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Abstract

We use a computational modelling approach to explore whether it is possible to infer a

solid tumour’s cellular proliferative hierarchy under the assumptions of the cancer stem

cell hypothesis and neutral evolution. We focus on inferring the symmetric division

probability for cancer stem cells, since this is believed to be a key driver of progression and

therapeutic response. Motivated by the advent of multi-region sampling and resulting

opportunities to infer tumour evolutionary history, we focus on a suite of statistical

measures of the phylogenetic trees resulting from the tumour’s evolution in different

regions of parameter space and through time. We find strikingly different patterns in these

measures for changing symmetric division probability which hinge on the inclusion of

spatial constraints. These results give us a starting point to begin stratifying tumours by

this biological parameter and also generate a number of actionable clinical and biological

hypotheses including changes during therapy, and through tumour evolution.

http://mc.manuscriptcentral.com/systbiol

© The Author(s) 2019. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
7
0
/5

6
0
9
1
2
9
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 1

3
 N

o
v
e
m

b
e
r 2

0
1
9



2 SCOTT ET AL.
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The cancer stem cell hypothesis (CSCH) posits that tumours are composed of a

hierarchy of cells with varying proliferative capacities. Under this hypothesis, a

subpopulation of ‘cancer stem cells’, also termed tumour initiating cells (TICs), are able to

self-renew through symmetric division and also to differentiate into tumour cells

resembling transit amplifying cells (TACs) through asymmetric division (Fig 1A), giving

rise to the entire diversity of cells within a tumour (Fialkow et al. 1967). The CSCH

provides a conceptual framework by which to understand many different aspects of cancer

progression, including: the occurrence of functional heterogeneity despite genetically

identical states (Magee et al. 2012, Sottoriva et al. 2010, Vlashi et al. 2011); resistance to

chemotherapy (Chen et al. 2012, Werner et al. 2016) and radiotherapy (Bao et al. 2006,

Dhawan et al. 2014, Diehn et al. 2009); recurrence (Dingli & Michor 2006); and

metastasis (Pang et al. 2010). Despite its popularity, the CSCH has been the subject of

continual debate and modification in order to maintain compatibility with experimental

observations (Gilbertson & Graham 2012, O’Connor et al. 2014, Scott et al. 2019).

While the specifics of the CSCH are still a matter of debate, the clinical relevance of

those cells with traits ascribed to TICs is clear. However, our ability to measure their

dynamics in a clinical setting remains lacking. In vivo measurement efforts are limited to

carefully conducted live imaging in genetically engineered mice (Ritsma et al. 2014), or

genetic labelling and subsequent lineage tracing (Driessens et al. 2012). Although in vitro

systems are better suited to the extraction of these parameters, to date little has been

done to quantify them, as technically demanding single-cell lineage tracing (Lathia et al.

2011) is required. These experimental difficulties speak to the need for more theoretical

work in this area, especially to propose metrics for quantifying proliferative parameters

such as TIC symmetric division probability (Fig 1A) from clinical data. This is of

particular importance as there is mounting evidence for the effect of proliferative hierarchy

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 3

on response to radiotherapy (Tamura et al. 2010) and chemotherapy (Chen et al. 2012),

and microenvironmental factors such as hypoxia (Conley et al. 2012, Dhawan, Tonekaboni,

Taube, Hu, Sphyris, Mani & Kohandel 2016), acidosis (Hjelmeland et al. 2011) growth

factors (Doetsch et al. 2002), and even stromal cell co-operation or co-option (Liu et al.

2011, Vermeulen et al. 2010) have been shown to perturb this system. In summary, TIC

symmetric division rate and somatic mutation rate are both specific parameters of interest

in cancer biology, and these form the focus of the present modelling.

Several published mathematical models, using different formalisms and considering

different aspects of heterogeneity, have predicted that the evolution of a solid tumour

should depend strongly on whether or not it exhibits a proliferative hierarchy, and on the

parameters of such a hierarchy. These models have included spatial proliferation

constraints, microenvironmental heterogeneity and selective pressures, and the noted

differences include shape, clonal heterogeneity, rate of evolution and growth dynamics.

Werner et al. (2011) specifically studied the differences in bulk tumour behaviour between

tumours arising from mutant TICs and TACs in a non-spatial context. In a spatial

context, the work of Sottoriva et al. (2010), Sottoriva & Tavaré (2011), Enderling et al.

(2009) and Morton et al. (2011) represent the first papers where it was shown that the

parameters governing TAC dynamics can constrain tumour growth, and also to show that

TIC-driven tumours have significantly different spatial growth patterns: specifically, that

they exhibit ‘patchy’ growth. In none of these models, except Sprouffske et al. (2013), in

which the main question centred on TAC numbers, were these differences studied across

TIC symmetric division probabilities, which is a key parameter governing the hierarchy,

and one that is exceedingly difficult to measure or perturb in vitro or in vivo.

To describe the evolutionary relationship between cells in a multicellular tissue, we

require a phylogenetic approach. While the use of objective, genetic information to infer

phylogenetic trees has a long history in evolutionary biology, its application to cancer

evolution is much more recent, giving rise in the last decade to a subfield recently dubbed

http://mc.manuscriptcentral.com/systbiol
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4 SCOTT ET AL.

