
take one of the two routes around the top square, then apply i∗U . Proposition 9.3
gives a natural map X ∧ Y → Z for all (X,Y, Z, u) ∈ P(R), or in other words, a
natural map between the two composites around the top square. This gives our
required morphism of anafunctors.

Appendix A. Compactly generated triangulated categories

We next want some results about Brown representability and Bousfield local-
isation in triangulated categories and derivators. For the homotopy category of
spectra, all statements are well-known with very classical proofs that rely on hav-
ing an underlying geometric category of spectra [13, Chapter 7]. There are also
proofs of similar results in more axiomatic frameworks, relying only on the the-
ory of triangulated categories. These are typically formulated in the context of
well-generated categories as defined by Neeman [14], and the proofs are somewhat
complex. It is well-known to experts that everything becomes much simpler, and
much closer to the original results for the category of spectra, if we restrict atten-
tion to compactly generated categories. However, it seems surprisingly hard to find
an full account of this in the literature. We therefore provide one here.

Definition A.1. Until further notice, T will be a compactly generated triangulated
category with coproducts. We choose a small skeleton T0 of Tc, and note that
this is necessarily closed under suspensions and desuspensions and cofibres up to
isomorphism. We also choose an infinite cardinal κ0 such that the total number of
morphisms in T0 is at most κ0.

Definition A.2. Let κ be a cardinal that is at least as large as κ0. We define
subcategories T κn ⊆ T as follows. First, we let T κ0 be the subcategory of objects
that can be expressed as a coproduct

⊕
i∈I Ti, where |I| ≤ κ and Ti ∈ Tc for all i.

We then define T κn+1 to be the subcategory of objects Z that can be expressed as
the cofibre of a map from an object in T κ0 to an object in T κn . Finally, we let T κ∞ be
the subcategory of objects X that can be expressed as the telescope of a sequence
Xn with Xn ∈ T κn for all n. Given that Tc is essentially small, we find that T κn is
essentially small for all n ≤ ∞.

We now state a version of the Brown representability theorem:

Theorem A.3. Let K : T op → Ab be a cohomology theory (so K converts all
coproducts to products, and distinguished triangles to exact sequences). Then K is
representable.

The basic method of proof is due to Brown, and similar axiomatic versions have
appeared with various different hypotheses in a number of places such as [13, The-
orem 4.11] and [12, Theorem 2.3.2]. There are also various versions with weaker
hypotheses and much more complicated proofs, such as [14, Chapter 8]. For com-
pleteness we will give a brief account here with our current hypotheses and notation.

Proof. We shall define recursively a sequence of objects

X(0)
i0−→ X(1)

i1−→ X(2)
i2−→ . . .
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and elements u(k) ∈ K(X(k)) such that i∗ku(k + 1) = u(k). We start with

X(0) =
⊕

Z∈T0

⊕

v∈K(Z)

Z.

We take u(0) to be the element of

K(X(0)) =
∏

Z∈T0

∏

v∈K(Z)

K(Z)

whose (Z, v)th component is v. We then set

T (k) = {(Z, f) | Z ∈ T0, f : Z −→ X(k), f∗u(k) = 0}.

We define X(k + 1) by the cofiber sequence
⊕

(Z,f)∈T (k)

Z −→ X(k)
ik−→ X(k + 1).

By applying K to this, we obtain a three-term exact sequence (with arrows re-
versed). It is clear by construction that u(k) maps to zero in the left hand term,
so that there exists u(k + 1) ∈ K(X(k + 1)) with i∗ku(k + 1) = u(k) as required.

We now let X be the telescope of the objects X(k). The cofibration defining this
telescope gives rise to a short exact sequence

0 −→ lim
←−

1
kK(ΣX(k)) −→ K(X) −→ lim

←−
k

K(X(k)) −→ 0.

