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Abstract. Binary solid spherical particle-particle interactions are studied in forced isotropic 
turbulence at ܴ ఒ݁ = 29 and ͳͻ͹ using direct numerical simulation and an immersed boundary 
method. Isotropic turbulence in a periodic box is forced using a linear forcing method to 
maintain statistically stationary turbulence, with inter-particle interaction modelled using 
DLVO interaction forces which include attraction and repulsion due to van der Waals and 
electric double layer potential forces, respectively. Particle collisions are modelled using the 
inelastic hard sphere model with a coefficient of restitution of 0.4. The DLVO parameters are 
chosen to be representative of calcite particles, a simulant of nuclear waste material found in 
storage ponds in the UK. The Reynolds numbers chosen for the boxes are equivalent to 
typical values of ܴ ఒ݁ that are found in the bulk flow and viscous sub-layer regions of a 
turbulent channel flow at ܴ݁ఛ ൌ ͳͺͲ. The techniques described are used to study the 
dynamics of critical Stokes number particles in turbulence by analysing probability density 
functions (PDFs) of collision statistics such as particle displacement and the particles’ relative 
velocities to determine the likelihood of agglomeration. The results indicate that 
agglomeration can occur in both the ܴ ఒ݁ turbulent boxes considered. However, the occurrence 
is much more likely at lower ܴ ఒ݁ values due to the higher dispersion of kinetic energy after 
impact. 

 
 

1 INTRODUCTION 

Particle-laden turbulent flows occur commonly in both natural and industrial 
environments. Understanding of the dynamics of such flows is of interest to many industries. 
One application of relevance to the present work is in the nuclear industry. In the UK, most 
spent nuclear fuel and nuclear waste is stored in ponds or silos, often occurring as a solid-
liquid slurry. Over many years the structural integrity of the ponds has been deteriorating and 
there is an increased need to transport the waste to other safe storage facilities. A key problem 
remains in knowing how best to transport the solid-liquid slurry in the most efficient, 
effective and safe way. The present work addresses this issue with the help of particle-laden 
flow and particle-particle interactions simulations.  

One method of simulating particle-laden flows is to consider particles to be point-like, 
meaning that the particle diameter must be less than the smallest scales found in a turbulent 
flow, namely the Kolmogorov length scale. By using Lagrangian particle tracking (LPT) in 
multi-phase fluids, i.e. through solving the equation of motion for each particle in the flow 
[1], a relatively good understanding of particle dynamics in fluid flows can be obtained. 
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However, this method is inherently problematic since particles in nature are not point-like. 
For example, LPT does not accurately resolve all the forces acting on a particle. To overcome 
this limitation in LPT simulations a more fundamental approach is to use, for example, the 
immersed boundary method (IBM). IBM emerged from Peskin’s work [2] in 1972 on the 
mathematical modelling of the heart. This method allows a particle to have a finite size and 
shape, which in turn allows the realistic capturing of all the forces acting on particles in all 
directions from the fluid. Over the years, authors such as Mark and van Wachem [3], and 
Tseng and Ferziger [4], have worked on the development of this method, with various degrees 
of accuracy. However, to date there has been no previous work implementing IBM with 
resolved DLVO forces, which are the forces that describe the interaction between electrically 
charged particles. 

The novelty of the present work therefore lies in the implementation of IBM using DLVO 
forces to study the dynamics of interacting particles. Particles not only interact with the fluid 
turbulence but also with each other through DLVO forces. The study focuses on using IBM to 
elucidate particle dynamics and the likelihood of particle agglomeration in isotropic turbulent 
boxes at two Reynolds numbers, based on the Taylor microscale, of ܴ ఒ݁ ൌ ʹͻ and ܴ ఒ݁ ൌͳͻ͹. Conclusions are drawn by analysing PDFs of the relative velocity and displacement of 
interacting binary particles for critical Stokes number, ܵݐ௞ ൌ ͳ, particles obtained through 
ensembles of interactions. Such particles are considered since one question of interest in 
particle-laden flows is at what Stokes number (for a given concentration) do particles start to 
affect the flow and turbulence dynamics. Elghobashi [5, 6] has demonstrated that at solid 
volume fractions between 10-6 and 10-3 there exists a critical Stokes number. Below this 
value, particles are considered small and their response time is much smaller than the 
Kolmogorov time scale, with such low inertia particles prone to becoming trapped in vortical 
structures of the flow, increasing the fluid turbulence kinetic energy and its dissipation rate. 
Above the critical Stokes number, particles are considered large and are less likely to respond 
to local fluctuations in the fluid velocity field and, unlike small particles, are ejected from 
vortical structures. The net result is that these large particles attenuate the turbulence kinetic 
energy and its dissipation rate within the fluid flow. 

