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Sampled-data implementation of

derivative-dependent control using artificial delays
Anton Selivanov and Emilia Fridman, Senior Member, IEEE

Abstract—We study a sampled-data implementation of linear
controllers that depend on the output and its derivatives. First,
we consider an LTI system of relative degree r ≥ 2 that can
be stabilized using r − 1 output derivatives. Then, we consider
PID control of a second order system. In both cases, the Euler
approximation is used for the derivatives giving rise to a delayed
sampled-data controller. Given a derivative-dependent controller
that stabilizes the system, we show how to choose the parameters
of the delayed sampled-data controller that preserves the stability
under fast enough sampling. The maximum sampling period
is obtained from LMIs that are derived using the Taylor’s
expansion of the delayed terms with the remainders compensated
by appropriate Lyapunov-Krasovskii functionals. Finally, we
introduce the event-triggering mechanism that may reduce the
amount of sampled control signals used for stabilization.

I. INTRODUCTION

Control laws that depend on output derivatives are used to

stabilize systems with relative degrees greater than one. To es-

timate the derivatives, which can hardly be measured directly,

one can use the Euler approximation ẏ ≈ (y(t)− y(t− τ))/τ .

This replaces the derivative-dependent control with the delay-

dependent one [2]–[5]. It has been shown in [6] that such

approximation preserves the stability if τ > 0 is small enough.

Similarly, the output derivative in PID controller can be

replaced by its Euler approximation. The resulting controller

was studied in [7] and [8] using the frequency domain analysis.

In this paper, we study sampled-data implementation of the

delay-dependent controllers. For double-integrators, this has

been done in [9] using complete Lyapunov-Krasovskii func-

tionals with a Wirtinger-based term and in [10] via impulsive

system representation and looped-functionals. Both methods

lead to complicated linear matrix inequalities (LMIs) contain-

ing many decision variables. In this paper, we obtain simpler

LMIs for more general systems and prove their feasibility for

small enough sampling periods.

A simple Lyapunov-based method for delay-induced stabi-

lization was proposed in [11], [12]. The key idea is to use the

Taylor’s expansion of the delayed terms with the remainders in

the integral form that are compensated by appropriate terms

in the Lyapunov-Krasovskii functional. This leads to simple

LMIs feasible for small delays if the derivative-dependent

controller stabilizes the system.

In this paper, we study sampled-data implementation of two

types of derivative-dependent controllers. In Section II, we

consider an LTI system of relative degree r ≥ 2 that can be
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stabilized using r−1 output derivatives. In Section III, we con-

sider PID control of a second order system. In both cases, the

Euler approximation is used for the derivatives giving rise to a

delayed sampled-data controller. Assuming that the derivative-

dependent controller exponentially stabilizes the system with

a decay rate α′ > 0, we show how to choose the parameters of

its sampled-data implementation that exponentially stabilizes

the system with any decay rate α < α′ if the sampling period is

small enough. The maximum sampling period is obtained from

LMIs that are derived using the ideas of [11], [12]. Finally,

we introduce the event-triggering mechanism that may reduce

the amount of sampled control signals used for stabilization

[13]–[17]. In the preliminary paper [1], we studied delayed

sampled-data control for systems with relative degree two.

Notations: N0 = N ∪ {0}, 1r = [1, 1, . . . , 1]T ∈ R
r, Il ∈

R
l×l is the identity matrix, ⊗ stands for the Kronecker product,

⌊x⌋ = max{n∈N | n≤x} for x ∈ R, col{a1, . . . , ar} denotes

the column vector composed from the vectors a1, . . . , ar. For

p ∈ R, f(h) = O(hp) if there exist positive M and h0 such

that |f(h)| ≤Mhp for h ∈ (0, h0).

Auxiliary lemmas

Lemma 1 (Exponential Wirtinger inequality [18]): Let f ∈
H1(a, b) be such that f(a) = 0 or f(b) = 0. Then

∫ b

a
e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt

for any α ∈ R and 0 ≤W ∈ R
n×n.