Using this, we find an element u ∈ K(X) that maps to u(k) in each K(X(k)). As
in Yoneda’s lemma, this induces a natural map τU : [U,X ] −→ K(U). It is easy to
see that τZ is an isomorphism for each Z ∈ T0 (using the fact that these objects
are small). It is also easy to see that

{Z | τΣkZ is an isomorphism for all k}

is a localizing category. It contains T0, so it must be all of T ; thus τ is an isomor-
phism. �

Next, for any localising subcategory U ⊆ T , we can form the Verdier quotient
category T /U ; see [14, Chapter 2] for a detailed treatment. However, we are im-
plicitly assuming everywhere that the hom sets of our categories are small, or in
other words that they are genuine sets rather than proper classes, and this can fail
for T /U . If we can verify in a particular case that T /U has small hom sets, then we
can use Brown representability to prove the existence of localisation functors. This
general line of argument is well-known, going back to Adams and Bousfield. There
are various known approaches to prove that T /U has small hom sets. One possibil-
ity is to assume that T is the homotopy category of a Quillen model category or an
infinity category in the sense of Lurie; but here we prefer to work solely with trian-
gulated categories and derivators. In [13, Chapter 7], Margolis proves some results
of this type for the category of spectra, and it is well-known to experts that his ap-
proach can be generalised to compactly generated triangulated categories. As with
the representability theorem, there are also similar results with weaker hypotheses
and much more complicated proofs, such as [14, Corollary 4.4.3]. However, we have
not been able to find an explicit axiomatic version of the approach of Margolis in
the literature, so we provide one here. We start by spelling out the argument that
small hom sets give localisations.



ITERATED CHROMATIC LOCALISATION 39

Theorem A.4. Suppose that T /U has small hom sets. Then for each X ∈ T there
exists a distinguished triangle

CX
q
−→ X

j
−→ LX

d
−→ ΣCX

with CX ∈ U and LX ∈ U⊥. In fact, q is terminal in U/X and j is initial in
X/U⊥.

Proof. From [14, Chapter 2] we have a triangulation of T /U such that the evident
functor π : C → C/U is exact. From [14, Corollary 3.2.11] we know that T /U
has small coproducts and that π preserves coproducts. It follows that the functor
W 7→ (T /U)(πW, πX) is a cohomology theory on T . By Theorem A.3, we can
choose an object LX ∈ T and a natural isomorphism T (W,LX) ≃ (T /U)(πW, πX)
for all W ∈ T . If W ∈ U then πW = 0 and so T (W,LX) = 0; this proves that
LX ∈ ⊥U . The natural map

T (W,X)
π
−→ (T /U)(πW, πX) ≃ T (W,LX)

corresponds (via the Yoneda Lemma) to a map j : X → LX . We can then fit this
into a distinguished triangle

CX
q
−→ X

j
−→ LX

d
−→ ΣCX.

Next, recall that every element of (T /U)(πW, πLX) can be represented as a fraction

gf−1 for some diagram (W
f
←− V

g
−→ LX) with cof(f) ∈ U . As LX ∈ U⊥ we see

that T (cof(f), LX) = T (Σ cof(f), LX) = 0, and it follows that there is a unique
h : W → LX with hf = g. Using this, we find that the map

π : T (W,LX)→ (T /U)(πW, πLX)

is an isomorphism for allW . By combining this with our isomorphism T (W,LX) ≃
(T /U)(πW, πX), we see that π(j) : πX → πLX is an isomorphism, so πCX = 0
and CX ∈ U as claimed. Now for U ∈ U we have T (U,LX)∗ = 0 hence the

distinguished triangle gives T (U,CX) ≃ T (U,X), which proves that (CX
q
−→ X)

is terminal in U/X . Dually, if Z ∈ U⊥ then T (CX,Z)∗ = 0 so the distinguished

triangle gives T (X,Z) ≃ T (LX,Z), therefore (X
j
−→ LX) is initial in X/U⊥. �

Definition A.5. Let C be a category, and let J be a set of objects. We say that
J is weakly initial if for every X ∈ C there exists an object T ∈ J and a morphism
T → X .

Proposition A.6. Suppose that U is a localising subcategory of T such that for
each X ∈ T , the comma category X/U has a weakly initial set. Then the category
T /U has small hom sets.

Remark A.7. As we will explain in more detail below, this implies that there is
a localisation functor L with kernel U , and thus that the unit map X → LX is
in initial in the comma category X/U⊥ (not X/U). This interplay between X/U⊥

and X/U is a little surprising, but that is how the proof works.