2 METHODOLOGY 

2.1 Fluid flow simulation 

The spectral-element method code, Nek5000 [7], was used to perform direct numerical 
simulations of single-phase homogeneous, isotropic turbulent boxes at ܴ ఒ݁ ൌ ʹͻ and ܴ ఒ݁ ൌͳͻ͹. The domain of the isotropic box was ʹߨ ൈ ߨʹ ൈ which was resolved using Ͷͺ ߨʹ ൈͶͺ ൈ Ͷͺ elements of 7th order, such that there were ͵͵͸ ൈ ͵͵͸ ൈ ͵͵͸ (or a total of 38M) 
nodes in each box. These elements were distributed uniformly inside each box. The ܴ ఒ݁ of the 
isotropic boxes was chosen to match the Reynolds number that is typical of the bulk flow ሺܴ ఒ݁ ൌ ʹͻሻ and viscous sub-layer ሺܴ ఒ݁ ൌ ͳͻ͹ሻ regions of a turbulent channel flow at shear 
Reynolds number, ܴ݁ఛ ൌ ͳͺͲ.  

The code solves the following governing fluid flows equations, i.e. the mass conservation 
and Navier-Stokes equation: 
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ݐ߲࢛߲ ൅ ࢛ ڄ ࢛׏ ൌ  െ݌׏ ൅ ͳܴ݁ ׏ ڄ ࣎ ൅  (1) ࢌ

׏ ڄ ࢛ ൌ Ͳ (2) 

where ࢛ is the fluid velocity field, ݌ is pressure, ܴ݁ is Reynolds number, ߬ is the viscous 
deviatoric stress tensor and ࢌ is an arbitrary forcing or source term. 

Isotropic turbulence in each box was obtained by implementation of the linear forcing 
method proposed by Lundgren [8], and Rosales and Meneveau [9], who demonstrated that 
linear forcing proportional to the velocity in physical space gives the same result as forcing in 
spectral space, and that linearly forced boxes converge to a statistically stationary state that 
depends only on domain size and Reynolds number. 

It was demonstrated by Rosales and Meneveau [9] that ࢌ ൌ ܣ Ԣ, where࢛ܣ ൌ ߳Ȁ͵ݑ௥௠௦ଶ , ߳ is 
the dissipation rate and ݑ௥௠௦  is the root-mean-square (rms) of velocity fluctuations in any 
direction since isotropy is ensured. This term is a force (in physical space) with an appropriate 
parameter ܣ necessary to obtain statistically stationary isotropic turbulence. Energy is injected 
at a variable rate of ܣ until steady state has been achieved. After that, energy is injected at a 
constant rate of ܣ since both ߳ and ݑ௥௠௦ will have reached their stationary values. The initial 
conditions used to initiate the simulations were: 

ݑ   ൌ cosሺݕሻ ൅ sin ሺݖሻ              ݒ ൌ sinሺݕሻ ൅ cos ሺݖሻ              ݓ ൌ cosሺݔሻ ൅ sin ሺݕሻ 
(3) 

 
The parameters used to obtain the isotropic boxes are presented below in Table 1. 