‘PhyloOncology’ by Somarelli et al. (2016). Using phylogenies reconstructed from spatially

separated biopsies and informatic algorithms, many aspects of tumour evolution have

begun to be elucidated (Gerlinger et al. 2014), including the genetic heterogeneity present

within a primary tumour (Sottoriva et al. 2013), the origin of individual metastatic

tumours within the primary site (Gerlinger et al. 2012, Naxerova & Jain 2015), the earliest

events driving progression and metastasis (Zhao et al. 2016), and the effect of

chemotherapy on primary and metastatic sites (Faltas et al. 2016, Murugaesu et al. 2015).

In addition to these sorts of questions, there are precedents in other fields for using

phylogenetic information, integrated with population dynamics to infer other underlying

biological processes – a technique termed phylodynamics (Grenfell et al. 2004). For

example, Leventhal et al. (2012) proposed that the phylogenetic tree contains a

“fingerprint” that can be used to determine the evolutionary process driving the

population in question. Modelling the spread of HIV within a contact network, the authors

investigated whether the network structure could be inferred from the resulting disease

phylogenies. To address this question, the authors simulated a range of epidemics on

several families of random graphs and measured the resulting phylogenetic trees, finding

that certain tree-based measures could discriminate between the qualitatively different

families of random graph structures considered.

We may expect cancer cell phylogenies to look quite different to viral phylogenies.

Nevertheless, these precedents motivate us to ask whether a similar approach could be

used to discriminate between in silico tumours with different symmetric division rates. To

test this hypothesis, here we study the effect of TIC symmetric division probability on

tumour evolution using a computational modelling approach. We focus on observed

patterns in reconstructed phylogenetic trees across a range of symmetric division

probabilities. The estimation of this proliferative parameter from clinical data could help

improve our understanding of the effect of therapies on tumour growth dynamics, and our

ability to stratify tumours for consideration of different therapies. In this way, we seek to

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 5

provide translatable measures to aid in understanding tumour biology: to use

mathematical modelling to ‘see the invisible’.

The remainder of this paper is structured as follows. We first present a spatial

stochastic model of tumour growth under a proliferative hierarchy with neutral mutations,

which we embed on a two-dimensional lattice to enable the study of the effect of spatial

constraints. Next, we develop an algorithm to reconstruct the branched phylogenetic

structure from each realization of our tumour growth model. We apply a range of

statistical measures of phylogenetic tree shape to simulation outputs for comparison. We

explore the temporal dynamics of these measures over the course of tumour growth to

assess whether they are robust to tumour size changes, and then to changes in mutation

frequency. Finally, we discuss the possible clinical utility of these measures.

Materials and Methods

Model development

Here, we describe the development of a two-dimensional, lattice-embedded cellular

automaton (CA) model of tumour growth with contact inhibition growing under neutral

evolution and a proliferative hierarchy. We also develop a non-spatial companion model in

order to assess the role of spatial constraints on the evolutionary process.

Proliferative hierarchy For both models, we consider a proliferative hierarchy

comprising two cell types, TICs and TACs. We assume that each TIC divides

symmetrically with probability α, creating two TICs, and asymmetrically with probability

1− α, creating one TIC and one TAC. For simplicity, we assume that α takes a constant

value for all cells in a given simulation, and is not dependent on the mutation rate (see

below). Note that in practice, microenvironmental parameters such as nutrient

deprivation (Flavahan et al. 2013), acidity (Hjelmeland et al. 2011) and

hypoxia (Heddleston et al. 2009, Li et al. 2009), as well as accumulated mutations such as

http://mc.manuscriptcentral.com/systbiol
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6 SCOTT ET AL.

those commonly observed in colorectal cancers (Baker et al. 2014), are all known to be

capable of affecting symmetric division probability among cells in a tumour. As it has been

shown theoretically that the overall population dynamics of TIC-driven tumours is

equivalent with or without TIC symmetric differentiation (Rodriguez-Brenes et al. 2011)

(when a TIC divides to create two TACs), and as the lineage extinction possible in this

case would significantly complicate our phylogenetic analysis, we make the simplifying

assumption that there is no symmetric differentiation. We do not rule out that the

addition of symmetric differentiation could affect phylodynamics, but leave that question

for further study.

We assume that every TAC division is symmetric, creating two TACs, but only

allow this to progress for β rounds of division, after which the TAC will die if chosen to

divide again. Here β represents the replicative potential of TACs, and is posited to

represent telomere length (Poleszczuk et al. 2014). Previous theoretical work has shown

that tumour growth kinetics in spatially constrained geometries are strongly affected by

the value of β (Morton et al. 2011). In particular, if β > 5, then simulated tumours

experience unrealistically lengthy growth delays. Therefore we follow a previously used

assumption (Sottoriva et al. 2010, Sprouffske et al. 2013) and fix β = 4. This mode of

growth and differentiation is illustrated in Fig 1A. For simplicity, we neglect cell death,

which could disrupt growth patterns. Indeed, Williams et al. (2016) have shown that the

overall patterns of mutations, as measured by variant allele frequencies, is changed. The

addition of cell death in this model is therefore a natural avenue for future work.

Neutral evolution To understand the effects of neutral evolution on tumours with

differing proliferative hierarchies, we extend our model of tumour growth under a

proliferative hierarchy to include random mutations. At each cell division, there is a

possibility that one or more mutations occur. To determine the number of mutations

accumulated by a given daughter cell, we independently draw a random number from a

Poisson distribution with expectation λ. We assume for simplicity that every mutation

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 7

Fig. 1.

arising in our model is unique. This ‘infinite sites’ assumption is usually ascribed

to Kimura (1969).