Proof. Fix objects X,Y ∈ T , and let {X
ei−→ Ui}i∈I be a weakly initial family in

X/U . Let Zi
fi
−→ X be the fibre of ei. As the cofiber of fi is in U , every map

g : Zi → Y gives a fraction gf−1i ∈ (T /U)(X,Y ). It will suffice to show that every
element of (T /U)(X,Y ) is of this form. A general element of (T /U)(X,Y ) can be
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represented as qp−1 for some X
p
←− W

q
−→ Y , where the cofibre of p is in U . In

more detail, we have a cofibration W
p
−→ X

m
−→ V with V ∈ U . By the weakly

initial property, we can write m as nei for some i and some n : Ui → V . This gives
mfi = 0, so fi lifts to the fibre of m, so we can choose k : Zi → W with pk = fi.
The cofibres of p and fi are in U , and U is thick, so the octahedral axiom tells us
that the cofibre of k is also in U , so k becomes an isomorphism in T /U . We can
now put g = qk : Zi → Y and we have qp−1 = (qk)(pk)−1 = gf−1i as required. �

Proposition A.8. Let K : T → Ab be a homology theory (so K preserves all
coproducts, and converts distinguished triangles to exact sequences). Put

U = ker(K∗) = {X | K(ΣnX) = 0 for all n ∈ Z}.

Then U is a localising subcategory of T such that X/U has a weakly initial set for
all X, so T /U has small hom sets.

The proof will be given after some preliminary definitions and lemmas.

Definition A.9. We define K∗ : T → Ab∗ by Kn(X) = K(Σ−nX). We then define

K̂∗ : T → Ab∗ to be the left Kan extension of the restriction of K∗ to T0 ⊂ T .

Explicitly, K̂∗(X) is the colimit of the functor T0/X → Ab∗ sending (T
t
−→ X) to

K∗(T ). There is an evident counit map φX : K̂∗(X)→ K∗(X).

Lemma A.10. The counit map φX : K̂∗(X) → K∗(X) is an isomorphism for all
X.

Proof. It is not hard to see that the category T0/X is filtered, and to deduce that

K̂ is again a homology theory. Details are given in [12, Section 2.3], for example.
(In that reference there are officially some additional standing assumptions that
we are not assuming here, such as that T has a symmetric monoidal structure,
but none of those assumptions are used in the relevant proofs.) It follows that the
category {X | φX is iso } is localising and contains T0, so it must be all of T , as
required. �

Definition A.11. We let κ1 be a cardinal such that κ1 ≥ κ0 and κ1 ≥ |K∗(T )| for
all T ∈ T0.

Corollary A.12. Fix a cardinal κ such that κ ≥ κ1. Suppose that X ∈ T with
|K∗(X)| ≤ κ. Then one can choose a fibre sequence

FX
α
−→ X

β
−→ GX

such that

(a) FX ∈ T κ0 .
(b) K∗(α) is surjective, so K∗(β) = 0.
(c) |K∗(GX)| ≤ κ.

(We do not claim that F or G is a functor.)

Proof. Let {bi | i ∈ I} be a homogeneous generating set for K∗(X) with |I| ≤ κ.

As K∗(X) = K̂∗(X), we can choose objects Ti ∈ T0 and maps ti : Ti → X and
elements ai ∈ K∗(Ti) with (ti)∗(ai) = bi. We then take FX =

⊕
i Ti ∈ T

κ
0 , and

let α : FX → X be the map given by ti on the i’th summand. Using K∗(FX) =
⊕

iK∗(Ti) we find thatK∗(α) is surjective as required. We then define X
β
−→ GX to

be the cofibre of α, so K∗(β) = 0 and we have a short exact sequence K∗+1(GX)→
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K∗(FX) → K∗(X). Standard cardinal arithmetic now gives |K∗(FX)| ≤ κ and
then |K∗(GX)| ≤ κ. �

Construction A.13. We have a sequence X
β
−→ GX

β
−→ G2X −→ · · · , and we define

G∞X to be the telescope. For 0 ≤ n ≤ ∞ we define FnX to be the fibre of the
map X → GnX . The octahedral axiom then gives us a cofibration Σ−1FGnX →
FnX → Fn+1X , and one can also check that F∞X is the telescope of the objects
FnX for n <∞.

