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IMPROVED GUARANTEES FOR VERTEX SPARSIFICATION IN1

PLANAR GRAPHS∗2

GRAMOZ GORANCI† , MONIKA HENZINGER† , AND PAN PENG‡3

Abstract. Graph Sparsification aims at compressing large graphs into smaller ones while pre-4
serving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e.,5
sparsifiers whose goal is to reduce the number of vertices. We focus on the following notions:6

(1) Given a digraph G = (V,E) and terminal vertices K ⊂ V with |K| = k, a (vertex) reachability7
sparsifier of G is a digraph H = (VH , EH), K ⊂ VH that preserves all reachability information among8
terminal pairs. Let |VH | denote the size of H. In this work we introduce the notion of reachability-9
preserving minors (RPMs) , i.e., we require H to be a minor of G. We show any directed graph G10
admits an RPM H of size O(k3), and if G is planar, then the size of H improves to O(k2 log k). We11
complement our upper-bound by showing that there exists an infinite family of grids such that any12
RPM must have Ω(k2) vertices.13

(2) Given a weighted undirected graph G = (V,E) and terminal vertices K with |K| = k, an14
exact (vertex) cut sparsifier of G is a graph H with K ⊂ VH that preserves the value of minimum-cuts15
separating any bipartition of K. We show that planar graphs with all the k terminals lying on the16
same face admit exact cut sparsifiers of size O(k2) that are also planar. Our result extends to flow17
and distance sparsifiers. It improves the previous best-known bound of O(k222k) for cut and flow18
sparsifiers by an exponential factor, and matches an Ω(k2) lower-bound for this class of graphs.19

Key words. reachability-preserving minor, vertex sparsification, planar graphs, cut sparsifiers20

AMS subject classifications. 05C10, 05C83, 05C8521

1. Introduction. Very large graphs or networks are ubiquitous nowadays, from22

social networks to information networks. One natural and effective way of processing23

and analyzing such graphs is to compress or sparsify the graph into a smaller one24

that well preserves certain properties of the original graph. Such a sparsification can25

be obtained by reducing the number of edges. Typical examples include cut sparsi-26

fiers [8], spectral sparsifiers [52], spanners [57] and transitive reductions [5], which are27

subgraphs defined on the same vertex set of the original graph G while having much28

smaller number of edges and still well preserving the cut structure, spectral prop-29

erties, pairwise distances and transitive closure of G, respectively. Another way of30

performing sparsification is by reducing the number of vertices, which is most appeal-31

ing when only the properties among a subset of vertices (which are called terminals)32

are of interest (see e.g., [50, 6, 40]). We call such small graphs vertex sparsifiers of33

the original graph. In this paper, we will particularly focus on vertex reachability34

sparsifiers for directed graphs and cut (and other related) sparsifiers for undirected35

graphs.36

Vertex reachability sparsifiers in directed graphs is an important and fundamental37

notion in Graph Sparsification, which has been implicitly studied in the dynamic graph38
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in proceedings of the 25th Annual European Symposium on Algorithms (ESA) 2017 [30]. The current
version contains all of the missing proofs and improves the size guarantees of RPMs over those in
the conference version. The article is rearranged to highlight the main results.
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2 G. GORANCI, M. HENZINGER, AND P. PENG

algorithms community [53, 24], and explicitly in [37]. Specifically, given a digraph39

G = (V,E), K ⊂ V , a digraph H = (VH , EH), K ⊂ VH is a (vertex ) reachability40

sparsifier of G if for any x, x′ ∈ K, there is a directed path from x to x′ in H41

iff there is a directed path from x to x′ in G. If |K| = k, we call the digraph G42

a k-terminal digraph. Note that any k-terminal digraph G always admits a trivial43

reachability vertex sparsifier H, which corresponds to the transitive closure restricted44

to the terminals. In this work, we initiate the study of reachability-preserving minors45

(RPMs), i.e., vertex reachability sparsifiers with H required to be a minor1 of G.46

The restriction on H being a minor of G is desirable as it makes sure that H is47

structurally similar to G, e.g., any minor of a planar graph remains planar. We ask48

the question whether general graphs admit reachability-preserving minors whose size49

can be bounded independently of the input graph G, and study it from both the50

lower- and upper-bound perspective.51

For the notion of cut (and other related) sparsifiers, we are given a capacitated52

undirected graph G = (V,E, c), and a set of terminals K and our goal is to find a53

(capacitated undirected) graph H = (VH , EH , cH) with as few vertices as possible and54

K ⊆ VH such that the quantities like, cut value, multi-commodity flow and distance55

among terminal vertices in H are the same as or close to the corresponding quantities56

in G. If |K| = k, we call the graph G a k-terminal graph. We say H is a quality-q57

(vertex ) cut sparsifier of G, if for every bipartition (U,K \ U) of the terminal set K,58

the value of the minimum cut separating U from K \ U in G is within a factor of q59

of the value of minimum cut separating U from K \ U in H. If H is a quality-1 cut60

sparsifier, then it will be also called a mimicking network [33]. Similarly, we define61

flow and distance sparsifiers that (approximately) preserve multicommodity flows and62

distances among terminal pairs, respectively (see Section 6 for formal definitions).63

These type of sparsifiers have proven useful in approximation algorithms [50] and also64

find applications in network routing [20].65

1.1. Our Results.66

Reachability Sparsifiers. Our first main contribution is the study of reachability-67

preserving minors. Although reachability is a weaker requirement in comparison to68

shortest path distances, directed graphs are usually much more cumbersome to deal69

with from the perspective of graph sparsification. Surprisingly, we show that general70

digraphs admit reachability-preserving minors withO(k3) vertices, which is in contrast71

to the bound of O(k4) on the size of distance-preserving minors in undirected graphs72

by Krauthgamer et al. [40].73

Theorem 1.1. Given a k-terminal digraph G, there is a reachability-preserving74

minor H of G with size O(k3).75

The above bound improves over the size of RPMs for general digraphs in the76

conference version [30] of this paper by a factor of k. We remark that the above77

minor H can be constructed in polynomial (in the size of graph G) time. It might78

be interesting to compare the above result with the lower bound for the construction79

of a relevant notion called reachability preserver. Given a directed graph G, and a80

terminal set K in G, a reachability preserver2 of G with respect to K is defined to81

be a subgraph of G that preserves the reachability of all pairs in K × K [21, 9, 2].82

1In this paper, a directed graph H is called a minor of another directed graph G if H can be
formed from G by deleting edges and vertices and by contracting edges, as if they were undirected.

2In [21, 2], the reachability preserver is actually defined for any vertex pair-set P , while we are
only considering the special case that P = K ×K.

This manuscript is for review purposes only.



VERTEX SPARSIFICATION IN PLANAR GRAPHS 3

Bodwin [9] (see Theorem 4.2 therein) implicitly showed that for any integer d ≥ 283

and k = k(n), there is a family of unweighted graphs G = (V,E) with n vertices and84

sets K of k nodes in G such that any reachability preserver of G with respect to K85

has Ω(n2d/(d2+1)k(2d−1)(d−1)/(d2+1)2−Θ(
√
logn log logn)) edges.86

Furthermore, by exploiting a tight integration of our techniques with the compact87

distance oracles for planar graphs by Thorup [56], we prove the following theorem88

regarding the size of reachability-preserving minors for planar digraphs3.89

Theorem 1.2. Given a k-terminal planar digraph G, there exists a reachability-90

preserving minor H of G with size O(k2 log k).91

The above bound improves over the size of RPMs of planar digraphs in the con-92

ference version [30] of this paper by a factor of log k. We complement the above result93

by showing that there exist instances where the above upper-bound is tight up to a94

O(log k) factor.95

Theorem 1.3. For infinitely many k ∈ N there exists a k-terminal acyclic di-96

rected grid G such that any reachability-preserving minor of G must use Ω(k2) non-97

terminals.98

Cut, Flow and Distance Sparsifiers. We provide new constructions for quality-199

(exact) cut, flow and distance sparsifiers for k-terminal planar graphs, where all the100

terminals are assumed to lie on the same face. We call such k-terminal planar graphs101

Okamura-Seymour (OS) instances. They are of particular interest in the algorithm102

design and optimization community, due to the classical Okamura-Seymour theorem103

that characterizes the existence of feasible concurrent flows in such graphs (see e.g.,104

[51, 15, 16, 46]).105

We show that the size of quality-1 sparsifiers can be as small as O(k2) for OS in-106

stances. Prior to our work, the best-known cut and flow sparisifiers for such instances107

had size exponential in k [41, 6]. Formally, we have the following theorem.108

Theorem 1.4. For any k-terminal planar graph G in which all terminals lie on109

the same face, there exist quality-1 cut, flow and distance sparsifers of size O(k2).110

Furthermore, the resulting sparsifiers are also planar graphs (with all terminals on111

the same face).112

We remark that all the above sparsifiers can be constructed in polynomial time113

(in n and k), but we will not optimize the running time here. As we mentioned114

above, previously the only known upper bound on the size of quality-1 cut and flow115

sparsifiers for OS instances was O(k222k), given by [41, 6]. Our upper bound for cut116

sparsifier also matches the lower bound of Ω(k2) for an OS instance given by [41].117

More specifically, in [41], an OS instance (that is a grid in which all terminals lie on118

the boundary) is constructed, and used to show that any mimicking network for this119

instance needs Ω(k2) edges, which is thus a lower bound for planar graphs (see the120

table below for an overview). Note that that even though our distance sparsifier is121

not necessarily a minor of the original graph G, it still shares the nice property of122

being planar as G. Furthermore, Krauthgamer and Zondiner [43] proved that there123

exists a k-terminal planar graph G (not necessarily an OS instance), such that any124

quality-1 distance sparsifier of G that is planar requires at least Ω(k2) vertices.125

We further provide a lower bound on the size of any data structure (not neces-126

sarily a graph) that approximately preserves pairwise terminal distances of general127

3A planar digraph is a directed graph such that the underlying undirected graph (i.e., ignoring
edge orientations) is planar.

This manuscript is for review purposes only.



4 G. GORANCI, M. HENZINGER, AND P. PENG

Type of sparsifier Graph family Upper Bound Lower Bound

Cut Planar O(k22k) [41] |E(G′)| ≥ Ω(2k) [36]

Cut Planar OS O(k2) [new] |E(G′)| ≥ Ω(k2) [41]

Flow Planar OS O(k222k) [6] follows from cut

Flow Planar OS O(k2) [new] follows from cut

Distance (minor) Planar OS O(k4) [40] Ω(k2) [40]

Distance (planar) Planar OS O(k2) [new]

Table 1: Overview on the current best trade-offs for quality-1 vertex sparsifiers.

k-terminal graphs, which gives a trade-off between the distance stretch and the space128

complexity.129

Theorem 1.5. For any ε > 0 and integer t ≥ 2, there exists a family of k-130

terminal n-vertex graph such that k = o(n), and any data structure that approximates131

pairwise terminal distances within a multiplicative factor of t− ε or an additive error132

2t− 3 must use Ω(k1+1/(t−1)) bits of space.133

Abboud and Bodwin [1] recently gave lower bounds for additive spanners, and134

their constructions imply that there exists an infinite family of k-terminal n-vertex135

graphs G such that k = o(n2/3), and any data structure that approximates pairwise136

terminal distances within an additive error t needs Ω(k2−ε) bits, for any ε > 0, t =137

O(nδ) and δ = δ(ε). Note that their lower bounds are stronger than ours in the138

setting with additive error 2t − 1 for t ≥ 3, though our constructions are different139

from theirs and also give bounds in the multiplicative setting. See Section 6.3 for140

more discussions on this result.141

Remark. Recently and independently of our work, Krauthgamer and Rika [42]142

constructed quality-1 cut sparsifiers of size O(γ22γk4) for planar graphs whose ter-143

minals are incident to at most γ = γ(G) faces. In comparison with our upper-bound144

which only considers the case γ = 1, the size of our sparsifiers from Theorem 1.4 is145

better by a Ω(k2) factor. Subsequent to our work, Karpov et al. [36] proved that there146

exists edge-weighted k-terminal planar graphs that require Ω(2k) edges in any exact147

cut sparsifier, which implies that it is necessary to have some additional assumption148

(e.g., γ = O(1)) to obtain an exact cut sparsifier of kO(1) size.149

1.2. Our Techniques. Our results for reachability-preserving minors (RPMs)150

are obtained by exploiting a technique of counting “branching” events between short-151

est paths in the directed setting. This technique was introduced by Coppersmith152

and Elkin [21], and has also been recently leveraged by Bodwin [9] and Abboud and153

Bodwin [2] in the context of distance/reachability preservers. Using this and a con-154

sistent tie-breaking scheme for shortest paths, we can efficiently construct an RPM155

for general digraphs of size O(k4) and by using a more refined analysis of branch-156

ing events (see [2]), we can further reduce the size to be O(k3). We then combine157

our construction with a decomposition for planar digraphs (see [56]), to show that158

it suffices to maintain the reachability information among O(k log k) terminal pairs,159

instead of the naive O(k2) pairs, and then construct an RPM for planar digraphs160

with O(k2 log k) vertices. The lower-bound follows by constructing a special class of161

k-terminal directed grids and showing that any RPM for such grids must use Ω(k2)162

This manuscript is for review purposes only.