 
Table 1: Values of the parameter ܣ in ࢌ ൌ  .Ԣ used to obtain stationary isotropic turbulence࢛ܣ

 ܴ ఒ݁ ʹͻ ͳͻ͹ ܣ ͲǤͲ͸͸͹ ͲǤͳ͸͸͹ 

2.2 Immersed boundary method 

The immersed boundary method represented each particle using an icosphere with 320 
triangular faces, as illustrated in Fig. 1. The centroid of each triangular face on the icosphere 
has associated with it a position and a velocity. The Dirichlet boundary condition at the 
surface of the icosphere was enforced such that ࢛ி ൌ ௣࢛ ൅ ࣓௣ ൈ  ,௙ on each particle face࢘
where ࢛௣ is the particle linear velocity, ࣓௣ is the particle angular velocity and ࢘௙ is the 
position vector from the centre of the particle to the centroid of a face. 

To ensure the immersed boundary condition was met, a second-order accurate ghost-cell 
method was employed [4]. Every time-step, each cell in the domain was identified as external 
fluid, an internal ghost-cell or internal fictitious fluid. The ghost cell was defined such that the 
immersed boundary intersected the cell and contained the cell midpoint. Internal and external 
fluid cells are those either inside or outside of the immersed boundary, respectively. The 
velocities at the ghost-cells were maintained each time-step such that, through trilinear 
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interpolation across the three closest neighbouring cells, the fluid velocity on the boundary 
was exactly the local face velocity [10]. 

 
 

Figure 1: Icosphere mesh with 320 triangular faces. 

The advection and rotation of each particle was derived from the hydrodynamic forces 
acting on an icosphere, as defined in Eq. (4) [10]: 

௝ܨ  ൌ  ෍൫െܲ௙ߜ௜௝ ൅ ߬௜௝௙ ൯ ௝݊௙݀ܵ௙ே೑
௙ୀଵ ǡ (4) 

 
where the ܨ௝ is the total force acting on a particle, ݆ is the current face, ௙ܰ is the total number 
of faces in a particle, ܲ௙ is the pressure interpolated at the centroid of the face, ߬௜௝ is the 

viscous stress tensor, ௝݊௙ is the unit normal vector to the face ݂ and ݀ܵ௙ is the surface area of 
face ݂. 

The orientation of a particle was tracked using quaternions. A unit quaternion describes the 
rotation of ࢜ by angle ߠ about the axis in the direction of ࢛ by ࢜ᇱ ൌ ଴ǡݒሺݍ ଵ, whereିݍ࢜ݍ ሻࢗ ൌܿݏ݋ሺߠȀʹሻ ൅ ࢛ and ,࢛Ȁʹሻߠሺ݊݅ݏ ൌ ଵ݅ݑ ൅ ଶ݆ݑ ൅  is the angle of rotation ߠ ,ଷ݇ is a unit vectorݑ
and ࢜ᇱ ൌ ଵିݍ࢜ݍ ൌ ࢜ ൅ ૛ݍ଴ሺ࢜ ൈ ሻࢗ ൅ ʹሺ࢜ ൈ ሺ࢜ ൈ  :is described by the differential equation ࡽ ሻሻ. The time evolution of the quaternionࢗ

 

ݐ݀ࡽ݀ ൌ
ۈۉ
ۈۈۈۈ
ݐଷ݀ݍ݀ݐଶ݀ݍ݀ݐଵ݀ݍ݀ݐ଴݀ݍ݀ۇ ۋی

ۋۋۋۋ
ۊ ൌ ൮ ݍ଴     െ ଵݍ     െ ଶݍ     െ ଴ݍ         ଵݍଷݍ     െ ଷݍଵݍ         ଴ݍ        ଷݍ        ଶݍଶݍ      ଷݍ      െ ଴ ൲ݍ        ଵݍ       ଶݍ ൮ Ͳ߱௫ᇱ߱௬ᇲ߱௭ᇱ ൲ǡ (5) 

 
where ࣓ ൌ ሺ߱௫ᇲ ǡ ߱௬ᇲ ǡ ߱௭ᇲሻ is the angular velocity vector in the particle co-moving frame. The 
unit quaternions were normalised to one after each time step to minimise the error due to 
floating-point precision issues. The corresponding governing equation for angular 
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acceleration can be expressed as: 
 ࡵ 