For simplicity, we assume that mutations confer no advantage, disadvantage or any

other phenotypic change and therefore serve only as a method by which to track clonal

lineages (i.e. they are neutral (Williams et al. 2016)). This assumption could in principle

be loosened to allow for positive selection (Bignell et al. 2010), or a balance of positive and

negative selection (McFarland et al. 2013). A schematic of this model of evolution, and

labelling scheme, is shown in Fig 1B.

For computational efficiency, instead of storing a genome of length n (G ∈ {0, 1}n),

we record a unique integer flag only for the most recent mutation accumulated within a

cell, which is passed down to its progeny, unless a mutation occurs, in which case a new

flag (the next integer) is assigned. We also record each mutation event in the form of an

ordered pair (parent flag, child flag), so that the complete genome, G, can be

http://mc.manuscriptcentral.com/systbiol
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8 SCOTT ET AL.

reconstructed for future use, and the length will be only as long as is needed to represent

the changes which occurred during the simulation. As they are the only cells capable of

forming tumours on their own, and infinite replication, we follow previous works in

considering new mutations to accrue only in TICs (Sottoriva et al. 2010, Sottoriva &

Tavaré 2011, Sprouffske et al. 2013, Poleszczuk et al. 2015). A natural extension for human

cancer would be to consider instead sequences formed of DNA characters ATCG.

Non-spatial model implementation

To implement a first version of our hierarchical model with neutral evolution, we

consider the case in which there are no spatial constraints – which could be a sensible

model for liquid tumours like leukemias which are well mixed in the blood. We initialize

our simulation with a single TIC. We then implement discrete updates, which we will term

‘time steps’. As we are not studying temporal dynamics here, we do not prescribe any

proper dimension to this time. At each discrete time step we choose a cell uniformly at

random from the population to either divide and possibly mutate, or die. Our simulation is

considered complete when the total population of cells reaches a prescribed number.

If the cell is a TIC, then we first draw a random number, r, from U[0, 1] and

compare it to the probability of symmetric division, α. If r < α, then the cell divides

symmetrically, and we draw the number of new mutations accumulated in each daughter

independently from Poisson(λ). A new TIC daughter is then generated and given a

mutational ‘identity’ which is the mathematical sum of the parent cell’s identity and the

number of new mutations. The parental cell is also updated by changing its identity based

on the number of new mutations it accrues, if any. If the cell is not determined to divide

symmetrically, then it divides asymmetrically and a TAC daughter is created with age 0

and the parental TIC is updated for new mutations as above, see Fig 1.

If the chosen cell is instead a TAC, then we first check that its age is less than the

allowed TAC age, β. If the age is equal to the allowed TAC age, then the cell dies. If the age

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 9

is less than the allowed TAC age, then the cell ages and divides, and a new daughter with

the same identification is created, whereupon the loop continues (see Fig 1 for schematic).

Spatial model implementation

As we are interested in the effect of the proliferative hierarchy on the neutral

evolutionary process in solid, spatially constrained tumours, we embed our cell-based

model in a two-dimensional square lattice. While recent work has shown some qualitative

differences in vascularised CA models between two and three dimensions, using a

two-dimensional lattice for unvascularised tissue is a common simplification (Anderson &

Chaplain 1998, Alarcón et al. 2006, Gerlee & Anderson 2008, Scott et al. 2016) that allows

spatial constraints to be studied in a computationally tractable manner. In addition to the

above description of cell proliferation, we consider cell proliferation to be modulated by

contact inhibition (Anderson 2005). A cell is allowed to divide only if at least one of the

eight adjacent lattice sites (north, south, east, west, and diagonal neighbours) is

unoccupied; if this is not the case, then we consider the cell to be in a quiescent state that

may be exited when space becomes available. At each time step, each ‘cell’ has an

opportunity to divide given that it has space to do so. Cells are chosen uniformly at

random for updates from the entire population to avoid order bias. Apart from these

spatial effects, the model is otherwise identical to the non-spatial model presented earlier.

Cell-type specific rules If space is available, and the cell is a TIC, then the type of

division is determined by choosing a uniform random number, r, from [0, 1]. If r < α, then

the TIC divides symmetrically, creating another TIC that is placed uniformly at random in

one of the free neighbouring lattice sites. The parent and daughter TICs will independently

acquire a random number of new mutations, as described above. If r > α, then the TIC

divides asymmetrically, creating a TAC that is placed uniformly at random in one of the

free neighbouring lattice sites. The daughter TAC is created with the same mutation

http://mc.manuscriptcentral.com/systbiol
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10 SCOTT ET AL.

identity (ID) as the parent, and age = 0, while the parent TIC will independently acquire

a random number of new mutations, as described above.

If the chosen cell is instead a TAC, then the check after available space is a check of

the cell’s proliferative age, which is the number of divisions as a TAC. If the TAC age is

equal to the replicative potential, β, then the TAC dies, at which point it is removed from

the simulation. If the TAC age is less than β, then we create a new TAC daughter and

place it uniformly at random in one of the free neighbouring lattice sites. The parent and

daughter TACs share the same mutation ID and their age is updated to be one more than

the age of the originally chosen TAC.

Full implementation

The full CA flow-chart, represented in Fig 1C, schematises the entire process of cell

fate decisions that each cell undergoes at each time step in the spatial model. In the top

panel, the rule set followed by the TICs is represented to include differentiation and

Fig. 2.

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 11

mutation. In the bottom panel, the TAC rule set is defined to include death by terminal

differentiation and TAC aging. An example simulation of tumour growth over time is

shown in Fig 2, where the effect of lowering α can be seen on overall tumour growth

kinetics, where the colour-bar represents the current clonal state (mutation ID) of a given

clone.