VERTEX SPARSIFICATION IN PLANAR GRAPHS 5

vertices. Similar ideas for proving the lower bound on the size of distance-preserving163

minors for undirected graphs have been previously used by Krauthgamer et al. [40].164

We construct our quality-1 cut and distance sparsifiers by repeatedly performing165

Wye-Delta transformations, which are local operations that preserve cut values and166

distances and have proven very powerful in analyzing electrical networks and in the167

theory of circular planar graphs (see e.g., [38, 22, 26]). Khan and Raghavendra [39]168

used Wye-Delta transformations to construct quality-1 cut sparsifiers of size O(k) for169

trees, which improves upon the previous bound in [13] by a constant factor, while our170

case (i.e., the planar OS instances) is more general and complicated and previously it171

was not clear at all how to apply such transformations to a broader class of graphs.172

Our approach is as follows. Given a k-terminal planar graph with terminals lying173

on the same face, we first embed it into some large grid with terminals lying on174

the boundary of the grid. Next, we show how to embed this grid into a “more175

suitable” graph, which we will refer to as “half-grid”. Finally, using the Wye-Delta176

operations, we reduce the “half-grid” into another graph whose number of vertices can177

be bounded byO(k2). Since we argue that the above graph reductions preserve exactly178

all terminal minimum cuts, our result follows. Gitler [29] proposed a similar approach179

for studying the reducibility of multi-terminal graphs with the goal to classify all Wye-180

Delta reducible graphs, which is very different from our motivation of constructing181

small vertex sparsifiers with good quality.182

The distance sparsifiers can be constructed similarly by slightly modifying the183

Wye-Delta operation. Our flow sparsifiers follow from the construction of cut spar-184

sifiers and the flow/cut gaps for OS instances (which has been initially observed by185

Andoni et al. [6]). Our lower bound on the space complexity of any compression186

function approximately preserving terminal pairwise distance is derived by combin-187

ing extremal combinatorics construction of Steiner Triple System that was used to188

prove lower bounds on the size of distance approximating minors (see [18]) and the189

incompressibility technique from [49].190

1.3. Related Work. There has been a long line of work on investigating the191

tradeoff between the quality of the vertex sparsifier and its size (see e.g., [25, 41, 6]192

and Section 1.2). (Throughout, cut, flow and distance sparsifiers will refer to their193

vertex versions.) Quality-1 cut sparsifiers (or equivalently, mimicking networks) were194

first introduced by Hagerup et al. [33], who proved that for any graph G, there always195

exists a mimicking network of size O(22
k

). Krauthgamer and Rika [41] showed how to196

build a mimicking network of size O(k222k) for any planar graph G that is a minor of197

the input graph. They also proved a lower bound of Ω(k2) on the number of edges of198

the mimicking network of planar graphs, and a lower bound of 2Ω(k) on the number199

of vertices of the mimicking network for general graphs.200

Quality-1 vertex flow sparsifiers have been studied in [6, 31], albeit only for re-201

stricted families of graphs like quasi-bipartite, series-parallel, etc. It is not known if202

any general undirected graph G admits a constant quality flow sparsifier with size203

independent of |V (G)| and the edge capacities. For the quality-1 distance sparsi-204

fiers, Krauthgamer et al. [40] introduced the notion of distance-preserving minors,205

and showed an upper-bound of size O(k4) for general undirected graphs. They also206

gave a lower bound of Ω(k2) on the size of such a minor for planar graphs. Recently,207

building upon the work [4], Chang et al. [11] gave an algorithm for constructing a208

(quality-1) distance sparsifier of size O(min{k2,
√
kn log3 n}) for a k-terminal n-vertex209

undirected,unweighted planar graph.210

Over the last two decades, there has been a considerable amount of work on211

This manuscript is for review purposes only.



6 G. GORANCI, M. HENZINGER, AND P. PENG

understanding the tradeoff between the sparsifier’s quality q and its size for q > 1,212

i.e., when the sparsifiers only approximately preserve the corresponding properties [19,213

6, 50, 47, 12, 25, 48, 32, 14, 10, 25, 35, 18, 17, 27, 28, 23].214

2. Preliminaries. Let G = (V,E) be a directed graph with terminal set K ⊂ V ,215

|K| = k, which we will refer to as a k-terminal digraph. We say G is a k-terminal216

DAG if G has no directed cycles. The in-degree of a vertex v, denoted by deg−G(v), is217

the number of edges directed towards v in G. A digraph H = (VH , EH), K ⊂ VH is a218

(vertex ) reachability sparsifier of G if for any x, x′ ∈ K, there is a directed path from219

x to x′ in H iff there is a directed path from x to x′ in G. In this paper, a minor220

operation in a directed graph refers to deleting an edge or a vertex, or contracting221

an edge in the underlying undirected graph4. If H is obtained by performing minor222

operations in G, then we say that H is a reachability-preserving minor of G. We223

define the size of H to be the number of vertices in H.224

Given a digraph G with a terminal set K of size k and a pair-set P ⊆ K × K,225

we say that H is a reachability-preserving minor (RPM) with respect to P , if H is226

a minor of G that preserves the reachability information only among the pairs in P .227

Note that in the definition of vertex reachability sparsifiers, the trivial pair-set P228

contains k(k − 1) terminal-pairs, i.e., for any pair x, x′ ∈ K, both (x, x′) and (x′, x)229

belong to P . Whenever we omit P , we mean to preserve the reachability information230

among all possible terminal pairs.231

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardinality232

k, where c : E → R≥0 assigns a non-negative capacity to each edge. We will refer233

to such a graph as a k-terminal graph. Let U ⊂ V and S ⊂ K. We say that a cut234

(U, V \ U) is S-separating if it separates the terminal subset S from its complement235

K \S, i.e., U ∩K is either S or K \S. We will refer to such cut as a terminal cut. The236

cutset δ(U) of a cut (U, V \U) represents the edges that have one endpoint in U and237

the other one in V \ U . The cost capG(δ(U)) of a cut (U, V \ U) is the sum over all238

capacities of the edges belonging to the cutset. We let mincutG(S,K \ S) denote the239

minimum cost of any S-separating cut of G. A graph H = (VH , EH , cH), K ⊂ VH is a240

quality-q (vertex ) cut sparsifier of G with q ≥ 1 if for any S ⊂ K, mincutG(S,K\S) ≤241

mincutH(S,K \ S) ≤ q ·mincutG(S,K \ S).242

3. Reachability-Preserving Minors for General Digraphs. In this section,243

we construct reachability-preserving minors (RPMs) for general digraphs and prove244

Theorem 1.1.245

High-level idea of our constructions. We first observe that in order to construct246

an RPM for k-terminal digraphs, it suffices to have a subroutine for constructing an247

RPM for any k-terminal directed acyclic graph (DAG) G. To see this, consider the248

following reduction. Given a general digraph, we can first find a decomposition of249

the graph into strongly connected components5 (SCCs) [55]. We then contract each250

SCC into a single vertex to obtain a DAG, from which we can construct an RPM H ′251

by the subroutine for handling DAGs. By appropriately expanding back in H ′ the252

contracted SCCs that contain terminals, we obtain an RPM for the original digraph.253

Now we describe our ideas for constructing an RPM for a k-terminal directed254

acyclic graph (DAG) G. We provide two such constructions. Let P denote the set255

of all vertex pairs in K. In the first construction (Section 3.1), we first apply a256

4In general, an arbitrary edge contraction in a directed graph might cause new reachability.
However, in our construction, we will carefully choose specific edges whose contraction preserves the
pairwise terminal reachability.

5Recall that a digraph is strongly connected if there is a directed path between all pairs of vertices.

This manuscript is for review purposes only.



VERTEX SPARSIFICATION IN PLANAR GRAPHS 7

well-known tie-breaking scheme on G to guarantee that for any vertex pair s, t, there257

is a unique shortest path from s to t. Then we delete all vertices and edges that258

do not participate in any shortest path among terminal-pairs in P and finally we259

appropriately contract edges on the remaining paths. The resulting graph can be260

shown to be a minor of G of small size. In the second construction (Section 3.2),261

we simply start with a minimal reachability preserver H of G and then appropriately262

contract edges on H. By adapting an analysis from [2], we can show that the resulting263

graph is an RPM of G. Though the first construction has a worse size guarantee, the264

underlying idea seems more intuitive and the analysis is slightly easier in comparison265

to the second construction.266

By using these two different subroutines, we can obtain RPMs for a general di-267

graph G of size O(k4) and O(k3), respectively. Both minors can be constructed in268

polynomial time.269

3.1. A Warm-up: An Upper Bound of O(k4).270

Basic tools. Let P ⊆ K × K be a pair-set. We first review a useful scheme for271

breaking ties between shortest paths connecting some vertex pair from P . This tie-272

breaking is usually achieved by slightly perturbing the edge lengths of the original273

graph such that no two paths have the same length (note that in our case, edge274

lengths are initially one). The perturbation gives a consistent scheme in the sense275

that whenever π is chosen as a shortest path, every sub-path of π is also chosen as276

a shortest path. Below we formalize these ideas using two definitions and a lemma277

from [9].278

Definition 3.1 (Tie-breaking Scheme). Given a k-terminal digraph G, a short-279

est path tie breaking scheme is a function π that maps every pair of vertices (s, t) to280

some shortest path between s and t in G. For any pair-set P , we let π(P ) denote the281

union over all shortest paths between pairs in P with respect to the scheme π.282

Definition 3.2 (Consistency). A tie-breaking scheme is consistent if, for all ver-283

tices y, x, x′, y′ ∈ V , if x, x′ ∈ π(y, y′) with d(y, x) < d(y, x′), then π(x, x′) is a284

sub-path of π(y, y′).285

Lemma 3.3 ([9]). For any k-terminal digraph G, there is a consistent tie-breaking286

scheme in G.287

We remark that for any k-terminal digraph with n vertices, the consistent tie-288

breaking scheme can be constructed in polynomial (in n) time [21].289

Constructing RPMs for DAGs. Let G be a k-terminal DAG. Given a tie-breaking290

scheme π, the first step to construct an RPM is to start with an empty graph H ′ and291

then for every pair p ∈ P , repeatedly add the shortest-path π(p) to H ′. We can292

alternatively think of this as deleting vertices and edges that do not participate in293

any shortest path among terminal-pairs in P with respect to the scheme π. Clearly,294

the DAG H ′ = (VH′ , EH′), EH′ := π(P ), is a minor of G and preserves all reachability295

information among pairs in P . We next review the notion of a branching event, which296

will be useful to bound the size of H ′.297

Definition 3.4 (Branching Event). A branching event is a set of two distinct298

directed edges {e1 = (u1, v), e2 = (u2, v)} that enter the same node v.299

Lemma 3.5. The DAG H ′ has at most |P |(|P | − 1)/2 branching events.300

Proof. First, note that by construction of H ′, we can associate each edge e ∈ EH′301

with some pair p ∈ P such that e ∈ π(p). To prove the lemma, it suffices to show302

that for any two terminal-pairs p1, p2 ∈ P , there is at most one branching event in the303
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graph induced by π(p1) ∪ π(p2). Suppose towards contradiction that there exist two304

terminal pairs p1, p2 that have two branching events in π(p1)∪π(p2). More specifically,305

we assume there exist two branching events306

b := {e1 = (u1, v), e2 = (u2, v)} and b′ := {e1 = (u′
1, v

′), e2 = (u′
2, v

′)},307

where ei and e′i lie on the dipath π(pi), for i = 1, 2.308

Assume without loss of generality that the vertex v appears before v′ in the dipath309

π(p1). We then claim that v must also appear before v′ in the dipath π(p2), since310

otherwise we would have a directed cycle between v and v′, thus contradicting the311

fact that H ′ is acyclic. Since the tie-breaking scheme π is consistent (Lemma 3.3),312

it follows that the dipaths π(p1) and π(p2) must share the subpath π(v, v′). Thus,313

π(p1) and π(p2) use the same edge that enters the node v′, i.e., e′1 = e′2. However,314

by definition of a branching event, the edges that enter a node must be distinct,315

contradicting the fact that b′ is a branching event. This implies that there cannot be316

two branching events for the terminal pairs p1 and p2, thus proving the lemma.317

We now present our algorithm for constructing an RPM for a DAG.318

Algorithm 3.1 MinorSparsifyDag (k-terminal DAG G, pair-set P )

1: Set H = ∅.
2: Compute a consistent tie-breaking scheme π for shortest paths in G.
3: For each p ∈ P , add the shortest path π(p) to H.
4: while there is an edge (u, v) such that v is non-terminal and deg−H(v) = 1 do

5: Contract the edge (u, v).
6: end while

7: return H

Lemma 3.6. Given a k-terminal DAG G with a pair-set P , Algorithm 3.1 outputs319

an RPM H for G with respect to P with O(|P |2) non-terminals.320

Proof. We first argue that H is an RPM with respect to the terminals. Indeed,321

after Line 2 of the algorithm, graph H can viewed as deleting vertices and edges322

from G that do not lie on any of the shortest path among terminal pairs in P , chosen323

according to the scheme π. Thus, at this point H is clearly a minor of G that preserves324

the reachability information among the pairs in P . The edge contractions we perform325

in the remaining part of the algorithm guarantee that the resulting H remains an326

RPM of G with respect to P .327

To bound the number of non-terminals in H, note that every non-terminal v ∈328

VH \ K has in-degree at least 2, and thus it corresponds to at least one branching329

event. Lemma 3.5 shows that the number of branching events is at most O(|P |2).330

Observing that edge contractions in Line 5 do not affect this number, we get that the331

number of non-terminals in H is O(|P |2).332

From DAG to general digraphs. We next show how the construction of RPMs can333

be reduced from general digraphs to DAGs, and prove the following theorem.334

Theorem 3.7. Given a k-terminal digraph G with a pair-set P , there exists a335

polynomial-time algorithm that outputs an RPM H for G with respect to P with336

O(|P |2) non-terminals.337

Taking P to be the trivial pair-set, i.e., P being the set of all possible k(k−1) terminal338

pairs, we get an RPM of size O(k4).339
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Algorithm 3.2 MinorSparsify (k-terminal digraph G, pair-set P )

1: // Preprocessing Step

2: Compute a strongly connected component (SCC) decomposition of G. Let D and
DK denote the set of all SCCs, and the set of SCCs containing terminals in G,
respectively.