ݐ݀ ࣓݀ ൌ ࢀ ൌ ෍ ࢏࢘ ൈ ௜࢏ࡲ  (6) 

 
where ࣓ is the angular velocity of the sphere, ࢀ is the torque, ࢏࢘ is the distance vector to the 
centroid of the face from the centre of a particle, ࢏ࡲ is the hydrodynamic force and ࡵ is the 
moment of inertia tensor of a solid sphere, given as: 
 

ࡵ ൌ ቌʹȀͷ݉ݎଶ Ͳ ͲͲ ʹȀͷ݉ݎଶ ͲͲ Ͳ ʹȀͷ݉ݎଶቍǡ (7) 

 
where ݉ is the mass of the sphere and ݎ is its radius. 

Once the particle was advected, all pairs of particles were checked for potential collisions. 
The condition required for collision is the inter-surfacial distance is less than zero. The 
particles collided inelastically using a hard-sphere approach with the coefficient of restitution 
of ͲǤͶ during the time of collision. 

Particle-particle interaction was modelled using DLVO theory developed by Derjaguin and 
Landau [11], and Verwey and Overbeek [12]. It was proposed that the interaction between 
two electrically charged spheres can be expressed as: 

ࢌ  ൌ െ ߢ݈݀݁  ݁ି఑ௗ೛ ൅  ௣͸ ݀௣ଶ (8)ݎ ܣ  

 
where the first term on the right hand side is due to the electric double layer, and the second is 
due to van der Waals potential, with ݈݁݀ ؠ ͸Ͷ ݎߨ௣݊ ݇஻ ிܶߛଶ for the electric double layer. ܣ is 

the Hamaker constant, ݊ is the number density of electrolyte ions, ߛ ൌ tanh ቀ ௭ ௘ టସ ௞ಳ்ಷቁ , ߰ is the 

reduced surface potential, ߢ is the inverse Debye length, ிܶ is the fluid temperature, ݀௣ is the 
inter-surface distance and ݇஻ is the Boltzmann constant. 

The parameters associated with calcite particles in water are presented in Table 2. 
 

Table 2: Parameters for calcite particles. 
 

Parameter ݎ௣ ݁ ߩ௣Ȁߩி ߢ ߠ ݊ ܣ ிܶ 
Value ͷͲ݉ߤ ͲǤͶ ʹǤ͹ͳ ʹʹǤ͵ ܬݖ ͳͲିଷܯ ʹͲܸ݉ ͲǤͳȀ݊݉ ͵ͲͲܭ 

3 RESULTS AND DISCUSSION 

Validation of the IBM used in the simulations was performed in [10], reported here for 
completeness. It was based on comparing the simulated drag force on an icosphere with 20, 
80 and 320 faces against empirical values [13]. The results of those simulations are presented 
in Fig. 2. The results show that as the number of faces on the icosphere is increased, the 
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simulated drag force increases in accuracy until at 320 faces the predicted and empirical 
values are in close accord. In the present work, 320 faces represented a good compromise 
between accuracy and computational cost. 

 
Figure 2: Simulated drag coefficient for icosphere face subdivisions, Nf, of 20 ሺ൅ሻ, 80 ሺൈሻ and ͵ʹͲ ሺ฀ሻ compared against empirical values (). 

The results presented in Fig. 3 for the isotropic boxes at ܴ ఒ݁ ൌ ʹͻ and ܴ ఒ݁ ൌ ͳͻ͹ were 
validated against the predictions of Rosales and Meneveau [9]. The figure shows the time 
evolution of the total rms of the fluid velocity fluctuation field. The predictions show that the 
rms values ultimately reach statistically stationary values of 0.244 and 0.581 for boxes 
representative of the bulk flow and viscous sub-layer regions, respectively, with these values 
being in good agreement with those of Rosales and Meneveau [9]. 

 

Figure 3: Time evolution of rms of fluid velocity fluctuations in the isotropic boxes ( ܴ ఒ݁ ൌ ͳͻ͹ and --- ܴ ఒ݁ ൌ ʹͻ). 