Recovering phylogenetic trees from simulation

While experimentalists and clinicians can only infer phylogenies from incomplete

data, reconstruction of the ‘true’ phylogeny is possible in our model as we can record the

entire life history of the simulated tumour. Thus, we can test whether phylogenetic

tree-based measures are able to discriminate TIC symmetric division probability in the

case where the ‘ground truth’ is known. At each time step we record the spatial location of

each individual cell with its mutation ID, which is our CA state vector. Additionally, we

record the evolutionary ‘life history’ as a list of ordered pairs of every mutation event

(parent mutational ID, child mutational ID). We then recursively construct the

phylogenetic tree from this life history.

Phylogenetic tree reconstruction algorithm To create the complete tree data

structure required for our quantitative analyses we use the information encoding the

mutation events from our stochastic simulation. To this end, we create a list of unique

parent-child pairs using the life history of mutation events. We then apply an iterative

process in which each child is added as a subnode below the parent (from the unique

parent-child pair). This process is continued until all parent-child pairs are added to the

structure, and the tree is complete. The simulation code and functions to create these trees

and calculate the metrics is freely available on request.

Qualitative comparison of reconstructed trees To compare phylogenies from

simulations with different underlying parameter values, we first construct and visualize the

http://mc.manuscriptcentral.com/systbiol
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12 SCOTT ET AL.

phylogenies constructed from three example simulations with differing TIC symmetric

division probabilities in Fig 3. It is clear by inspection that the number of mutations

increases with symmetric division probability (more branches). However, the tree structure

is not as easy to parse visually. For ease of visualization the trees depicted in Fig 3 have

been pruned of all terminal nodes (also called leaves) with no children of their own. While

this transformation does affect the quantitative results, it does not qualitatively affect the

resultant phylogenetic tree statistic ranks (see Fig 8). All analyses shown will utilize the

full trees.

Candidate tree-based measures for model comparison

Visual inspection of Fig 3 suggests that simulations with different TIC symmetric

division probabilities generate distinct phylogenetic trees. However, to draw meaningful

conclusions we must perform a quantitative comparison. Here we present several measures

useful in summarising and comparing phylogenetic trees. The most commonly studied

property of a phylogenetic tree’s shape is its balance, defined as the degree to which

internal nodes (branch points) have the same number of children as one another. Balance

(or imbalance) indices depend only on the branching topology of trees, and not on other

factors like branch length or other features of the terminal branches (leaves). Since the first

balance index by Sackin (1972), many others have been proposed with slightly differing

properties (Mir et al. 2013). One of the first papers to present a systematic comparison of

a suite of balance indices (often denoted with the letter ‘B’) and indices of imbalance

(denoted with ‘I’) was by Shao & Sokal (1990), who reported striking differences between

the studies’ measures. Their central message was that different measures on trees can give

insight into different aspects of the underlying processes governing the interactions, and

one should thus consider several measures for any given tree or family of trees. In this

study we will consider several tree topology-based measures.

Before describing the measures, it is worthwhile to briefly define the terms which

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 13

Fig. 3.

are used to describe trees, and the two basic underlying stochastic models which have been

proposed to describe neutral evolution and the resulting topologies. Phylogenetic trees

describe the evolutionary relationship between individuals with different traits from one

another, or in the case of our model, different mutational combinations (genotypes). In our

model, each simulation begins with a cell with mutation flag 1, or a genotype with the first

allele mutated (1000...), termed the ‘root’, and evolution progresses stochastically, by

http://mc.manuscriptcentral.com/systbiol
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14 SCOTT ET AL.

adding individual mutations at subsequent alleles and increasing the mutation flag, as

described in Fig 1B. At each mutation event, an evolutionary branch point is created,

which is termed a node in phylogenetic tree terminology. If this node gives rise to no other

children during the simulation, it is termed a terminal node, or leaf. There are two

common, classically referenced models, which bear mention here as well, since many tree

topology-measures are normalized against them. The first, described by Yule (1925) and

sometimes termed the ‘equal rate Markov’ model, begins with a single root and proceeds

by replacing, uniformly at random, a given leaf with a node with two children of its own.

The process continues until the desired number of leaves exist. The other main model,

termed the ‘Proportional to Distinguishable Arrangements’ or uniform model, was

described by Rosen (1978). This model, which is truly a model of tree growth rather than

an explicitly evolutionary process, begins as does the Yule model (and indeed ours) with a

single node labelled 1. At each update step, a new leaf is added to the tree at any point,

either internal node or leaf. These models will serve as normalisation factors in several of

the measures we present below, which are summarised graphically in Fig 4.

Sackin index The Sackin index was the first statistic used to understand the

balance of a phylogenetic tree (Sackin 1972, Shao & Sokal 1990). To compute this statistic,

one sums the number of ancestors (Ni) for each of the n terminal nodes of the tree:

Ins =
n
∑

i=1

Ni. (0.1)

This index increases with tree size: under the Yule growth model, its expectation E[Ins ]

grows as 2n log n (Yule 1925). One can therefore only perform a meaningful comparison of

Sackin indices of trees generated from tumours if they are the same size.

Normalized Sackin index To address this dependence on tree size, several

normalisations to the Sackin index have been proposed, two of which we explore here. In

particular, one can normalise the Sackin index of a phylogenetic tree to the expectation

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 15

value of a similarly sized tree, under the Yule growth model:

IY ule =
1

n

(

Ins − 2n
n+1
∑

j=2

1

j

)

. (0.2)

One can alternatively normalise using the Proportional to Distinguishable Arrangements

(PDA) model (Aldous 1996, 2001, Rosen 1978) which is simply the Sackin index scaled by

n3/2.