3: Let f be some initially empty labelling that records the SCC of every vertex.
4: for all SCC C ∈ D do

5: if C contains some terminal x ∈ K then

6: For all v ∈ C, set f(v) = x.
7: else

8: Choose some arbitrary u ∈ C, and set f(v) = u, for all v ∈ C.
9: end if

10: end for

11: for all SCC C ∈ DK do

12: while C contains some non-terminal v do

13: Choose some directed edge (v, u) inside C, and contract v into u.
14: end while

15: end for

16: Let Ĝ denote the resulting graph. Let D̂ and D̂K denote the set of all SCCs, and
the set of SCCs containing terminals in Ĝ, respectively.

17:

18: // Main Procedure

19: Contract each SCC in D̂ into a single vertex, producing the DAG G′ = (V ′, E′).
20: Let K ′ = ∅ and P ′ = ∅ be the terminal set and pair-set of G′, respectively.
21: For all k ∈ K, add f(k) to K ′ and remove duplicates, if any.
22: For all (s, t) ∈ P , add (f(s), f(t)) to P ′ if f(s) 6= f(t).
23: Set H ′ =MinorSparsifyDag(G′, P ′).
24: Let H be the graph obtained by expanding back all contracted SCCs in D̂K in

H ′.
25: return H

Proof of Theorem 3.7. In order to construct an RPM for G, we first reduce G to340

be a DAG by contracting all the strongly connected components (SCCs) into a single341

vertex in G. However, since a SCC might contain more than one terminal, we will342

contract such SCCs to be cliques on the corresponding terminals. Then we apply343

Algorithm 3.1 on the resulting graph by viewing these terminal-cliques as a “super”344

vertex which we can expand back to restore all its terminals. We refer the reader345

to the overview at the beginning of Section 3 for more intuition. Our algorithm for346

constructing RPMs for general digraphs is formally described in Algorithm 3.2.347

By construction, the algorithm runs in polynomial time. The main intuition348

behind the correctness of the algorithm lies on two important observations. First,349

vertices belonging to the same SCCs can always reach each other. Second, vertices350

belonging to different SCCs can reach each other if the corresponding vertices in the351

contracted graph can do so. We have the following useful observation.352

Fact 3.8. For any strongly connected digraph G = (V,E), contracting any edge353

e ∈ E results in another strongly connected digraph G′ = (V ′, E′).354

Now we show that the graph H output by MinorSparsify is an RPM of G. It355

is easy to verify that the produced graph H is indeed a minor of G. To show the356
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correctness, we will prove that H preserves the reachability information among all357

pairs from P in G. Before doing that, observe that the graph Ĝ obtained after the358

preprocessing step is a reachability preserving minor of G with respect to P . Indeed,359

this can be inferred by a repeated application of Fact 3.8 to each SCC containing360

terminal vertices.361

Now, let (s, t) ∈ P be any terminal-pair in G. Assume that t is reachable from s362

in G. We distinguish two cases:363

1. If s and t belong to the same SCC in D, they do also belong to the corre-364

sponding SCC in D̂. In Line 13, s and t are contracted into a single terminal.365

However, since the contracted SCC contains terminals, it is expanded back366

to its original form in D̂ in Line 24. Thus, it follows that t is reachable from367

s in the output graph H.368

2. If s and t do not belong to the same SCC in D, they must also not belong369

to the same SCC in D̂. Let f(s) and f(t) denote the terminals in the DAG370

G′ obtained by contracting their corresponding components in D̂ (Line 13).371

Since t is reachable from s in Ĝ, note that f(t) must also be reachable from372

f(s) in G′. By Lemma 3.6, it follows that f(t) is reachable from f(s) in the373

RPM H ′ of G′. Expanding back the SCCs that contain terminals in H ′ (Line374

24), we can construct the directed path s  f(s)  f(t)  t in H, which375

shows that t is also reachable from s in the output graph H.376

When t is not reachable from s in G, we can similarly show that t is also not reachable377

from s in H, thus concluding the correctness proof.378

We now bound the number of non-terminals in H. Since the DAG G′ has |P ′| ≤379

|P | pairs, it follows by Lemma 3.6 that H ′ has O(|P |2) non-terminals. Further note380

that the algorithm in Line 24 only expands back terminals and does not increase the381

number of non-terminals. Therefore, the number of non-terminals in H is O(|P |2).382

3.2. An Improved Bound of O(k3). Now we describe our improved construc-383

tion. As mentioned earlier, the main idea of this improvement is to use a better384

construction of RPMs for DAGs.385

A better construction of RPMs for DAGs. Given a k-terminal DAG G = (V,E)386

with a pair-set P , a digraph H = (V,EH) with EH ⊆ E is a reachability preserver387

(RP) of G if for any (s, t) ∈ P , there is a directed path from s to t in H iff there is388

a directed path from s to t in G. We say that H is a minimal reachability preserver389

of G if (i) H is an RP of G, and (ii) no edge can be deleted from H such that the390

resulting digraph satisfies (i). The following lemma is implicit in [2], and we include391

it here for the sake of completeness.392

Lemma 3.9. The DAG H = (V,EH) has at most k · |P | branching events.393

Proof. For each pair (s, t) ∈ P such that t is reachable from s, we associate an394

arbitrary directed path π̃(s, t) from s to t in H. Since H is a minimal reachability395

preserver, it holds that for every edge e ∈ EH , there must be some pair (s, t) ∈ P396

such that deleting e from H implies that s cannot reach t, i.e., s 6 t in H \ {e}. This397

naturally leads to a relationship between edges in H and pairs in P . Specifically, we398

say that every edge e ∈ EH is owned by one such pair (s, t) ∈ P .399

Next, for each (s, t) ∈ P such that t is reachable from s, we let BH
(s,t) denote the400

set of all branching events {e1, e2} in H such that either e1 or e2 is owned by (s, t).401

Note that for any branching event {e1, e2} such that e1 is owned by the pair (s, t) ∈ P ,402

e2 cannot be owned by (s, t). This is true as otherwise there would be two directed403

paths from s to t, where one path uses e1 and the other uses e2; then after deleting404
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edge e1, there is still another path from s to t, which contradicts the assumption that405

e1 is owned by (s, t). This implies that for any event {e1, e2} ∈ BH
(s,t), exactly one of406

e1 or e2 is owned by (s, t).407

Consider the set
⋃{BH

(s,t) | (s, t) ∈ P} and note that it contains all the branching408

events. In order to prove the lemma, it suffices to show that |BH
(s,t)| ≤ k, for every409

(s, t) ∈ P . To this end, suppose towards contradiction that there exists a pair (s, t) ∈410

P such that |BH
(s,t)| ≥ k + 1. Then by the pigeon-hole principle, there exist two411

branching events412

{(x1, b1), (x2, b1)}, {(y1, b2), (y2, b2)} ∈ BH
(s,t)413

entering the nodes b1 and b2, such that (s, t) owns (x1, b1) and (y1, b2), and the other414

edges are owned by pairs that share a common left terminal (as there are at most k415

distinct terminals), i.e.,416

(x2, b1) is owned by (u, v1) and (y2, b2) is owned by (u, v2),417

for some u ∈ K and (u, v1), (u, v2) ∈ P . Recall that by the definition of BH
(s,t), y1 and418

y2 are distinct vertices. We claim that b1 6= b2. Suppose towards contraction that419

b1 = b2. Then it must be that either (i) y2 6= x2 or (ii) y2 = x2 and x1 6= y1. In case420

(i), there are two paths from u to v1, one using the edge (x2, b1) and the other using421

(y2, b1), which contradicts the fact that (x2, b1) is owned by (u, v1). In case (ii), there422

are two paths from s to t, one using the edge (x1, b1) and the other using (y1, b1),423

which contradicts the fact that (x1, b1) is owned by (s, t), and shows that our claim424

holds.425

Next, assume without loss of generality that the node b1 appears before b2 in426

π̃(s, t). Now, since the pair (u, v2) owns the edge (y2, b2), every path u  v2 must427

use the edge (y2, b2), which in turn implies that every path u b2 must use the edge428

(y2, b2). Furthermore, since H is a DAG, the edge (y2, b2) must be the last edge on429

every path from u to b2.430

Finally, we can form a path u  b2 by first taking the path6 π̃(u, v1)[u  b1]431

and then extend it by concatenating it with the path π̃(s, t)[b1  b2]. Note that since432

(y2, b2) is the last edge on this path and b1 appeared before b2, it must be the case433

that (y2, b2) ∈ π̃(s, t)[b1  b2]. This further implies that (y2, b2) ∈ π̃(s, t). Therefore,434

the path π̃(s, t) contains both (y1, b2) and (y2, b2), which contradicts the fact that435

π̃(s, t) is a simple path from s to t and completes the proof of the lemma.436

The above lemma leads to the following algorithm for constructing an RPM for437

a DAG.438

Algorithm 3.3 MinorSparsifyDag2 (k-terminal DAG G, pair-set P )

1: Set H = (V,EH) to be the minimal reachability preserver with respect to P .
2: Remove isolated non-terminal vertices from H, if any.
3: while there is an edge (u, v) such that v is non-terminal and deg−H(v) = 1 do

4: Contract the edge (u, v).
5: end while

6: return H

6Let x, y, x′, y′ ∈ V , π̃(x, y) be a directed path from x to y, and suppose x′, y′ ∈ π̃(x, y) with x′

appearing before y′. Then π̃(x, y)[x′
 y′] denotes the directed subpath from x′ to y′ in π̃(x, y).
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By using similar arguments as in the proof of Lemma 3.6, we have the following439

lemma.440

Lemma 3.10. Given a k-terminal DAG G with a pair-set P , Algorithm 3.3 out-441

puts an RPM H for G with respect to P with O(k · |P |) non-terminals.442

We remark that the above construction builds upon the minimal reachability443

preserver H (Line 1 in Algorithm 3.3), which can be constructed in polynomial time.444

This can be achieved by a simple greedy algorithm: if there exists an edge e in G whose445

removal does not change the reachability information among pairs in P , delete e from446

G; repeat until no such edge exists. Moreover, note that the non-terminal removals447

and the edge contractions in Lines 2-4 of Algorithm 3.3 can easily be implemented448

in polynomial time. Therefore, we get that for any DAG G, the RPM H of G from449

Lemma 3.10 can be constructed in polynomial time.450

From DAGs to general digraphs. By using similar arguments as in the proof of451

Theorem 3.7, we have the following guarantee.452

Theorem 3.11. Given a k-terminal digraph G with a pair-set P , there exists453

a polynomial-time algorithm that outputs an RPM H for G with respect to P with454

O(k · |P |) non-terminals.455

Taking P to be the trivial pair-set we get an RPM of size O(k3), which proves Theo-456

rem 1.1.457

4. Reachability-Preserving Minors for Planar Digraphs. In this section458

we show that any k-terminal planar digraph G admits a reachability-preserving minor459

of size O(k2 log k) and thus prove Theorem 1.2. This matches the lower-bound of460

Theorem 1.3 up to an O(log k) factor. The main idea is as follows. Given a k-461

terminal planar digraph G with the trivial pair-set P , |P | = k(k − 1), our approach462

is to slightly increase the number of terminals while considerably reducing the size of463

the pair-set P , under the condition that no reachability information is lost among the464

terminal-pairs in P .465

Preprocessing Step. For any k-terminal n-vertex planar digraph G with terminal466

set K, we can first apply Theorem 1.1 to get a reachability-preserving minor G′ with467