Lemma 2 (Jensen’s inequality [19]): Let ρ : [a, b] → [0,∞)
and f : [a, b] → R

n be such that the integration concerned is

well-defined. Then for any 0 < Q ∈ R
n×n,

[

∫ b

a
ρ(s)f(s) ds

]T

Q
[

∫ b

a
ρ(s)f(s) ds

]

≤
∫ b

a
ρ(s) ds

∫ b

a
ρ(s)fT (s)Qf(s) ds.

II. DERIVATIVE-DEPENDENT CONTROL USING

DISCRETE-TIME MEASUREMENTS

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
x ∈ R

n, u ∈ R
m, y ∈ R

l (1)

with relative degree r ≥ 2, i.e.,

CAiB = 0, i = 0, 1, . . . , r − 2, CAr−1B 6= 0. (2)

Relative degree is how many times the output y(t) needs to

be differentiated before the input u(t) appears explicitly. In

particular, (2) implies

y(i) = CAix, i = 0, 1, . . . , r − 1. (3)
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To prove (3), note that it is trivial for i = 0 and, if it has been

proved for i < r − 1, it holds for i+ 1:

y(i+1) =
(

y(i)
)′ (3)

= (CAix)′ = CAi[Ax+Bu]
(2)
= CAi+1x.

For LTI systems with relative degree r, it is common to

look for a stabilizing controller of the form

u(t) = K̄0y(t) + K̄1ẏ(t) + . . .+ K̄r−1y
(r−1)(t) (4)

with K̄i ∈ R
m×l for i = 0, . . . , r − 1.

Remark 1: The control law (4) essentially reduces the

system’s relative degree from r ≥ 2 to r = 1. Indeed, the

transfer matrix of (1) has the form

W (s) = βrs
n−r+···+βn

sn+α1sn−1+···+αn

with βr = CAr−1B 6= 0. Taking u(t) = K ′
0u0(t)+K

′
1u̇0(t)+

· · ·+K ′
r−1u

(r−1)
0 (t), one has

ỹ(s) =
(βrs

n−r+···+βn)(K
′

r−1s
r−1+···+K′

0)

sn+α1sn−1+···+αn
ũ0(s),

where ỹ and ũ0 are the Laplace transforms of y and u0. If

βrK
′
r−1 6= 0, the latter system has relative degree one. If it

can be stabilized by u0 = Ky then (1) can be stabilized by

(4) with K̄i = K ′
iK.

The controller (4) depends on the output derivatives, which

are hard to measure directly. Instead, the derivatives can be

approximated by the finite-differences

ẏ(t) ≈ y(t)−y(t−τ1)
τ1

,

ÿ(t) ≈ 1
τ1

(

y(t)−y(t−τ1)
τ1

− y(t−τ1)−y(t−τ2)
(τ2−τ1)

)

, . . .

This leads to the delay-dependent control

u(t) = K0y(t) +K1y(t− τ1) + · · ·+Kr−1y(t− τr−1), (5)

where the gains K0, . . . ,Kr−1 depend on the delays 0 < τ1 <
· · · < τr−1. If (1) can be stabilized by the derivative-dependent

control (4), then it can be stabilized by the delayed control

(5) with small enough delays [6]. In this paper, we study the

sampled-data implementation of (5):

u(t) = K0y(tk)+
∑r−1

i=1 Kiy(tk−qih), t ∈ [tk, tk+1), (6)

where h > 0 is a sampling period, tk = kh, k ∈ N0, are

sampling instants, 0 < q1 < · · · < qr−1, qi ∈ N, are discrete-

time delays, and y(t) = 0 if t < 0.

In the next section, we prove that if (1) can be stabilized

by the derivative-dependent controller (4), then it can be

stabilized by the delayed sampled-data controller (6) with a

small enough sampling period h. Moreover, we show how

to choose appropriate sampling period h, controller gains

K0, . . . ,Kr−1, and discrete-time delays q1, . . . , qr−1.