The B1 statistic The B1 statistic, originally described by Shao & Sokal (1990),

considers the balance of a tree. To calculate the measure, one uses all i internal nodes of

the tree with the exception of the root (the founding cell). For each non-root internal node

j, the maximum number of nodes traversed along the longest possible path to a terminal

node, Mj, is counted. The B1 statistic is then defined as

B1 =
∑

i

1

Mj

∀i 6= root. (0.3)

N̄ The N̄ statistic reports the average number of nodes above a terminal node. To

compute this, we sum the path from each terminal node to the root, and divide by the

number of terminal nodes. An alternative definition is the Sackin index ‘normalised’ by the

number of terminal nodes. We define this as

N̄ =
1

n

n
∑

i=1

Ni, (0.4)

where n is the number of tips and Ni is the number of internal nodes between tip i and the

root of the tree. For a more complete review and comparison of the measures presented

here, and others, see Blum & François (2005) and Shao & Sokal (1990).

Examples of how these measures change on several example trees with equal

numbers of leaves (but different numbers of internal nodes) are presented in Fig 4. (Note

that in contrast with these polytomous trees, our tumour growth model does not exhibit

polytomies, since all cell divisions are dichotomous and each node in the phylogenetic tree

is defined by a unique mutation in an infinite sites model.) In these examples, we compute
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16 SCOTT ET AL.

each of the presented measures for comparison. From left to right, the trees contain 4, 3

and 2 internal nodes, respectively, but the same number (6) of leaves. We note that the

measures do not all follow the same pattern. For an exhaustive description of all possible

trees with 6 leaves, and the correlation of a larger family of associated measures, see Shao

& Sokal (1990).

Results

Measuring trees from simulation

As our primary goal is to identify whether tree-based measures allow discrimination

of simulated tumours with different TIC symmetric division probabilities, we focus on

changes in tree measures as we vary comparable simulations changing only this parameter.

To compare the model tree measures, we first perform 50 stochastic simulations of both

our non-spatial and spatial CA using a range of TIC symmetric division probabilities

(0.2, 0.4, 0.6, 0.8 and 1.0), holding mutation rate and TAC lifetime constant (λ = 0.01 and

β = 4). For each simulation, we construct the resulting phylogenetic tree at tumour size

250, 000 cells, as described in the Materials and Methods section. We then measure the

Fig. 4.
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 17

value of each summary index defined earlier for all 50 simulations at the final time point

and plot the distribution in a box-whisker plot, which is shown in Fig 5 with each data

point overlaid in a swarm. Differences between distributions were determined using the

Wilcoxon rank sum test. While these statistics were performed post hoc, we should note

that standard statistics can be misleading for simulation based studies with arbitrarily

large sample sizes (White et al. 2014) (see Supplementary Fig 9 for effect size).

Variation of tree-based measures with symmetric division probability

The results of the model are presented in Fig 5. We find that all of the indices have

monotone relationships with symmetric division probabilities except for N̄ in the spatial

model, and B1 in the non-spatial model. Of note also, is that only in the Sackin index do

we see qualitative agreement for the spatial and non-spatial models (monotone up/down)

for both in the standard (normalized) Sackin model. This difference in utility of the

different models for spatial and non-spatial is not unexpected, as Shao & Sokal (1990) have

previously shown that even for similar questions, different models of tree topology will

have different uses. As our primary purpose is to understand the spatial cancer model, we

will leave a deeper investigation into the dynamics of the non-spatial model for future

work, and concentrate our analysis from here forward on the spatial model.

In terms of discernibility for the spatial model, of the normalised indices the B1

statistic has the least overlap in error between symmetric division probabilities (i.e.

comparing the cases α < 1 with the case α = 1). All measure distributions are significantly

different by the Wilcoxon rank sum test (p < 0.05) except 0.4 and 0.6 in the Sackin index

normalised by the Yule model (p = 0.08). While we recognize the dangers in reporting

p-values in simulation based studies (White et al. 2014), we report them here for

comparison, and report effect size as well, with full statistics for both the spatial and

non-spatial model reported in Fig 9. The strongest effect for the spatial model is seen in

the Sackin index (R2 = 0.871), followed by the Yule normalised Sackin index (R2 = 0.743).

http://mc.manuscriptcentral.com/systbiol
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18 SCOTT ET AL.

Fig. 5.

Dynamics of tree-based measures during tumour growth

As discussed in Materials and Methods, the measures considered here are strongly

dependent on the total number of nodes in the tree. With all other parameters held

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 19

constant, simply allowing a tumour to grow larger would increase the number of total

mutations, and therefore the number of total nodes, subsequently altering the value of the

measure. To ensure that the differences we have noted are robust to changing tumour size,

we next consider how these measures evolve during the growth of a tumour.

Fig. 6.

To determine how these measures vary over the lifetime of a growing tumour, we

measure each index over the course of multiple simulations. To accomplish this, we use the

life history to reconstruct the phylogenetic tree at 20 equally spaced time points during the

course of 50 simulations for each value of the symmetric division probability. Note that

since the time taken for each simulated tumour to fill the spatial domain depends strongly

on the symmetric division probability (see Fig 2), to compare ‘like for like’ we break each

http://mc.manuscriptcentral.com/systbiol
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20 SCOTT ET AL.

life history into equally spaced time intervals, which act as surrogates for tumour size.