O(k3) vertices and then restrict our attention to finding an RPM for G′. To simplify468

the notation, throughout this section, we will use G instead of G′, i.e., we assume469

that our terminal graph G has at most n′ := O(k3) vertices. Furthermore, without470

loss of generality, we can assume that there is no isolated vertex in K. Otherwise, we471

can simply find an RPM with respect to the set of non-isolated terminal vertices, and472

then add all the isolated terminals back.473

Decomposition into Path-Separable Digraphs and the Algorithm. Given a digraph474

G = (V,E), a set S ⊂ V is called an α-separator of G if the removal of S partitions475

G into connected components (when forgetting the orientation of edges), each of size476

at most α · |V |, where 1/2 ≤ α < 1. If the vertices of S consist of the union over r477

directed paths of G, for some r ≥ 1, we say that G is (α, r)-path separable. We now478

review the following reduction due to Thorup [56] and include its proof in Appendix A479

for the sake of completeness.480

Theorem 4.1 ([56]). Given a planar digraph G = (V,E) with n′ = O(k3)481

vertices, we can construct a series of digraphs G0, . . . , Gb for some b = O(k3) such482

that the total number of vertices and edges over all Gi’s is linear in the number of483

vertices and edges in G, and484

1. Each vertex and edge of G appears in at most two Gi’s.485
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2. For all u, v ∈ V , if there is a directed path R from u to v in G, there is a Gi486

that contains R.487

3. Each Gi = (Vi, Ei) is (1/2, 6)-path separable. If we let Si denote the set of 6488

directed paths corresponding to the 1/2-separator, then Si induces a connected489

subgraph of the underlying undirected graph Gi.490

4. For each i ≥ 0, there exists a special vertex ri in Gi such that all vertices in491

V0 and Vi \ {ri}, i ≥ 1 belong to V . Furthermore, ri can only be the endpoint492

of any path Q in Si and the path Q− {ri} is also contained in G.493

5. Each Gi is a minor of G.494

We now review how directed reachability can be represented by a separator that495

consists of directed paths. Let G be a k-terminal directed graph that contains some496

directed path Q. Assume that the vertices of Q are ordered in increasing order in the497

direction of the path. For each terminal x ∈ K, let tox[Q] be the first vertex in Q498

that can be reached by x, and let fromx[Q] be the last vertex in Q that reaches x. If499

x does not reach Q, then tox[Q] = ∅, and if Q does not reach x, then fromx[Q] = ∅.500

We say that x connects to Q via tox[Q] if tox[Q] 6= ∅, and x connects from Q via501

fromx[Q] if fromx[Q] 6= ∅.502

The following fact immediately follows.503

Fact 4.2. For any terminal pair (s, t), there is a directed path from s to t inter-504

secting Q if and only if s connects to Q via tos[Q] and t connects from Q via fromt[Q],505

and tos[Q] equals or precedes fromt[Q] in Q.506

We now combine the above tools to give our labelling algorithm Algorithm 4.1507

aimed at reducing the size of the trivial pair-set P = K ×K. That is, we will mark508

some non-terminals in G as new terminals and find a terminal pair-set P ′ of smaller509

size that preserves reachability of pairs in K ×K. By Theorem 4.1, we restrict our510

attention only to the digraphs Gi. Let Ki := V (Gi) ∩ K be the set of terminals511

restricted to the graph Gi.512

Lemma 4.3. Let G = (V,E) be a k-terminal planar digraph with n′ = O(k3)513

vertices such that there is no isolated vertex in the terminal set K. Let P ′ :=
⋃b

i=0 P
′
i ,514

where P ′
i is the pair-set output by running Algorithm 4.1 on the digraph Gi. Then515

all the vertices involved in P ′ belong to V and the size of |P ′| is at most O(k log k).516

Moreover, if a digraph H is a reachability-preserving minor of G with respect to P ′,517

then H is a reachability-preserving minor of G with respect to all terminal pairs.518

Proof. Let G0, . . . , Gb be the graphs obtained by the reduction in Theorem 4.1519

and consider applying Algorithm 4.1 to each of them. By Item 2 of Theorem 4.1, each520

terminal appears in at most two Gi’s. Thus at each level of the recursion (studied521

over all Gi’s), there will be at most O(k) active Gi’s. Note that by construction, all522

the vertices involved in the pair-set P ′ belong to V , i.e., no special vertex ri (i ≥ 1)523

will be marked as a new terminal. Also, note that the separator properties of planar524

graphs imply that the subgraph at each recursive level is (1/2, 6)-separable and there525

are O(log n′) = O(log k) recursive calls overall.526

We next bound the size of the pair-set P ′. Let q denote the total number of527

newly added terminals in Lines 9 and 10 per level of recursion. Since there are O(k)528

terminals, each adding at most O(1) new terminals, it follows that q = O(k). First,529

we argue about the number of pairs added in Lines 9 and 10. Since this is bounded530

by q, it follows that there are O(k log k) pairs added in Lines 9 and 10 over all calls531

of ReducePairSet. Second, we bound the number of pairs added when sparsifying532

the separator paths, i.e., pair additions in Line 13. For all the separators in the same533
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Algorithm 4.1 ReducePairSet (planar digraph Gi, vertex ri ∈ Vi, terminals Ki)

1: if |V (Gi)| ≤ 1 or Ki = ∅ then return ∅.
2: Let P ′

i = ∅ be the new pair-set.
3: Compute a 1/2-separator Si of Gi consisting of 6 directed paths by Item 3 of

Theorem 4.1.
4: for each directed path Q ∈ Si do

5: // Addition of terminal connections with Q
6: Let Q′ = Q ∩Ki.
7: if ri = r0, then let z = ∅; otherwise let z = ri.
8: for each terminal x ∈ Ki do

9: If x connects to Q − {z} via tox[Q], then mark tox[Q] a terminal, add it
to Q′, and add (x, tox[Q]) to P ′

i .
10: If x connects from Q− {z} via fromx[Q], then mark fromx[Q] a terminal,

add it to Q′, and add (fromx[Q], x) to P ′
i .

11: end for

12: // Sparsification of Q using Q′

13: Define directed pairs (s, t), where s and t are consecutive terminals of Q′,
according to the ordering of Q and add all these pairs to P ′

i .
14: end for

15: Let {C(j)
i }ℓj=1 be the resulting connected components of Gi \ Si.

16: for j = 1, . . . , ℓ do

17: Let K
(j)
i = C

(j)
i ∩Ki.

18: Let G
(j)
i be the graph obtained by first taking the subgraph of Gi induced by

C
(j)
i ∪ Si and then contracting all vertices in Si to the root rSi

.
19: end for

20: // Note that reachability information about terminals in Si are

taken care of.

21: return P ′
i ∪

⋃ℓ
j=1 ReducePairSet(G

(j)
i , rSi

,K
(j)
i ).

level of recursion, note that q equals
∑

j |Q′
j |, where Q′

j denotes the set of newly added534

terminals for a single separator path, and the sum is over all separators at the same535

recursive level. By Line 13, it follows that we need only |Q′
j | − 1 pairs to represent536

each such directed path. Thus, per recursive call, the total number of newly added537

pairs is at most
∑

j(|Q′
j | − 1) = O(q) = O(k). Summing these over all O(log k) levels538

of recursion gives that |P ′| = O(k log k).539

Finally, we argue that P ′ is a pair-set that can recover reachability information540

among terminals. First, note that for any terminal v ∈ K, there exists at least one541

pair in P ′ that contains v. This is true as v is not isolated, and thus at least one pair542

(v, t) or (s, v) will be added in Lines 9 and 10.543

Fix any terminal pair (s, t) ∈ K × K. If t is not reachable from s, then in any544

RPM H of G with respect to P ′, there is also no path from s to t in H. Otherwise,545

assume that t is reachable from s in G. Let R be a directed path from s to t in G.546

By Item 2 of Theorem 4.1, there is some digraph Gi that contains R. Then, R must547

intersect with some separator path Q, at some level of the recursion of the above548

algorithm on Gi. Furthermore, this path entirely belongs to G and thus does not uses549

any special vertex ri (for i ≥ 1). The above argument gives that P ′ contains all the550

necessary information to give a (possibly) another directed path from s to t in G.551
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Applying Theorem 3.11 on the digraph G with the pair-set P ′, as defined by the above552

lemma, we get Theorem 1.2.553

4.1. Reachability-Preserving Minors: Lower-bound for Planar DAGs.554

In this section we prove that there exists an infinite family of k-terminal acyclic555

directed grids such that any RPM for such graphs needs Ω(k2) non-terminals (i.e.,556

prove Theorem 1.3). We achieve this by adapting the ideas of Krauthgamer et al. [40],557

from their lower-bound proof on distance-preserving minors for undirected graphs.558

We start by defining of our lower-bound instance. Fix k such that r = k/4 is an559

integer. Initially, construct an undirected (r+1)×(r+1) grid, where all the k terminals560

lie on the boundary, except at the corners, and declare all non-boundary vertices non-561

terminals. Remove the four corner vertices, and then all boundary edges connecting562

the terminals. Now, make the graph directed by first directing each horizontal edge563

from left to right, and then directing each vertical edge from top to bottom. Let G564

denote the resulting k-terminal directed grid. It is easy to verify that G is acyclic.565

Theorem 4.4. For infinitely many k ∈ N there exists a k-terminal acyclic di-566

rected grid G such that any RPM of G must use Ω(k2) non-terminals.567

Proof. Let G be the k-terminal grid defined as above. Note that there are r568

terminals on each side of the grid. Let H be any RPM of G. Recall that H contains569

all terminal vertices from G. Furthermore, let x1, x2, . . . , xr be the terminals on the570

left-hand side of the grid, ordered from top to bottom. Similarly, let y1, y2, . . . , yr be571

the terminals on the right-hand side. Let u1, u2, . . . , ur be the terminals on the top-572

side of the grid, ordered from left to right. Similarly, let v1, v2, . . . , ur be the terminals573

on the bottom-side. By construction of G, for an index pair (i, j) with i < j, there is574

no directed path from xj to yi or uj to vi.575

We first note that there is a unique directed path from xi to yi, and a unique576

path from ui to vi in G for any 1 ≤ i ≤ r. We then note that we cannot perform577

any edge or vertex deletion in the process of constructing H. This is true as any edge578

deletion will irreversibly destroy the reachability of some terminal pair. We now show579

the following lemma.580

Lemma 4.5. For any i = 1, . . . , r, there is a unique directed path from xi to yi in581

H.582

Proof. Assume to the contrary that there are at least two directed paths from xi583

to yi in H. Since H is an RPM of G and there is a unique path from xi to yi in G, then584

an edge contraction must have been performed to get H from G. Suppose without585

loss of generality that a vertical edge from row j to row j + 1 has been contracted.586

Then after such a contraction, the vertex yj will be reachable from xj+1 in H, which587

will contradict the fact that yj is not reachable from xj+1 in G and that H is an RPM588

of G. Thus, there is unique path from xi to yi in H.589

We will let P i
H be the unique directed path from xi to yi in H, for i = 1, . . . , r.590

Throughout we will refer to such paths as horizontal.591

Claim 4.6. The horizontal directed paths P 1
H , P 2

H , . . . , P r
H are vertex disjoint in592

H.593

Proof. Suppose towards contradiction that there exist some i and j with i < j594

such that P i
H and P j

H intersect at some vertex z in H. This implies that there are595

directed paths from xi and xj to z, and from z to yi and yj . The latter implies that596

there is a directed path from xj to yi in H. However, by construction of G, we know597

that xj cannot reach yi for i < j, contradicting the fact that H is an RPM of G.598
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We can apply a symmetric argument to the vertical paths in H. More specifically,599

define Qi
H to be the unique directed path from ui to vi in H, for i = 1, . . . , r. (The600

uniqueness of such paths can be shown similarly to the proof of Lemma 4.5.) Then601

we get the following symmetric claim.602

Claim 4.7. The vertical directed paths Q1
H , Q2

H , . . . , Qr
H are vertex disjoint in H.603

We next argue that all the horizontal and the vertical paths must intersect with each604

other.605

Claim 4.8. Any pair of horizontal and vertical paths P i
H and Qj

H intersect in H.606

Proof. Since H is a minor of G, any directed path that connects two terminals in607

H can be mapped back to a directed path connecting two terminals in G. Let Pi and608

Qj be the corresponding directed paths in G that are obtained by expanding back609

the directed paths P i
H and Qj

H in H. By construction of G, the horizontal and the610

vertical directed paths between terminals are unique, implying that Pi and Qj must611

intersect at some vertex of G. By performing the backtracked minor-operations on612

this vertex yields an intersection vertex between P i
H and Qj

H in H.613

The last claim we need shows that no pair of horizontal and the vertical paths inter-614

sects intersect at a terminal vertex.615

Claim 4.9. No pair of horizontal and vertical paths P i
H and Qj

H intersects at a616

terminal vertex in G.617

Proof. Consider the terminal pairs (xi, yi) and (uj , vj) corresponding to the paths618