Proposition A.14. For X and κ as above, the fibre sequence

F∞X
α∞−−→ X → G∞X

satisfies

(a) F∞X ∈ T κ∞.
(b) K∗(α∞) is an isomorphism.
(c) K∗(G

∞X) = 0, or in other words G∞X ∈ U .

Proof. We see by induction that |K∗(G
nX)| ≤ κ for all n. It follows that FGnX ∈

T κ0 , and thus that FnX ∈ T κn−1, therefore F∞X ∈ T κ∞. Also, as the maps

K∗(β) : K∗(G
nX) → K∗(G

n+1X) are zero, we see that K∗(G
∞X) = 0. It fol-

lows that the map K∗(F∞X)→ K∗(X) is an isomorphism as desired. �

Proof of Proposition A.8. It is straightforward to check that U is a localising sub-
category.

Now fix X ∈ T , and choose κ ≥ κ1 such that |K∗(X)| ≤ κ. Let A be the

subcategory of X/U consisting of objects (X
f
−→ U) such that the fibre of f lies in

T κ∞. As T κ∞ is essentially small, we see that A is also essentially small, so we can
choose a small skeleton A0.

Now let (X
g
−→ V ) is an arbitrary object of X/U . Let P

j
−→ X be the fibre of g,

so K∗(j) is an isomorphism, so |K∗(P )| ≤ κ. Proposition A.14 therefore gives us a

map Q = F∞P
q
−→ P such that Q ∈ T κ∞ and K∗(q) is an isomorphism. Let X

f
−→ U

be the cofibre of jq : Q→ X . As K∗(jq) is an isomorphism, we see that U ∈ U and

so (X
f
−→ U) ∈ X/U . As gj = 0 we have g(jq) = 0 so the map g : X → V factors

through f , so there is a morphism from (X
f
−→ U) to (X

g
−→ V ) in X/U . This proves

that A is weakly initial in X/U , and it follows that the skeleton A0 has the same
property. �
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xxiv+390 (French, with English and French summaries). MR2294028

[4] D. C. Cisinski and A. Neeman, Additivity for derivator K-theory, Advances in Mathematics,
vol. 217, 2008.

[5] J. Franke, Uniqueness theorems for certain triangulated categories possessing an Adams spec-

tral sequence, K-theory Preprint Archives, 1996.
[6] M. Groth, Book project on derivators, Vol. 1, under construction.
[7] , Derivators, pointed derivators and stable derivators, Algebraic & Geometric Topol-

ogy, vol. 13, Mathematical Sciences Publisher, 2013.



42 N. P. STRICKLAND AND N. BELLUMAT

[8] , Monoidal derivators and additive derivators, arXiv:1203.5071, 2012.
[9] , Revisiting the canonicity of canonical triangulations, Theory and Applications of

Categories, vol. 33, 2018.
[10] M. Groth, K. Ponto, and M. Shulman, Mayer-Vietoris sequences in stable derivators, Vol. 16,

Homology, Homotopy and Applications, 2014.
[11] Andreas Heider, Two results from Morita theory of stable model categories, available at

arXiv:0707.0707[math.AT].
[12] Mark Hovey, John H Palmieri, and Neil P Strickland, Axiomatic stable homotopy theory,

Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114.
[13] Harvey R. Margolis, Spectra and the Steenrod algebra, North-Holland, 1983.
[14] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton

University Press, Princeton, NJ, 2001. MR1812507
[15] K. Ponto and M. Shulman, Linearity of traces in monoidal categories and bicategories,

arXiv:1406.7854, 2014.
[16] D. A. Pronk, Etendues and stacks as bicategories of fractions, Compositio mathematica,

vol. 102, no.3, 1996.
[17] Daniel Quillen, Higher algebraic K-theory. I, Algebraic k-theory, i: Higher k-theories (proc.

conf., battelle memorial inst., seattle, wash., 1972), 1973, pp. 85–147. Lecture Notes in Math.,
Vol. 341.

[18] E. M. Vitale, Bipullbacks and calculus of fractions, Chaiers de topologie et géométrie
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