Comparing across tumour size is of greater utility, clinically, since while the age of a given

tumour is rarely known, size can be readily estimated.

After reconstruction, we then create a ‘time’ trace for each statistic. We plot these

statistics over ‘time’ in Fig 6, where each family of 50 simulations (for a given symmetric

division probability) is represented by a single trace with the standard deviation

represented by the coloured error bars. We find that for each of the statistics, except N̄ ,

the relationships between the symmetric division probabilities are maintained over time,

suggesting that, if we know the tumour size, and true phylogeny, we can estimate the

relative symmetric division probability between two samples from these measures. This

statement must be somewhat qualified by the fact that mutation probability was also held

constant for these simulations. While estimating mutation probability is not trivial,

significant advances have been made in measuring the speed of the ‘evolutionary clock’ of

tumours: essentially a proxy for mutation probability (Curtius et al. 2016). Further, we

found that the rank order of each discriminatory measure holds throughout tumour

growth, indeed becoming more discriminatory as the tumours grow larger (with the

exception of N̄). As the tumours simulated in this study are unrealistically small given the

computational constraints, this information gives us hope that in tumours of realistic size,

these measures would be even more useful. This becomes particularly important as the

statistics that we have calculated come from the ‘true trees’, that is, trees comprised of all

mutation events. In reality, trees would be inferred from the imperfect information gleaned

from biopsies.

Dependence of tree-based measures on mutation probability

As the tree measures depend heavily on the number of mutations within a given

tumour, and therefore the number of branches within a given tree, we next ask how these

measures behave when we vary mutation probability (λ) and symmetric division

http://mc.manuscriptcentral.com/systbiol
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 21

probability simultaneously. To answer this, we perform 10 stochastic simulations for each

combination of the symmetric division probabilites considered previously and 5 different

values for λ varying over two orders of magnitude (0.001, 0.005, 0.01, 0.05, 0.1), which spans

most of the range (per cell per division) as noted by Alexandrov et al. (2013). We then use

the previously described method to reconstruct the resulting phylogenies and calculate the

measures previously discussed. In particular, we ask how the Sackin index, the B1 statistic

and the normalized Sackin index perform over this range of λ to better understand the

applicability of these measures in determining differences in symmetric division probability.

We plot the results of this parameter investigation in Fig 7. In each heat map, we

plot the mean of the 10 simulations for each parameter combination with symmetric

division probability varied along the horizontal axis and mutation probability along the

vertical axis. The indices which are not normalized by branch number, namely the Sackin

index and B1 statistic, increase monotonically with mutation probability and symmetric

division probability in all cases. The Sackin index normalised by the PDA model, however,

varies somewhat unexpectedly and has a global minimum at symmetric division

probability of 1.0 and mutation probability 0.01. This measure is monotonic in symmetric

division probability except at the highest mutation probability where it becomes somewhat

more difficult to determine the differences. As before, the B1 statistic appears to be the

most stable, and only breaks down slightly in its ability to distinguish between the families

of simulations at the lowest mutation probability (λ = 0.001) and the middle range of

symmetric division probability (symmetric division probabilities = 0.4− 0.8), as can be

seen in Fig 7. In these ranges of the parameter space our model may not provide useful

predictive power.

Discussion

While the use of phylogenetic trees is increasing in translational oncology

laboratories, there has yet to be a method found by which we can utilise the information
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22 SCOTT ET AL.

Fig. 7.

clinically. To address this shortcoming, we worked to leverage the growing interest in

biomarker derivation from spatially distinct tumour biopsies (Dhawan, Graham & Fletcher

2016), and the recent success of Leventhal et al. (2012) and others in teasing apart complex

biological rules from phylogenetic information. We developed an individual based model of

tumour growth under a TIC driven proliferative heterogeneity which undergoes neutral

evolution. We then developed an algorithm to construct phylogenetic trees from simulated

tumours. The resultant trees were then analysed and compared using a suite of statistical

measures of tree (im)balance. Through this method, we have generated a large dataset that

includes the observed statistical measures of the ‘true’ phylogeny for tumours spanning the

full range possible of symmetric division probabilities, which we feel is appropriate as

symmetric division probabilities as low as 5% have been reported in glioblastoma (Lathia

et al. 2011) and as high as 90% have been reported in colorectal cancer (Baker et al. 2014).
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INFERRING TUMOUR ORGANISATION FROM PHYLOGENETICS 23

It is worth noting that, as our phylogenies are exact, some of the conclusions one may

draw in the future from empirically inferred trees would have to be tempered by the

inherent uncertainty in the inference process. Further, we are by no means the first group

to seek to utilize simulation to study tree topology, with notable recent examples being

INDELible, a flexible platform to simulation insertions and deletions (Fletcher & Yang

2009), as well earlier models of simulating neutral Wright-Fisher models (Hudson 2002).

In particular, we compared the classical measures of tree topology – the Sackin

index and the B1 statistic – as well as normalized versions of each across several

parameters of our spatial and non-spatial models as well as through the process of tumour

growth. Not surprisingly, we found that the Sackin index was able to discriminate between

the families of simulations as it is directly correlated with branch number (in this case

correlating with total number of mutations in the TICs, which also is increased with

increasing symmetric division probability). Encouragingly, we also found that the

normalised version of this metric was able to discriminate between the different symmetric

division probabilities, suggesting a more meaningful (and measurable) topological

difference between the underlying phylogenetic trees resulting from these parameter

changes (representing diverse biological traits).