Figure 4 shows the variation of ܴ ఒ݁ across a steady ܴ݁ఛ ൌ ͳͺͲ turbulent channel flow in 
the wall normal direction. As we move from the bulk flow region (ݕା ൌ ͵͸ to ͳͺͲ) to the 
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viscous sub-layer region (ݕା ൌ Ͳ to ݕା ൌ ͷ) ܴ ఒ݁ increases exponentially as the viscous 
region is approached, and then drops to zero at the wall. If ܴ ఒ݁ is used as a measure of 
turbulence, then the various regions in a turbulent channel flow can be simulated as an 
isotropic turbulent box by generating the required level of ܴ ఒ݁ in the box. By studying the 
particle dynamics using IBM in such isotropic boxes, the characteristic features of particle 
interactions, collisions and agglomeration in particular regions of the turbulent channel flow 
can be examined in detail. 

 
Figure 4: Variation of ܴ ఒ݁ in the wall normal direction of a ܴ݁ఛ ൌ ͳͺͲ turbulent channel flow. 

Figures 5 and 6 show PDFs of the particle collision velocity and collision angles obtained 
from LPT simulations of a ܴ݁ఛ ൌ ͳͺͲ turbulent channel flow at ܵݐ௞ ൌ ͳ for the bulk flow 
and viscous sub-layer regions [14]. The most probable velocities and angles from these results 
were used as initial conditions for the isotropic box simulations to investigate the interaction 
of particles in those regions. In the two regions, the most probable collision velocity is 
dominated by the streamwise direction, with the corresponding collision angles indicating that 
collisions in the bulk flow region are generally at very low angles, almost head-on, whilst 
those in the viscous sub-layer show a wider distribution of angles.  

 
Figure 5: PDFs of streamwise particle collision velocity (left) and collision angle (right), both in viscous 
sub-layer and bulk flow regions of ܴ݁ఛ ൌ ͳͺͲ turbulent channel flow ( ܴ ఒ݁ ൌ ͳͻ͹ and --- ܴ ఒ݁ ൌ ʹͻ). 
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 . 

 

 
Figure 6: PDFs of wall-normal (left) and spanwise (right) particle collision velocities, both in viscous sub-

layer and bulk flow regions of ܴ݁ఛ ൌ ͳͺͲ turbulent channel flow ( ܴ ఒ݁ ൌ ͳͻ͹ and --- ܴ ఒ݁ ൌ ʹͻ). 

 

Figure 7: PDFs of particle displacement (left) and particle relative velocity (right) in the two isotropic 
turbulence boxes ( ܴ ఒ݁ ൌ ͳͻ͹ and --- ܴ ఒ݁ ൌ ʹͻ). 

Figure 7 shows PDFs of the magnitude of particle displacement and particle relative 
velocity in each isotropic box, at ܴ ఒ݁ ൌ ͳͻ͹ (representative of the viscous sub-layer) and ܴ ఒ݁ ൌ ʹͻ (representative of the bulk flow). The PDFs were obtained by recording the 
displacement and the relative velocity after each time-step of the simulations, until the 2000th 
time-step had been reached. After this time, the whole process was restarted by randomly 
distributing the particles in the box whilst keeping their initial inter-surfacial displacement 
fixed at ʹ݀௣. 

To analyse the distributions given in Fig. 7, first we consider the displacement of the 
particles. In the figure, ݀ݔ ൌ ʹ represents the initial displacement and dx = 0 represents 
contact of the particles and their possible agglomeration. The two PDFs are similar in terms of 
their profile in that a peak at ݀ݔ ൌ Ͳ is observed, indicating interactions which resulted in 
agglomeration. The larger peak for the viscous sub-layer region suggests that interactions at ܴ ఒ݁ ൌ ͳͻ͹ resulted in the particles spending more time in an agglomerated state. In both 
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cases, the PDF drops exponentially as the inter-surfacial distance is increased from ݀ݔ ൌ Ͳ. 
At ݀ݔ ͲǤʹͷ (viscous sub-layer) and ݀ݔ ͲǤͷ (bulk flow) each PDF exhibits a minor 
secondary peak, which is the result of bounces to these separation distances. It is clear that the 
particles in the bulk flow region bounce almost twice as far as those in the viscous sub-layer. 
Over the range ͲǤͺ ൑ ݔ݀ ൑ ʹǤͲ the results are almost identical in both case since this is the 
range over which the particles initially travel as they approach one another. This indicates that 
during this time turbulence does not significantly affect the relative distance between the 
particles, which in turn means that all the effects due to turbulence over this period are on the 
translational and angular motion of the particles. Overall, the results given in this figure 
demonstrate that the particles in the viscous sub-layer box lose more kinetic energy due to 
collisions than those in the bulk flow box, which can be attributed to the hydrodynamic forces 
acting on the particles caused by the turbulence. This indicates that particles in the viscous 
region at this Stokes number are more likely to agglomerate than particles in the bulk flow 
region as they lose more energy after any collision which increases the impact of local 
hydrodynamic forces. 