P i
H and Qj

H . Note that by construction of G, the set of terminals reachable from both619

xi and uj in G is {yi, yi+1, . . . , yr} ∪ {vj , vj+1, . . . , vr}. Since H is an RPM of G, xi620

and uj must also be able to reach this terminal-set in H and also P i
H and Qj

H cannot621

intersect at any terminal in {y1, . . . , yi−1} ∪ {v1, . . . , vj−1}. Now, suppose towards622

contradiction that P i
H and Qj

H intersect at some terminal yk, for k ∈ {i + 1, . . . , r}.623

This implies that in the path P i
H , there is a directed path from yk to yi, for k > i,624

giving a contradiction by construction of G. Furthermore, observe that P i
H and Qj

H625

cannot intersect at yi, as otherwise we would have a directed path from yi to vj ,626

which is a contradiction by construction of G. Applying a similar argument to the627

case when paths intersect at some terminal vℓ, for k ∈ {j+1, . . . , r}, gives the claim.628

We know have all the necessary tools to prove the theorem. Claim 4.8 shows that the629

paths P i
H and Qj

H intersect in H and let zi,jH denote one of the intersection vertices.630

Now, we must show that all these vertices are distinct. To this end, assume that631

zi1,j1H = zi2,j2H . Since these vertices belong to both P i1
H and P i2

H , by Claim 4.6 we632

get that i1 = i2. Similarly, by Claim 4.7 we get that j1 = j2. Thus, we have that633

all vertices zi,jH , for i, j = 1, 2, . . . , r are distinct. Since Claim 4.9 implies that none634

of this intersection vertices is a terminal, we conclude that H must contain at least635

r2 = (k/4)2 non-terminals.636

5. An Exact Cut Sparsifier of Size O(k2). In this section we show that given637

a k-terminal planar graph, where all terminals lie on the same face, one can construct638

a quality-1 cut sparsifier of size O(k2). Note that it suffices to consider the case when639

all terminals lie on the outer face. We first present some basic tools.640

5.1. Basic Tools.641

Wye-Delta Transformations. In this section we investigate the applicability of642

some graph reduction techniques that aim at reducing the number of non-terminals643
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Fig. 1: Wye-Delta operations: 1. Degree-one reduction; 2. Series reduction; 3.
Parallel reduction; 4. Wye-Delta transformation; 5. Delta-Wye transformation.

in a k-terminal graph. We start by reviewing the so-called Wye-Delta operations644

in graph reductions. These operations consist of five basic rules, which we describe645

below. (See Fig. 1 for illustrations.)646

1. Degree-one reduction: Delete a degree-one non-terminal and its incident edge.647

2. Series reduction: Delete a degree-two non-terminal y and its incident edges648

(x, y) and (y, z), and add a new edge (x, z) of capacity min{c(x, y), c(y, z)}.649

3. Parallel reduction: Replace all parallel edges by a single edge whose capacity650

is the sum of the capacities over all parallel edges.651

4. Wye-Delta transformation: Let x be a degree-three non-terminal with neigh-652

bour set Γ(x) = {u, v, w}. Assume without loss of generality7 that for any653

pair u, v ∈ Γ(x), c(u, x) + c(v, x) ≥ c(w, x), where w ∈ Γ(x) \ {u, v}. Then654

we can delete x (along with all its incident edges) and add edges (u, v), (v, w)655

and (w, u) with capacities (c(u, x) + c(v, x)− c(w, x))/2, (c(v, x) + c(w, x)−656

c(u, x))/2 and (c(u, x) + c(w, x)− c(v, x))/2, respectively.657

5. Delta-Wye transformation: Delete the edges of a triangle connecting x, y658

and z, introduce a new non-terminal vertex w and add new edges (w, x),659

(w, y) and (w, z) with edge capacities c(x, y) + c(x, z), c(x, y) + c(y, z) and660

c(x, z) + c(y, z) respectively.661

By definition, it holds that performing the above rules on a terminal graph pre-662

7Suppose there exist a pair u, v ∈ Γ(x) with c(u, x) + c(v, x) < c(w, x), where w ∈ Γ(x) \ {u, v}.
Then we can simply set c(w, x) = c(u, x) + c(v, x), since any terminal minimum cut would cut the
edges (u, x) and (v, x) instead of the edge (w, x).
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Fig. 2: Edge deletion transformation. Edge capacities are omitted.
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Fig. 3: Edge replacement transformation. Edge capacities are omitted.

serves exactly all terminal minimum cuts. That is, we have the following lemma.663

Lemma 5.1. Let G be a k-terminal graph and G′ be a k-terminal graph obtained664

from G by applying one of the rules 1− 5. Then G′ is a quality-1 cut sparsifier of G.665

For our application, it will be useful to enrich the set of rules by introducing two666

new operations. These operations can be realized as series of the operations 1-5. (See667

Fig. 2 and 3 for illustrations.)668

6. Edge deletion: For a degree-three non-terminal with neighbours u, v, the669

edge (u, v) can be deleted, if it exists. To achieve this, we use a Delta-Wye670

transformation followed by a series reduction.671

7. Edge replacement: For a degree-four non-terminal vertex with neighbours672

x, u, v, w, if the edge (x, u) exists, then it can be replaced by the edge (v, w).673

To achieve this, we use a Delta-Wye transformation followed by a Wye-Delta674

transformation.675

A k-terminal graph G is Wye-Delta reducible to another k-terminal graph H, if676

G is reduced to H by repeatedly applying one of the operations 1-7.677

Lemma 5.2. Let G and H be k-terminal graphs. Moreover, let G be Wye-Delta678

reducible to H. Then H is a quality-1 cut sparsifier of G.679

Proof. Observe that the rules 1-7 do not affect any terminal vertex and each rule680

preserves exactly all terminal minimum cuts by Lemma 5.1. An induction on the681

number of rules needed to reduce G to H proves the claim.682

Grid Graphs. A grid graph is a graph with n×n vertices {(u, v) : u, v = 1, . . . , n},683

where (u, v) and (u′, v′) are adjacent if |u′ − u|+ |v′ − v| = 1. For k < n, a half-grid684

graph with a set K of k terminals is a graph Tn
k = (V,E) with K ⊂ V and n(n+1)/2685

vertices {(i, j) : i ≤ j and i, j = 1, . . . , n}, where (i, j) and (i′, j′) are connected by686

an edge if |i′ − i| + |j′ − j| = 1, and additional diagonal edges between (i, i) and687

(i+ 1, i+ 1) for i = 1, . . . , n− 1. Moreover, each terminal vertex in Tn
k must be one688

of its diagonal vertices, i.e., for any terminal vertex x ∈ K, it is of the form (m,m)689

for some m ∈ {1, . . . , n}. Let T̂n
k be the same graph as Tn

k but excluding the diagonal690
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edges.691

Graph Embeddings. Throughout this paper, we will be dealing with the embed-692

ding of a planar graph into a square grid graph. One way of drawing graphs in the693

plane are orthogonal grid-embeddings [58]. In this setting, the vertices correspond to694

distinct points and edges consist of alternating sequences of vertical and horizontal695

segments. Equivalently, one can view this as drawing our input graph as a subgraph696

of some grid. Formally, a node-embedding ρ of G1 = (V1, E1) into G2 = (V2, E2) is697

an injective mapping that maps V1 into V2, and E1 into paths in G2, i.e., (u, v) maps698

to a path from ρ(u) to ρ(v), such that every pair of paths that correspond to two699

different edges in G1 is vertex-disjoint (except possibly at the endpoints). Note that700

if G2 is a planar graph, then ρ(G1) and G1 are also planar. We call ρ an orthogonal701

embedding if G1 is planar and G2 is a grid. Moreover, given a planar graph G1 drawn702

in the plane, the embedding ρ is called region-preserving if ρ(G1) and G1 have the703

same planar topological embedding.704

Let G1 = (V,E) be a k-terminal graph with terminal set K. For any v ∈ K,705

we will mark ρ(v) as the corresponding terminal in ρ(G1). Note that a non-terminal706

vertex in G1 will not be mapped to a terminal in ρ(G1) as ρ is injective. That is,707

there is a one-to-one mapping from K to the terminal set in ρ(G1). Although the708

embedding does not consider the edge capacities in G1, we can still guarantee that709

such an embedding preserves all terminal minimum cuts, for which we make use of710

the following operation:711

1. Edge subdivision: Let (u, v) be an edge of capacity c(u, v). Delete (u, v),712

introduce a new vertex w and add edges (u,w) and (w, v), each of capacity713

c(u, v).714

The following lemma shows that a node-embedding is a cut preserving mapping.715

Lemma 5.3. Let G1 be a k-terminal graph. Let ρ be a node-embedding from G1716

to some grid and ρ(G1) be a k-terminal graph defined as above. Then ρ(G1) preserves717

exactly all terminal minimum cuts of G.718

Proof. We can view each path obtained from the embedding as taking the edge719

corresponding to the path endpoints in G1 and performing edge subdivisions finitely720

many times. We claim that such subdivisions preserve all terminal cuts.721

Indeed, let us consider a single edge subdivision for (u, v) (the general claim722

then follows by induction on the number of edge subdivisions). Fix S ⊂ K and723

consider some S-separating minimum cut (U, V \U) in G1 cutting (u, v). Then, in the724

transformed graph ρ(G1), we can simply cut either the edge (u,w) or (w, v). Since by725

construction, the new edge has the same capacity as the subdivided edge, we get that726

capρ(G1)(δρ(G1)(ρ(U))) = capG1
(δG1

(U)), and in particular mincutρ(G1)(ρ(S), ρ(K \727

S)) ≤ mincutG1
(S,K \ S).728

Furthermore, sinceG1 is obtained by contracting two edges of the same capacity of729

ρ(G1), for any S ⊂ K and the corresponding ρ(S)-separating minimum cut (U ′, V \U ′)730

in ρ(G1), we have capρ(G1)(δρ(G1)(U
′)) ≥ capG1

(δG1
(ρ−1(U ′))). This implies that731

mincutρ(G1)(ρ(S), ρ(K \ S)) ≥ mincutG1
(S,K \ S). Combining the above gives the732

lemma.733

5.2. Our Construction. In this section we construct our exact cut sparsifier734

and prove that any planar k-terminal graph with all terminals lying on the same face735

admits a cut sparsifier of size O(k2) that is also planar.736

5.2.1. Embedding into Grids. It is well-known that one can obtain an or-737

thogonal embedding of a planar graph with maximum-degree at most three into a738
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grid (see Valiant [58]). However, our input planar graph can have arbitrarily large739

maximum degree. In order to be able to make use of such an embedding, we need740

to first reduce our input graph to a bounded-degree graph while preserving planarity741

and all terminal minimum cuts. We achieve this by making use of a vertex splitting742

technique, which we describe below.743

Given a k-terminal planar graph G′ = (V ′, E′, c′) with K ⊂ V ′ lying on the outer744

face, vertex splitting produces a k-terminal planar graph G = (V,E, c) with K ⊂ V745

such that the maximum degree of G is at most three. Specifically, for each vertex v746

of degree d > 3 with neighboring vertices u1, . . . , ud, we delete v and introduce new747

vertices v1, . . . , vd along with edges {(vi, vi+1) : i = 1, . . . , d − 1}, each of capacity748

C + 1, where C =
∑

e∈E′ c′(e). Further, we replace the edges {(ui, v) : i = 1, . . . , d}749

with {(ui, vi) : i = 1, . . . , d}, each of corresponding capacity. If v is a terminal vertex,750

we set one of the vi’s to be a terminal vertex. It follows that the resulting graph G751

is planar and terminals can be still embedded on the outer face. Note that while the752

degree of every vertex vi is at most 3, the degree of any other vertex is not affected.753

Claim 5.4. Let G′ and G be k-terminal graphs defined as above. Then G pre-754

serves exactly all minimum terminal cuts of G′, i.e., G is a quality-1 cut sparsifier of755

G′.756

Proof. It suffices to prove the case where G is obtained from G′ by a single vertex757

splitting. Then the claim follows by induction on the number of vertex splittings758

required to transform G′ to G.759

Let S ⊂ K and (U, V \U) be an S-separating cut in G of size mincutG(S,K \S).760

Suppose towards contradiction that δ(U) contains an edge of the form (vj , vj+1), for761

some j, which in turn gives that cap(δ(U)) ≥ C+1. Then we can move all the points762

vi to one of the sides of the cut (U, V \ S) and obtain a new S-separating cut in G763

of cost at most C, contradicting the fact that (U, V \ U) is a minimum terminal cut.764

Hence, it follows that δ(U) uses either edges that are in both G and G′ or edges of the765

form (ui, vi), which by construction have the same capacity as the edges (ui, v) in G′.766