While we have shown that these measures differ significantly from one another, we

have not yet provided a method by which we can use the metric of a given tree to directly

predict the symmetric division probability of an unknown tumour. However, the present

work at least allows us to understand the rank order of symmetric division rate for two

tumours given their measured indices. This could be particularly useful in certain clinical

settings. For example, this could allow us to determine how a given therapy affects

symmetric division probability by using our calculated measures over serial biopsies, and

subsequent phylogenetic reconstruction. This could prove particularly useful in the

treatment of leukemias, where the target cell is known to be the TIC, eradication of which

is a requirement for cure (Roeder et al. 2006). In this case, after phylogenetic
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reconstruction using any of several methods available for single sample whole genome

sequencing (Carter et al. 2012, Roth et al. 2014, Deshwar et al. 2015), the tree topologies

could be compared before and after therapy, giving a measure of relative change. Our

metric (derived in this case from our non-spatial model results) could therefore prove a

useful adjunct to existing methods of predicting TIC fraction (Werner et al. 2016) to

determine therapeutic efficacy, and guide therapy breaks or switching.

Even with state-of-the-art multi-region sequencing approaches, most reconstructed

cancer phylogenies are relatively small (Gerlinger et al. 2014, Zhao et al. 2016) with very

few leaves, preventing the application of our statistical method in its current form. With

continued advances in single-cell sequencing, and more examples of higher spatial sampling

from larger tumors, like in the most recent TRACERx Renal study (Turajlic et al. 2018),

the situation may change, but it is worth reiterating that this theory has not yet been

shown to be quantitatively accurate in real tumor samples. Even in the case that it does

not become effective in the near future, however, we assert that beginning to use metrics of

tree topology to compare tumors before and after therapy, or across grade or survival,

could prove useful to enhance our understanding of tumour evolution and treatment

response in the near term.

Aiming towards a translatable method by which to infer the symmetric division

probability in solid tumours, we have identified several phylogenetic tree based measures

that correlate with TIC symmetric division probability. We have found several measures

which are able to discern differences in simulated tumours between symmetric division

probabilities. These results are robust to changes in tumour size, specifically maintaining

their rank throughout tumour growth. The rate of mutation does affect these results to

some degree, but rank is maintained permitting comparison through time, or between

tumours of similar size.

While there is some overlap amongst the measures when more than one parameter

is varied, with information on mutation probability and tumour size, relative symmetric
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division probability can be estimated. We have restricted our focus to measures of

(im)balance, a basic property of phylogenetic trees based only on their branching topology.

With more information, such as evolutionary branch lengths (Kirkpatrick & Slatkin 1993,

Mooers & Heard 1997) which are linked to the ‘speed’ of a tumour’s molecular

clock (Curtius et al. 2016), some of these limitations could be obviated. Further, we have

only considered neutral evolution. While most tumour evolution is likely neutral (Williams

et al. 2016), there is certainly evidence for non-neutrality in the form of driver and

passenger mutations (McFarland et al. 2013, 2017), which would drastically affect the

resulting phylogenetic trees (Grenfell et al. 2004) – especially with intervening treatment

regimens. How non-neutral evolution and treatment affect our measures remain avenues for

future work.
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Supplementary Material

Pruning trees does not affect rank of statistics

To visualize the trees more easily in Fig 3, we prune the leaves from each full tree.

While this changes the absolute value of each of the tree-based measures, it does not affect

their relative ranking. This suggests that each measure is capturing something fundamental

about the biology as it appears invariant with tree size. This is corroborated by the results

shown in Fig 6, indicating that the rank of each measure is stable over tumour growth.
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Effect size of symmetric division probability

To better understand the impact of the symmetric division probability on changes in

the resulting tree topology, rather than just use differences between families of simulations,

we compute the regression slope, R2 and p-value of the regression line for each case. For

the B1 statistic we find a regression slope of 142.64, R2 = 0.72, p = 1.74× 10−71, and in the

non-spatial model a regression slope of −13.2, R2 = 0.056, p = 1.7× 10−5. For the Sackin

index we find a regression slope of 5178.61, R2 = 0.871, p ≈ 0, and in the non-spatial

model a regression slope of 3690.92, R2 = 0.8673, p ≈ 0. For the Yule normalised Sackin

index we find a regression slope of −2.380, R2 = 0.743, p = 3.25× 10−75, and in the

non-spatial model a regression slope of −3.118, R2 = 0.948, p ≈ 0. For the N̄ statistic we

find a regression slope of −0.111, R2 = 0.0075, p = 0.172, and in the non-spatial model a

regression slope of −0.457, R2 = 0.303, p = 3.33× 10−21. These values are plotted in Fig 9.

Fig. 9.
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Algorithm for generating individual cell ‘genomes’ from mutational flag and life history

Our algorithm to reconstruct individual cell ‘genomes’ from the mutational flag and

life history allows for significant increase in speed of our tumour growth model and

reduced memory requirements by several orders of magnitude. While there are many tree

reconstruction algorithms available to infer phylogenies from real data, most notably

PHYLIP (Felsenstein 1981), as our data are ‘perfect data’ from our simulation, and

therefore in a bespoke data structure, there is no inference required, and the task is a

simple recursive tree building algorithm, which proceeds per the pseudocode below. Code

is available at: https://github.com/cancerconnector/clonal_evolution.git

Algorithm 1: Pseudo-code describing algorithm to reconstruct genomes from
unique mutation flags and family history.