Considering the relative velocity PDFs, in Fig. 7 ݀ݒ ൌ ʹǤͷ represents the initial relative 
velocity of the particles and ݀ݒ ൌ Ͳ indicates that the particles have agglomerated (such that 
they travel with the same velocity). Despite initiating the particles with the same initial 
relative velocity of 2.5 in both the viscous sub-layer and bulk flow boxes, the particles in the 
former case lose a significant amount of their velocity, 20%, equivalent to a loss 36% of 
their kinetic energy, in the first few time-steps due to turbulence interactions. As when 
considering particle displacement, over the range ͲǤͲ ൑ ݒ݀ ൑ ͳǤͳ collisions, bouncing and 
agglomeration of the two particles occur. The difference due to their initial approach velocity 
can be seen in the range ͲǤʹ ൑ ݒ݀ ൑ ͳǤͳ. In that range, as the particles bounce off one 
another, the particles in the bulk flow box tend to move faster than those in the viscous sub-
layer box, thereby reducing the chance of agglomeration due to their retained speed. 

From the analysis of the distribution of both the relative displacement and velocity of the 
interacting particles, it is therefore clear that agglomeration of particles can occur in both the 
viscous sub-layer (ܴ ఒ݁ ൌ ͳͻ͹) and bulk flow (ܴ ఒ݁ ൌ ʹͻ) boxes. However, agglomeration is 
much more likely in the viscous sub-layer due to significant reductions in the particles’ 
kinetic energy post-collision, in this case a reduction of 36%. 

4 CONCLUSIONS 

Direct numerical simulations of boxes of isotropic turbulence were performed using the 
Nek5000 code based on a 7th-order spectral element method, from which good agreement 
with the results from Rosales and Meneveau [9] was established. An immersed boundary 
method using icospheres and inelastic hard sphere collisions was used to describe inter-
particle interactions, with inter-particle forces modelled using DLVO theory. Validation of the 
IBM was performed by comparing the calculated drag force on icosphere particles with 20, 80 
and 320 triangular faces with empirical values, with good agreement found for the more 
resolved icosphere case.  

Two regions of a turbulent channel flow were represented using these isotropic boxes at 
differing values of ܴ ఒ݁, representative of those occurring in the viscous sub-layer and bulk 
flow regions of the channel. PDFs of inter-particle interactions, in this case the particle 
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relative displacement and velocity, were analysed. In both the bulk flow and viscous sub-layer 
cases, agglomeration was found to occur, but the chances of agglomeration were increased in 
the viscous sub-layer box. The results indicate that particles in the viscous box lose 
significantly more kinetic energy after particle impact than in the bulk flow case. 
Furthermore, in the first few time-steps of a simulation, particles in viscous sub-layer box lost 
20% of their initial velocity, which translates into a loss of 36% of their kinetic energy 
which in turn encourages agglomeration of the particles. 

Ultimately, this work aims to use simulations of the type described to assess the use of 
adjustable system parameters to encourage or discourage particle agglomeration in turbulent 
flows. Through such behavioural modification, it may be possible to accelerate nuclear waste 
removal and treatment processes in addition to reducing their cost.  Future work will also 
extend these simulations and analysis to cover more realistic non-spherical particles such as 
prolate and oblate ellipsoids, representative of the needle- and disc-like particles encountered 
in practice.  
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