Thus, an S-separating minimum cut in G corresponds to an S-separating minimum767

cut in G′ of the same cost. Since S is chosen arbitrarily, the claim follows.768

Let G = (V,E) be a k-terminal graph obtained by vertex splitting of all vertices769

of degree larger than 3 of G′ = (V ′, E′). Further, let n′ = |V ′|, m′ = |E′|, n = |V |770

and m = |E|. Then it is easy to show that n ≤ 2m′ and m ≤ m′ + n ≤ 3m′. Since G′771

is planar, we have that n = O(n′) and m = O(n′). Thus, by just a linear blow-up on772

the size of vertex and edge sets, we may assume without loss of generality that our773

input graph is a planar graph of degree at most three.774

Valiant [58] and Tamassia et al. [54] showed that a k-terminal planar graph G775

with n vertices and degree at most three admits an orthogonal region-preserving776

embedding into some square grid of size O(n)×O(n). By Lemma 5.3, we know that777

the resulting graph (with appropriate edge capacities) exactly preserves all terminal778

minimum cuts of G. We remark that since the embedding is region-preserving, the779

outer face of the input graph is embedded to the outer face of the grid. Therefore,780

all terminals in the embedded graph lie on the outer face of the grid. Performing781

appropriate edge subdivisions, we can make all the terminals lie on the boundary of782

some possibly larger grid. Further, we can add dummy non-terminals and zero edge783

capacities to transform our graph into a full-grid H. We observe that the latter does784

not affect any terminal min-cut. The above leads to the following:785

Lemma 5.5. Given a k-terminal planar graph G with n vertices, where all termi-786
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Fig. 4: Embedding grid into half-grid. Black vertices represent terminals while white
vertices represent non-terminals. The counter-clockwise ordering starts at the top
right terminal. Coloured edges and paths correspond to the mapping of the respective
edges: blue for edges ((i, 1), (i, 2)), red for edges ((n − 1, j), (n, j)), green for edges
((1, j), (2, j)) and yellow for edges ((i, n− 1), (i, n)), where i, j = 2, . . . , n− 1.

nals lie on the outer face, there exists a k-terminal grid graph H, where all terminals787

lie on the boundary such that H preserves exactly all terminal minimum cuts of G.788

The resulting graph has O(n2) vertices and edges.789

5.2.2. Embedding Grids into Half-Grids. Next, we show how to embed790

square grids into half-grid graphs (see Section 2), which will facilitate the application791

of Wye-Delta transformations. The existence of such an embedding was claimed in792

the thesis of Gitler [29], but no details on its construction were given.793

Let G be a k-terminal square grid on n × n vertices where terminals lie on the794

boundary of the grid. We obtain the following:795

Lemma 5.6. There exists a node embedding of the grid G into T ℓ
k , where ℓ =796

4n− 3.797

Proof. Our construction works as follows. We first fix an ordering on the vertices798

lying on the boundary of the grid in the order induced by the grid. Then we embed799

each vertex according to that order into the diagonal vertices of the half-grid, along800

with the edges that form the boundary of the grid. The sub-grid obtained by removing801

all boundary vertices is embedded appropriately into the upper-part of the half-grid.802

Finally, we show how to embed edges between the boundary and the sub-grid vertices803

and argue that such an embedding is indeed vertex-disjoint for any pair of paths. See804

Fig. 4 for an illustration.805

We start with the embedding of the vertices of G. Let us first consider the bound-806

ary vertices. The ordering imposed on these vertices can be viewed as starting with807

the upper-right vertex (1, n) and visiting the rest of vertices in a counter-clockwise808

direction until reaching the vertex (2, n). We map the vertices on the boundary as809

follows.810

1. For j = 2, . . . , n, the vertex (1, j) is mapped to the vertex (n−j+1, n−j+1),811

2. For i = 1, . . . , n−1, the vertex (i, 1) is mapped to the vertex (n+i−1, n+i−1),812
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3. For j = 1, . . . , n−1, the vertex (n, j) is mapped to the vertex (2n+j−2, 2n+813

j − 2),814

4. For i = 2, . . . , n, the vertex (i, n) is mapped to the vertex (4n−i−2, 4n−i−2).815

Now we consider the vertices that belong to the induced sub-grid S of G of size816

(n− 2)2 when removing the boundary vertices of our input grid. We map the vertex817

(i, j) to the vertex (n + i − 1, 2n + j − 2) for i, j = 2, . . . , n − 1. In other words, for818

every vertex of S we make a vertical shift by n − 1 units and an horizontal shift by819

2n−2 units. By construction, it is not hard to check that every vertex of G is mapped820

to a different vertex of T ℓ
k and all terminal vertices lie on the diagonal of T ℓ

k .821

We continue with the embedding of the edges of G. First, every edge between two822

boundary vertices in G is embedded to the edge between the corresponding mapped823

diagonal vertices of T ℓ
k , except the edge between (1, n) and (2, n). For this edge, we824

define an edge embedding between the corresponding vertices (1, 1) and (4n−4, 4n−4)825

of T ℓ
k by using the path:826

(1, 1) → (1, 2) → . . . → (1, 4n− 3) → (2, 4n− 3)827

→ . . . → (4n− 4, 4n− 3) → (4n− 4, 4n− 4).828829

Next, every edge of the sub-grid S is embedded in to the edge connecting the mapped830

endpoints of that edge in T ℓ
k . In other words, if (i, j) and (i′, j′) were connected by an831

edge e in S, then (n+ i− 1, 2n+ j − 2) and (n+ i′ − 1, 2n+ j′ − 2) are connected by832

an edge e′ in T ℓ
k and e is mapped to e′. Finally, the only edges that remain are those833

connecting a boundary vertex of G with a boundary vertex of S. We distinguish four834

cases depending on the edge position.835

1. For i = 2, . . . , n− 1, the edge ((i, 2), (i, 1)) is mapped to the horizontal path836

given by:837

(n+ i− 1, 2n) → (n+ i− 1, 2n− 1) → . . . → (n+ i− 1, n+ i− 1).838

2. For j = 2, . . . , n−1, the edge ((n−1, j), (n, j)) is mapped to the vertical path839

given by:840

(2n− 2, 2n+ j − 2) → (2n− 1, 2n+ j − 2) → . . . → (2n+ j − 2, 2n+ j − 2).841

3. For j = 2, . . . , n− 1, the edge ((2, j), (1, j)) is mapped to the L-shaped path:842

(n+ 1, 2n+ j − 2) → (n, 2n+ j − 2) → . . . → (n− j + 1, 2n+ j − 2)843

→ (n− j + 1, 2n+ j − 3) → . . . → (n− j + 1, n− j + 1).844845

4. For i = 2, . . . , n − 1, the edge ((i, n − 1), (i, n)) is mapped to the L-shaped846

path:847

(n+ i− 1, 3n− 3) → (n+ i− 1, 3n− 2) → . . . → (n+ i− 1, 4n− i− 2)848

→ (n+ i, 4n− i− 2) → . . . → (4n− i− 2, 4n− i− 2).849850

By construction, it follows that the paths in our edge embedding are vertex disjoint.851

5.2.3. Reducing Half-Grids and Bringing the Pieces Together. We now852

review the construction8 of Gitler [29], which shows how to reduce half-grids to much853

8The main motivation of Gitler’s study in [29] is to classify graphs that are Wye-Delta reducible.
In particular, he used the reductions in this section to prove that any 2-connected plane graph with
k terminals on a common face is Wye-Delta reducible to some sub-grid in a triangular shape.
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smaller half-grids (excluding diagonal edges) whose size depends only on k. For the854

sake of completeness, we provide a full proof here. Recall that T̂n
k is the graph Tn

k855

without the diagonal edges.856

Lemma 5.7 ([29]). For any positive k, n with k < n, the graph Tn
k with the four857

vertices (1, 1), (2, 2), (n− 1, n− 1) and (n, n) being terminals is Wye-Delta reducible858

to T̂ k
k .859

Proof. We say that two terminals (i, i) and (j, j) are adjacent iff i < j and there860

is no terminal (ℓ, ℓ) such that i < ℓ < j.861

We next describe the reduction procedure. See also Fig. 5 for an illustration. The862

reduction procedure starts by removing the diagonal edges of Tn
k , thus producing the863

graph T̂n
k . Specifically, the two edges ((1, 1), (2, 2)) and ((n − 1, n − 1), (n, n)) are864

removed using an edge deletion operation. For each remaining diagonal edge of the865

form ((i, i), (i + 1, i + 1)), i = 2, . . . , n − 2 we repeatedly apply an edge replacement866

operation until the edge is incident to a boundary vertex (1, j) or (j, n) of the grid,867

where an edge deletion operation with one of the neighbours of (1, j) resp. (j, n) as868

vertex x is applied. See Fig. 5(a).869

Now, we know that all non-terminals of the form (i, i) are degree-two vertices,870

thus a series reduction is applied on each of them. This produces new diagonal edges,871

which are effectively reduced by the above procedure. We keep removing the newly-872

created degree-two non-terminal vertices and the newly-created edges until no further873

removals are possible. At this point, all the degree-2 vertices except the top right874

conner vertices are terminal vertices. See Fig. 5(b).875

The resulting graph has a staircase structure, where for every pair of adjacent876

terminals (i, i) and (j, j), there is a non-terminal (i, j) of degree three or four, namely,877

the intersection vertex, and a (possibly empty) sequence of degree-three non-terminals878

that lie on the boundary path from (i, i) to (j, j). For k = i+1, . . . , j−1, let (i, k) and879

(k, j) be the degree-three non-terminals lying on the row and the column subpath,880

respectively. Additionally, for k = i + 1, . . . , j − 1, let Ci
k = {(i′, k) : i′ = i, . . . , 1},881

resp. Rj
k = {(k, j′) : j′ = j, . . . , n} be the vertices sharing the same column, resp. row882

with (i, k), resp. (k, j). We next show that the vertices belonging to Ci
k and Rj

k can883

be removed.884

The removal process works as follows. For k = i + 1, . . . , j − 1, we start by885

choosing a degree 3 vertex (i, k) and its corresponding column Ci
k. Then we apply886

a Wye-Delta transformation on (i, k), thus creating two new diagonal edges. See887

Fig. 5(c). Similarly as above, we remove such edges by repeatedly applying an edge888

replacement operation until they have been pushed to the boundary of the grid, where889

an edge deletion operation is applied. See Fig. 5(d). In the resulting graph, the vertex890

(i− 1, k) ∈ Ci
k is now a degree-three non-terminal. We apply the same procedure to891

this vertex. Applying such a procedure to all remaining vertices of Ci
k, we eliminate a892

column of the grid. See Fig. 5(e). Symmetrically, the same process applies to the case893

when we want to remove the row Rj
k corresponding to the vertex (k, j). See Fig. 5(f)894

- (h).895

Applying the above removal process for every adjacent terminal pair and the896

corresponding degree-three non-terminals, we end up with the graph T̂ k
k , where every897

diagonal vertex is a terminal. See Fig. 5(i). By definition, it follows that T̂ k
k has at898

most O(k2) vertices.899

Combining the above reductions leads to the following theorem:900

Theorem 5.8. Let G be a k-terminal planar graph where all terminals lie on the901
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Half-Grid Reduction.

outer face. Then G admits a quality-1 cut sparsifier of size O(k2), which is also a902

planar graph.903

Proof. Let n denote the number of vertices in G. First, we apply Lemma 5.5 on904

G to obtain a grid graph H with O(n2) vertices, which preserves exactly all terminal905

minimum cuts of G. We then apply Lemma 5.6 on H to obtain a node embedding ρ906

into the half-grid T ℓ
k , where ℓ = 4n′− 3 and n′ = O(n) is the width of the grid H. By907

Lemma 5.3, ρ(H) preserves exactly all terminal minimum cuts of H. We can further908

extend ρ(H) to the full half-grid T ℓ
k , if dummy non-terminals and zero edge capacities909
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are added. We then mark all the four vertices (1, 1), (2, 2), (n − 1, n − 1) and (n, n)910

in the half grid T ℓ
k as terminals, if any of them was not. Let the resulting half grid911

be T ℓ
k′ . Note that k ≤ k′ ≤ k + 4. Finally, we apply Lemma 5.7 on T ℓ

k′ to obtain912

a Wye-Delta reduction to the reduced half-grid graph T̂ k′

k′ . It follows by Lemma 5.2913

that T̂ k′

k′ is a quality-1 cut sparsifier of T ℓ
k′ , where the size guarantee is immediate914

from the definition of T̂ k′

k′ and that k′ = Θ(k).915

6. Extensions to Planar Flow and Distance Sparsifiers. In this section we916

show how to extend our result for cut sparsifiers to flow and distance sparsifiers.917

6.1. An Upper Bound for Flow Sparsifiers. We first review the notion of918

Flow Sparsifiers. Let d be a function (called a demand function) over terminal pairs919

in G such that d(x, x′) = d(x′, x) ≥ 0 and d(x, x) = 0 for all x, x′ ∈ K. We denote920

by Pxx′ the set of all paths between terminals x and x′. Further, let Pe be the set921

of all paths using edge e, for all e ∈ E . A concurrent (multi-commodity) flow f of922

throughput λ is a function over paths among terminal pairs in G such that (1) f(p) ≥ 0923

for any path p, (2)
∑

p∈P
xx′

f(p) ≥ λd(x, x′), for all distinct terminal pairs x, x′ ∈ K,924

and (3)
∑

p∈Pe
f(p) ≤ c(e), for all e ∈ E. We let λG(d) denote the throughput of the925

concurrent flow in G that attains the largest throughput and we call a flow achieving926

this throughput the maximum concurrent flow. A graph H = (VH , EH , cH), K ⊂ VH927

is a quality-q (vertex ) flow sparsifier of G with q ≥ 1 if for every demand function d,928