Data: Dictionary of unique Parent:Child pairs and spatial array of unique

mutation flags at time point of interest.

Result: Array of bitstrings representing ‘genomes’ of cells in array.

for All cells in array do
if mutation ID = 0 then

break

end

set bitstring to ’1’ + maxval(mutation ID) ’0’;

final-parent = 2;

if mutation ID = 1 then
finalize bitstring

end

while final-parent > 1 do
final-parent = lookup parent(cell of interest) in dictionary;

flip bitstring at position(cell of interest) to ’1’;
end

finalize bitstring;
end
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Jones, D., Knappskog, S., Kool, M., Lakhani, S., López-Otn, C., Martin, S., Munshi, N.,
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Fig 1. Spatial stochastic model schematic with neutral mutation schema.

(A) The proliferative hierarchy. Each TIC can divide symmetrically with probability α to

make two identical TIC progeny, or asymmetrically with probability (1− α) to make one

TIC and one TAC. TACs divide symmetrically until they reach a specific divisional age

(β = 4 for this work), after which they die upon division attempt. (B) At each division

event (branching) after the first (carcinogenesis, labelled with a 1), a random number of

mutations drawn from a Poisson distribution with expectation λ is conferred on each

daughter (subsequent starred events). Each mutation event is given a unique flag, which is

inherited by its offspring unless they too mutate. Each unique mutation can then be

considered as a novel mutant allele (red) appearing in the population. (C) Flowchart

outlining cellular automaton rules governing TIC and TAC growth, including spatial

inhibition of growth and TAC age.

Fig 2. Temporal evolution of the spatial model reveals observable

morphologic differences between TIC-driven and non-TIC-driven tumours, as

observed by others. We plot representative results of simulations of two tumours, each

simulated on a square lattice of size 400× 400. Top: a tumour simulated with α = 0.2 and

β = 4. We notice, as have Enderling et al. (2009) and Sottoriva et al. (2010), a ‘patchy’

clonal architecture, and non-uniform edge. Bottom: a tumour simulated with α = 1.0, i.e.

no proliferative hierarchy. We note smooth edges, radial patterns of clonal architecture and

relatively faster population growth, reaching ≈ 70, 000 cells in less than 200 time steps. To

reach a similar size, the tumour with symmetric division probability of 0.2 took 35, 000

time steps. Colour bars denote number of mutations present in a given clone, note that the

top scale is about 1/3 of bottom scale.

Fig 3. Three example simulations with increasing symmetric division

probability, α (0.2, 0.6 and 1.0 from top to bottom) and their associated

phylogenetic trees. Each example plot is the result of a single stochastic simulation of

our spatial CA model. Each simulation is initiated with a single TIC and complete when

http://mc.manuscriptcentral.com/systbiol
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the domain is full, in this case 250, 000 cells. Parameter values are β = 4 and λ = 0.01.

Visualized trees (right) have been pruned of all leaves for ease of visualisation, which does

not qualitatively affect measure rank (see Fig 8).

Fig 4. Example phylogenetic trees and their measures. From left to right

the trees contain 4, 3 and 2 internal nodes (dots) respectively, but the same number (6) of

terminal nodes.

Fig 5. A summary of four tree indices measured over a range of

symmetric division probability. We plot the distribution of each of four measures of

tree balance for the final resultant trees from 50 simulations against symmetric division

probability. All simulations were run with β = 4 and λ = 0.01 until a tumour size of

250, 000 cells was reached. In each plot we display a box-whisker plot as well as the

individual results as points. NS = non-significant by the Wilcoxon rank sum test.

Fig 6. Comparing phylogenetic tree measures across symmetric division

probability through tumour growth. We plot the average and standard deviation

(error bars) of four phylogenetic tree measures for each of the 50 simulations for a range of

symmetric division probabilities over the course of tumour growth. Rank is maintained

across symmetric division probabilities for each of the 3 tree measures with which we could

discriminate between symmetric division probabilities. As before, N̄ is not predictive and

changes rank throughout tumour growth. All tumours are grown to eventual confluence at

250, 000 cells. In all simulations β = 4 and λ = 0.01.

Fig 7. Comparing phylogenetic tree measures across symmetric division

probability and mutation probability. We plot the average of each of four

phylogenetic tree measures at the end of each of 10 simulations for a range of symmetric

division probabilities and mutation probabilities. We vary mutational probability over two

orders of magnitude (0.1− 0.001), and simulate all tested symmetric division probabilities.

Rank is maintained across symmetric division probabilities for each of the three of the four

measures with which we could discriminate between symmetric division probabilities with

http://mc.manuscriptcentral.com/systbiol
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changing mutation probability, allowing for differentiation between parameters. As before,

the N̄ statistic is not predictive. As expected, for the non-normalized indices, Sackin and

B1, the measures change monotonically with both symmetric division and mutation

probability. For the PDA normalized Sackin index, however, there is a global minimum for

λ = 0.01 and α = 1.

Supplementary Fig 8. Raw and pruned trees give rise to qualitatively

similar summary measures with rank preserved. For each tree-based measure

considered in the main text, we plot the measure based on the full (upper) and pruned

(lower) tree. For each pair, we plot the results from 10 simulations for each of the tested

symmetric division probabilities. From left to right, we plot the B1 statistic, N̄ , the Sackin

index, the PDA normalised Sackin index and finally the Yule normalised Sackin index.

Supplementary Fig 9. Effect size of symmetric division for four

tree-based measures. We plot the effect size for the data shown in Fig 5.
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