λG(d) ≤ λH(d) ≤ q · λH(d).929

Next we show that given a k-terminal planar graph, where all terminals lie on the930

outer face, one can construct a quality-1 flow sparsifier of sizeO(k2). Our result follows931

from combining the observation of Andoni et al. [6] for constructing flow-sparsifiers932

using flow/cut gaps and the flow/cut gap result of Okamura and Seymour [51].933

Given a k-terminal graph and a demand function d, recall that λG(d) is the934

maximum fraction of d that can be routed in G, and that cap(δ(U)) is the sum of all935

capacities of the edges belonging to the cutset (U, V \ U). We define the sparsity of936

a cut (U, V \ U) to be937

ΦG(U, d) :=
cap(δ(U))

∑

i,j:|{i,j}∩U |=1 dij
938

and the sparsest cut as ΦG(d) := minU⊂V ΦG(U, d). Then the flow-cut gap is given939

by940

γ(G) := max{ΦG(d)/λG(d) : d ∈ R
(k2)
+ }.941

We will make use of the following theorem:942

Theorem 6.1 ([6]). Given a k-terminal graph G with terminals K, let G′ be a943

quality-β cut sparsifier for G with β ≥ 1. Then for every demand function d ∈ R
(k2)
+ ,944

1

γ(G′)
≤ λG′(d)

λG(d)
≤ β · γ(G).945

Therefore, the graph G′ with edge capacities scaled up by γ(G′) is a quality-β · γ(G) ·946

γ(G′) flow sparsifier of size |V (G′)| for G.947

This leads to the following corollary.948

Corollary 6.2. Let G be a k-terminal planar graph where all terminals lie on949

the outer face. Then G admits a quality-1 flow sparsifier of size O(k2).950
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Proof. Given a k-terminal planar graph where all terminals lie on the outer face,951

Theorem 5.8 shows how to construct a cut sparsifier G′ with quality β = 1 and size952

O(k2), which is also a planar graph with all the k terminals lying on the outer face.953

Okamura and Seymour [51] showed that for every k-terminal planar graph G with954

terminals lying on the outer face the flow-cut gap is 1. This implies that γ(G) = 1955

and γ(G′) = 1. Invoking Theorem 6.1 we get that G′ is a quality-1 flow sparsifier of956

size O(k2) for G.957

6.2. An Upper Bound for Distance Sparsifiers. We first review the notion958

of Vertex Distance Sparsifiers. Let G = (V,E, ℓ) with K ⊂ V be a k-terminal graph,959

where we replace the capacity function c with a length function ℓ : E → R≥0. For a960

terminal pair (x, x′) ∈ K, let dG(x, x
′) denote the shortest path with respect to the961

edge lengths ℓ in G. A graph H = (V ′, E′, ℓ′) is a quality-q (vertex ) distance sparsifier962

of G with q ≥ 1 if for any x, x′ ∈ K, dG(x, x
′) ≤ dH(x, x′) ≤ q · dG(x, x′).963

Next we argue that a symmetric approach applies to the construction of vertex964

sparsifiers that preserve distances. Concretely, we prove that given a k-terminal planar965

graph, where all terminals lie on the outer face, one can construct a quality-1 distance966

sparsifier of size O(k2), which is also a planar graph. It is not hard to see that almost967

all arguments that we used about cut sparsifiers go through, except some adaptations968

regarding edge lengths in the Wye-Delta rules, edge subdivision operation and vertex969

splitting operation.970

We start adapting the Wye-Delta operations.971

1. Degree-one reduction: Delete a degree-one non-terminal and its incident edge.972

2. Series reduction: Delete a degree-two non-terminal y and its incident edges973

(x, y) and (y, z), and add a new edge (x, z) of length ℓ(x, y) + ℓ(y, z).974

3. Parallel reduction: Replace all parallel edges by a single edge whose length is975

the minimum over all lengths of parallel edges.976

4. Wye-Delta transformation: Let x be a degree-three non-terminal with neigh-977

bours Γ(x) = {u, v, w}. Delete x (along with all its incident edges) and add978

edges (u, v), (v, w) and (w, u) with lengths ℓ(u, x) + ℓ(v, x), ℓ(v, x) + ℓ(w, x)979

and ℓ(w, x) + ℓ(u, x), respectively.980

5. Delta-Wye transformation: Let x, y and z be the vertices of the triangle981

connecting them. Assume without loss of generality9 that for any triangle982

edge (x, y), ℓ(x, y) ≤ ℓ(x, z) + ℓ(y, z), where z is the other triangle vertex.983

Delete the edges of the triangle, introduce a new vertex w and add new984

edges (w, x), (w, y) and (w, z) with edge lengths (ℓ(x, y)+ ℓ(x, z)− ℓ(y, z))/2,985

(ℓ(x, z) + ℓ(y, z)− ℓ(x, y))/2 and (ℓ(x, y) + ℓ(y, z)− ℓ(x, z))/2, respectively.986

The following lemma shows that the above rules preserve exactly all shortest path987

distances between terminal pairs.988

Lemma 6.3. Let G be a k-terminal graph and G′ be a k-terminal graph obtained989

from G by applying one of the rules 1-5. Then G′ is a quality-1 distance sparsifier of990

G.991

We remark that there is no need to re-define the Edge deletion and replacement992

operations, since they are just a combination of the above rules. An analogue of993

Lemma 5.2 can also be shown for distances. We now modify the Edge subdivision994

operation, which is used when dealing with graph embeddings (see Section 5.1).995

9Suppose there exists a triangle edge (x, y) with ℓ(x, y) > ℓ(x, z) + ℓ(y, z), where z is the other
triangle vertex. Then we can simply set ℓ(x, y) = ℓ(x, z) + ℓ(y, z), since any shortest path between
terminal pairs would use the edges (x, z) and (y, z) instead of the edge (x, y).
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1. Edge subdivision: Let (u, v) be an edge of length ℓ(u, v). Delete (u, v), intro-996

duce a new vertex w and add edges (u,w) and (w, v), each of length ℓ(u, v)/2.997

We now prove an analogue to Lemma 5.3.998

Lemma 6.4. Let ρ be a node embedding and let G1 and ρ(G1) be k-terminal graphs999

as defined in Section 5.1. Then ρ(G1) preserves exactly all shortest path distances1000

between terminal pairs.1001

Proof. We can view each path obtained from the embedding as taking the edge1002

corresponding to that path endpoints in G1 and performing edge subdivisions finitely1003

many times. We claim that such subdivisions preserve all terminal shortest paths.1004

Indeed, let us consider a single edge subdivison for (u, v) (the general claim then1005

follows by induction on the number of edge subdivions). Fix x, x′ ∈ K and consider1006

some shortest path p(x, x′) in G1 that uses (u, v). We can construct in ρ(G1) a1007

path q(x, x′) of the same length as follows: traverse the subpath p(x, u), traverse1008

the edges (u,w) and (w, v) and finally traverse the subpath p(v, x′). It follows that1009
∑

e∈p(x,x′) ℓ(e) =
∑

e∈q(x,x′) ℓ(e), and thus dρ(G1)(s, t) ≤ dG1
(s, t).1010

On the other hand, fix x, x′ ∈ K and consider some shortest path p′(x, x′) in1011

ρ(G1) that uses the two subdivided edges (u,w) and (w, v) (note that it cannot use1012

only one of them). We can construct in G1 a path q′(x, x′) of the same length as1013

follows: traverse the subpath p′(x, u), traverse the edge (u, v) and finally traverse1014

the subpath p′(v, x′). It follows that
∑

e∈p′(x,x′) ℓ(e) =
∑

e∈q′(x,x′) ℓ(e) and thus1015

dG1
(s, t) ≤ dρ(G1)(s, t). Combining the above gives the lemma.1016

We next consider vertex splitting for graphs whose maximum degree is larger than1017

three. For each vertex v of degree d > 3 with u1, . . . , ud adjacent to v, we delete v1018

and introduce new vertices v1, . . . , vd along with edges {(vi, vi+1) : i = 1, . . . , d − 1},1019

each of length 0. Furthermore, we replace the edges {(ui, v) : i = 1, . . . , d} with1020

{(ui, vi) : i = 1, . . . , d}, each of corresponding length. If v is a terminal vertex, we1021

make one of the vi’s be a terminal vertex. An analogue to Claim 5.4 gives that the1022

resulting graph preserves all terminal shortest path distances.1023

We finally note that whenever we add dummy edges of capacity 0 in the cut1024

setting, we replace them by edges of length D+ 1 in the distance setting, where D is1025

the sum over all edge lengths in the graph we consider. Since any shortest path in the1026

graph does not use the added edges, the terminal shortest path remain unaffected.1027

The above discussion leads to the following theorem.1028

Theorem 6.5. Let G be a k-terminal planar graph where all terminals lie on the1029

outer face. Then G admits a quality-1 distance sparsifier of size O(k2), which is also1030

a planar graph.1031

6.3. Incompressibility of Distances in k-Terminal Graphs. In this sec-1032

tion we prove the following incompressibility result (i.e., Theorem 1.5) concerning1033

the trade-off between quality and size of any compression function when estimating1034

terminal distances in k-terminal graphs: for every ε > 0 and t ≥ 2, there exists a1035

family of (sparse) k-terminal n-vertex graphs such that k = o(n), and that any data1036

structure that approximates pairwise terminal distances within a factor of t− ε or an1037

additive error 2t−3 must use Ω(k1+1/(t−1)) bits of space. Our lower bound is inspired1038

by the work of Matoušek [49], which has also been utilized in the context of distance1039

oracles [57]. Our arguments rely on the recent extremal combinatorics construction1040

(see [18]) that was used to prove lower bounds on the size of distance approximating1041

minors.1042
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Discussion on our result. Note that for any k-terminal graph G, if we do not1043

have any restriction on the structure of the distance sparsifier, then G always admits1044

a trivial quality 1 distance sparsifier H which is the complete weighted graph on k1045

terminals with each edge weight being equal to the distance between the two endpoints1046

in G. Furthermore, by the well-known result of Awerbuch [7], such a graph H in turn1047

admits a multiplicative (2t − 1)-spanner H ′ with O(k1+1/t) edges, that is, all the1048

distances in H are preserved up to a multiplicative factor of 2t − 1 in H ′, for any1049

t ≥ 1. This directly implies that the k-terminal graph G has a quality 2t− 1 distance1050

sparsifier with k vertices and O(k1+1/t) edges.1051

We note that unconditional lower bounds similar to our result are known for the1052

number of edges of spanners, preservers and emulators [44, 45, 60]. Furthermore, as1053

we mentioned, the constructions from [2] imply a stronger lower bound than ours in1054

the setting with additive error 2t−1 for t ≥ 3: for a k-terminal n-vertex graph G with1055

k = o(n2/3), any data structure that approximates pairwise terminal distances of G1056

within an additive error t needs Ω(k2−ε) bits, for any ε > 0, t = O(nδ) and δ = δ(ε).1057

Our constructions are different from [2] and also give lower bounds for multiplicate1058

setting. There are also implicit lower bounds from [3, 34] on the size of data structures1059

for preserving distances of k-terminal graphs with different approximation guarantees.1060

We start by reviewing a classical notion in combinatorial design.1061

Definition 6.6 (Steiner Triple System). Given a ground set T = [k], a (3, 2)-1062

Steiner system (abbr. (3, 2)-SS) of T is a collection of 3-subsets of T , denoted by1063

S = {S1, . . . , Sr}, where r =
(

k
2

)

/3 , such that every 2-subset of T is contained in1064

exactly one of the 3-subsets.1065

Lemma 6.7 ([59]). For infinity many k, the set T = [k] admits a (3, 2)-SS.1066

Roughly speaking, our proof proceeds by forming a k-terminal bipartite graph,1067

where terminals lie on one side and non-terminals on the other. The set of non-1068

terminals will correspond to some subset of a Steiner Triple System S, which will1069

satisfy some certain property. One can equivalently view such a graph as taking1070

union over star graphs. Before delving into details, we need to review a couple of1071

other useful definitions and the construction from [18].1072

Detour Graph and Cycle. Let k be an integer such that T = [k] admits a (3, 2)-1073

SS. Let S be such a (3, 2)-SS. We define a detouring graph GS with vertex set S =1074

{S1, . . . , Sr} as follows. By the definition of Steiner system, it follows that |Si ∩Sj | is1075

either zero or one. Then two vertices Si and Sj in GS are adjacent iff |Si ∩ Sj | = 1.1076

It is also useful to label each edge (Si, Sj) with the vertex in Si ∩Sj . We remark that1077

GS is only an auxiliary graph and has no terminals. A detouring cycle is a cycle in1078

the detouring graph such that no two neighbouring edges in the cycle have the same1079

label. Observe that the detouring graph has other cycles which are not detouring1080

cycles.1081

We have the following lemma which shows that there exists a large induced sub-1082

graph in a detouring graph with no short detouring cycles.1083

Lemma 6.8 ([18]). For any integer t ≥ 3, given a detouring graph with vertex1084

set S, there exists a subset S ′ ⊂ S of cardinality Ω(k1+1/(t−1)) such that the induced1085

graph on S ′ has no detouring cycles of size t or less.1086

Now we are ready to prove our incompressibility result regarding approximately1087

preserving terminal pairwise distances.1088

Proof of Theorem 1.5. Let k be an integer such that T = [k] admits a (3, 2)-SS S.1089

Fix some integer t ≥ 3, some positive constant c and use Lemma 6.8 on the detouring1090
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graph with vertex set S to construct a subset S ′ of S of size Ω(k1+1/(t−1)) such that1091

the induced graph on S ′ has no detouring cycles of size t or less. We may assume1092

without loss of generality that ℓ = |S ′| = c · k1+1/(t−1), for some constant c > 0 (this1093

can be achieved by removing some elements from S ′, as the property concerning the1094

detouring cycles is not destroyed). For each 3-subset Si in S ′, we let xi
1, x

i
2, x

i
3 ∈ T1095

denote the 3 different numbers in Si.1096

We define the k-terminal graph G as follows:1097

• For each Si ∈ S ′ create a non-terminal vertex vi. Let VS′ denote the set of1098

such vertices. The vertex set of G is T ∪ VS′ , where T = [k] denotes the set1099

of terminals.1100

• For each Si ∈ S ′, connect vi to the three terminals {xi
1, x

i
2, x

i
3} belonging to1101

Si, i.e., add edges (vi, x
i
j), j = 1, 2, 3.1102

Note that both the number of vertices and edges of G are Θ(ℓ+ k) = Θ(k1+1/(t−1)),1103

and it also holds that k = Θ(|V (G)|(t−1)/t) = o(|V (G)|).1104

For any subset R ⊆ S ′, we define the subgraph GR = (V (G), ER) of G as follows.1105

For each Si ∈ S ′, if Si ∈ R, perform no changes. If Si 6∈ R, delete the edge (vi, x
i
1).1106

Note that there are 2ℓ subgraphsGR. We let G denote the family of all such subgraphs.1107

We say a terminal pair (x, x′) respects S ′ if in the (3, 2)-SS S, the unique 3-subset1108

S that contains x and x′ belongs to S ′. Given R ⊆ S ′ and some terminal pair (x, x′),1109

we say that R covers (x, x′) if both x and x′ are connected to some non-terminal v1110

in GR.1111

Claim 6.9. For all R ⊆ S ′ and terminal pairs (x, x′) covered by R we have that1112

dGR
(x, x′) = 2.1113

Proof. By the definition of Steiner system and the construction ofGR, the shortest1114

path between x and x′ is simply a 2-hop path, i.e., dGR
(x, x′) = 2.1115

Claim 6.10. For all R ⊆ S ′ and any terminal pair (x, x′) that respects S ′ and1116

is not covered by R, we have that dGR
(x, x′) ≥ 2t.1117

Proof. Since (x, x′) respects S ′, there exists Si = (xi
1, x

i
2, x

i
3) ∈ S ′ that contains1118

both x and x′. By construction of GR and the fact that (x, x′) is not covered by R, it1119

follows that Si ∈ S ′ \R, and one of x, x′ corresponds to xi
1 and the other corresponds1120

to xi
2 or xi

3. Without loss of generality, we assume x = xi
1 and x′ = xi

2. Note that1121

there is no edge in GR connecting xi
1 with the non-terminal vi that corresponds to Si.1122

Since any simple path p between xi
1 and xi

2 in G will use visit each terminal at most1123

once, it corresponds to paths in the detouring graph GS such that no two neighbouring1124

edges have the same label. Now by Lemma 6.8, the detouring graph induced on S ′1125

has no detouring cycles of size t or less, which implies that any simple path between1126

xi
1 and xi

2 in G must pass through at least t − 1 other terminals. Let w1, . . . , wt−11127

be such terminals and let P := xi
1 → w1, . . . , wt−1 → xi

2 denote the corresponding1128

path, ignoring the non-terminals along the path. Between any consecutive terminal1129

pairs in P , the shortest path is at least 2. Thus, the length of P is at least 2t, i.e.,1130

dGR
(xi

1, x
i
2) ≥ 2t.1131

Fix any two subsets R1, R2 ⊆ S ′ with R1 6= R2. It follows that there exists a1132

3-subset Si = (xi
1, x

i
2, x

i
3) ∈ S ′ such that either Si ∈ R1 \R2 or Si ∈ R2 \R1. Assume1133

without loss of generality that Si ∈ R2 \R1, i.e., (x
i
1, x

i
2) respects S ′ and it is covered1134

by R2 but not by R1. By Claim 6.9 and 6.10, it holds that dGR2
(xi

1, x
i
2) = 2 and1135

dGR1
(xi

1, x
i
2) ≥ 2t.1136

Since R1, R2 are two arbitrary subsets of S ′, it holds that there exists a set G of 2ℓ1137

different subgraphs on the same set of nodes V (G) satisfying the following property:1138
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for any G1, G2 ∈ G, there exists a terminal pair (x, x′) such that the distances between1139

x and x′ in G1 and G2 differ by at least a t factor as well as by at least 2t− 2.1140

Assume on the contrary that there exists a compression function that approx-1141

imates terminal path that preserves terminal distances within a t − ε factor or an1142

additive error 2t − 3 and uses less than ℓ bits of space. Since there are 2ℓ graphs in1143

G, two different graphs G1, G2 ∈ G will map to the same bit string. However, since1144

there exists a pair x, x′ such that the distances between them in G1 and G2 differ1145

by at least a t factor and by at least 2t − 2, G1 and G2 should be mapped to two1146

different bit strings. This is a contradiction. Therefore, any such compression must1147

use at least Ω(ℓ) = Ω(k1+1/(t−1)) bits of space.1148

To complete the proof of Theorem 1.5, we need to show the claim for quality1149

t = 2. The only significant modification we need is the usage of a (3, 2)-SS in the1150

construction of graph G (instead of using a subset of it). The remaining details are1151

similar to the above proof and we omit them here.1152

Appendix A. Proof of Theorem 4.1.1153

Throughout, given a directed graph G, we say that G is disoriented if we forget1154

the orientation of edges in G and treat G as an undirected graph. We next give the1155

definition of “2-layered” graphs and “2-layered” spanning trees. These definitions1156

allow us to reduce reachability in G to reachability in some digraphs with special1157

properties.1158

Definition A.1. Given a digraph H, and an integer parameter t ≥ 1, a t-layered1159

spanning tree T in H is a disoriented rooted spanning tree such that any path in T1160

from the root is a concatenation of at most t directed paths in H. If H has such a1161

t-layered spanning tree, then we say that H is a t-layered digraph.1162

Proof of Theorem 4.1. Assume without loss of generality that G is connected in1163

the undirected sense; otherwise we can apply the construction we are about to describe1164

separately to each connected component.1165

Our construction starts by partitioning the vertices of G into layers L0, . . . , Lb,1166

where b = O(k3), as follows: L0 is the set of vertices reachable from an arbitrary1167

vertex v0, and layer Li consists of all vertices reaching or reachable from the previous1168

layers, depending on whether the index i is even or odd. Formally, for i > 0, we have1169

Li =

{

{v ∈ V \ L<i | v  L<i} if i is odd

{v ∈ V \ L<i | L<i  v} if i is even,
1170

where L<i :=
⋃

j<i Lj . Similarly, let L≤i :=
⋃

j≤i Lj and define k to be the first index1171

such that L≤k = V . For each vertex v, we also defined an index ι(v) with ι(v) = i, if1172

v ∈ Li.1173

We construct the digraph Gi by taking two consecutive layers and contracting1174

all preceding layers into a single vertex, i.e., Gi is constructed by first taking the1175

subgraph of G induced by L≤i+1, and for i > 0, contracting all vertices in L<i to the1176

single root vertex ri. For G0, we set r0 = v0.1177

We next discuss the properties of G′
is. By construction, Gi’s satisfy Item 5.1178

Moreover, since the layering forms a partitioning, each vertex occurs as a non-root1179

vertex at most twice over all Gi’s. Similarly, every edge occurs at most twice, thus1180

proving Item 1. The claimed bound on the number of vertices and edges over all Gi’s1181

follows since (i) there are at most b ≤ n′ = O(k3) root vertices and (i) there can be1182

at most 2n′ edges incident to the roots.1183
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Consider Item 2, and let R be any directed path from a vertex s to a vertex t.1184

Let i be the smallest index of a layer that intersects R, and let x be a vertex in the1185

intersection. By definition, if j ≥ i is even, then L≤j contains the part of R after x,1186

and if j ≥ i is odd, then L≤j contains the part of R before x. Thus R is contained1187

in Li ∪ Li+1. By construction of Gi’s, it follows that R is contained in Gi. Note1188

that s ∈ R is either contained in Gι(s)−1 or Gι(s), so the path R from s to t is either1189

contained in one of these two digraphs.1190

To see that Item 3 is satisfied, we first need to show that each Gi is a 2-layered1191

digraph, i.e., it admits a 2-layered spanning tree with root ri. To this end, assume1192

without loss of generality that i is odd. By definition, ri reaches every vertex in Li,1193

so a spanning tree Ui of {ri} ∪ Li can be constructed with edges oriented away from1194

ri. Moreover, since {ri} ∪ Li is reached by all vertices in Li+1, we can extend Ui to1195

a spanning tree Ti of {ri} ∪ Li ∪ Li+1 = V (Gi) with the new edges oriented towards1196

{ri}∪Li. Note that any path in Ti from ri has a first part oriented away from ri and1197

the other part oriented towards ri, so Ti is 2-layered.1198

Now we make use of the following result from [56]. Given a rooted tree T in an1199

undirected graph and a vertex v, we let T (v) denote the path between the root of T1200

and v.1201

Lemma A.2 (Lemma 2.3. [56]). Given an undirected planar graph H with a1202

rooted spanning tree T and non-negative vertex weights, we can find three vertices u, v1203

and w such that each component of H \ V (T (u) ∪ T (v) ∪ T (w)) has at most half the1204

weight of H.1205

The above lemma shows that an undirected planar graph H with a rooted span-1206

ning tree T admits a vertex separator, which consists of three paths starting at the1207

root in T , whose removal separates H into components of at most half its size.1208

Applying Lemma A.2 to each digraph Gi (when forgetting about the orientation1209

of its edges) with the 2-layered spanning tree Ti rooted at ri, we have that there are at1210

most six directed paths in the digraph Gi whose removal separates Gi into components1211

of at most half its size. Note that if Si is the set of 6 directed paths corresponding1212

the 1/2-separator, then Si induces a connected subgraph of the underlying undirected1213

graph Gi. This finishes the proof of Item 3.1214

Finally, Item 4 follows by construction and this finishes the proof of Theorem 4.1.1215
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of the 28th STOC, 1996, pp. 47–55.1232

[9] G. Bodwin, Linear size distance preservers, in Proc. of the 28th SODA, 2017, pp. 600–615.1233

This manuscript is for review purposes only.



32 G. GORANCI, M. HENZINGER, AND P. PENG

[10] T.-H. H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the steiner1234
point removal problem on trees, in Proc. of the 9th APPROX/RANDOM, 2006, pp. 70–81.1235

[11] H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann, Near-optimal distance emu-1236
lator for planar graphs, in Proc. of the 26th ESA, 2018.1237

[12] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding1238
algorithms, in Proc. of the 51th FOCS, 2010, pp. 265–274.1239

[13] S. Chaudhuri, K. Subrahmanyam, F. Wagner, and C. D. Zaroliagis, Computing mimicking1240
networks, Algorithmica, 26 (2000), pp. 31–49.1241

[14] C. Chekuri, A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Embedding k-1242
outerplanar graphs into l1, SIAM J. Discrete Math., 20 (2006), pp. 119–136.1243

[15] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs with1244
constant congestion, SIAM J. Comput., 39 (2009), pp. 281–301.1245

[16] C. Chekuri, F. B. Shepherd, and C. Weibel, Flow-cut gaps for integer and fractional mul-1246
tiflows, in Proc. of the 21st SODA, 2010, pp. 1198–1208.1247

[17] Y. K. Cheung, Steiner point removal - distant terminals don’t (really) bother, in Proc. of the1248
29th SODA, 2018. available at Arxiv: CoRR abs/1703.08790.1249

[18] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal1250
distances approximately - Lower and Upper Bounds, in Proc. of the 43rd ICALP, 2016,1251
pp. 131:1–131:14.1252

[19] J. Chuzhoy, On vertex sparsifiers with steiner nodes, in Proc. of the 44th STOC, 2012, pp. 673–1253
688.1254

[20] J. Chuzhoy, Routing in undirected graphs with constant congestion, in Proc. of the 44th STOC,1255
2012, pp. 855–874.1256

[21] D. Coppersmith and M. Elkin, Sparse sourcewise and pairwise distance preservers, SIAM J.1257
Discrete Math., 20 (2006), pp. 463–501.1258

[22] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks,1259
Linear algebra and its applications, 283 (1998), pp. 115–150.1260
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