A. Stability conditions

Introduce the errors due to sampling

δ0(t) = y(tk)− y(t),

δi(t) = y(tk − qih)− y(t− qih),
t ∈ [tk, tk+1), k ∈ N0,

where i = 1, . . . , r − 1. Following [12], we employ Taylor’s

expansion with the remainder in the integral form:

y(t− qih) =
∑r−1

j=0
y(j)(t)

j! (−qih)j + κi(t),

where

κi(t) =
(−1)r

(r−1)!

∫ t

t−qih
(s− t+ qih)

r−1y(r)(s) ds.

Combining these representations with (3), we rewrite (6) as

u = [K0,K]MC̄x+K0δ0 +Kδ +Kκ, (7)

where δ = col{δ1, . . . , δr−1}, κ = col{κ1, . . . , κr−1},

M =















Il 0 0 ··· 0

Il −q1hIl
(−q1h)2

2! Il ··· (−q1h)r−1

(r−1)!
Il

Il −q2hIl
(−q2h)2

2! Il ··· (−q2h)r−1

(r−1)!
Il

...
...

...
. . .

...

Il −qr−1hIl
(−qr−1h)2

2! Il ··· (−qr−1h)r−1

(r−1)!
Il















,

K =
[

K1 K2 · · · Kr−1

]

, C̄ =





C
CA

...
CAr−1



 .

(8)

The closed-loop system (1), (6) takes the form

ẋ = Dx+BK0δ0 +BKδ +BKκ,

D = A+B[K0,K]MC̄.
(9)

Using (3), the closed-loop system (1), (4) can be written as

ẋ = D̄x, D̄ = A+B[K̄0, . . . , K̄r−1]C̄. (10)

Choosing

[K0,K1, . . . ,Kr−1] = [K̄0, . . . , K̄r−1]M
−1, (11)

we obtain D = D̄. (The Vandermonde-type matrix M is

invertible, since the delays qih are different.) If (1), (4) is

stable, D̄ must be Hurwitz and (9) will be stable for zero δ0,

δ, κ. The following theorem provides LMIs guaranteeing that

δ0, δ, and κ do not destroy the stability of (9).

Theorem 1: Consider the LTI system (1) subject to (2).

(i) For given sampling period h > 0, discrete-time delays

0 < q1 < . . . < qr−1, controller gains K0, . . . ,Kr−1 ∈
R

m×l, and decay rate α > 0, let there exist positive-

definite matrices P ∈ R
n×n, W0,Wi, Ri ∈ R

m×m (i =
1, . . . , r − 1) such that1 Φ ≤ 0, where Φ = {Φij} is the

symmetric matrix composed from

Φ11 = PD +DTP + 2αP

+h2e2αh
∑r−1

i=0 (KiCA)
TWi(KiCA),

Φ12 = 1
T
r ⊗ PB, Φ13 = 1

T
r−1 ⊗ PB,

Φ14 = (CAr−1D)TH, Φ24 = 1r ⊗ (CAr−1B)TH,

Φ22 = −π2

4 diag{W0, e
−2αq1hW1, . . . , e

−2αqr−1hWr−1},
Φ33 = −(r!)2 diag

{

e−2αq1h

(q1h)r
R1, . . . ,

e−2αqr−1h

(qr−1h)r
Rr−1

}

,

Φ34 = 1r−1 ⊗ (CAr−1B)TH, Φ44 = −H

with H =
∑r−1

i=1 (qih)
rKT

i RiKi and D defined in (9).

Then the delayed sampled-data controller (6) exponen-

tially stabilizes the system (1) with the decay rate α.

(ii) Let there exist K̄0, . . . , K̄r−1 ∈ R
m×l such that the

derivative-dependent controller (4) exponentially stabi-

lizes (1) with a decay rate α′. Then, the delayed sampled-

data controller (6) with K0, . . . ,Kr−1 given by (11) with

1MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/TAC18
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Fig. 1. Event-triggering with respect to the control signal

M from (8) and qi = i⌊h 1
r
−1⌋ (i = 1, . . . , r − 1)2

exponentially stabilizes (1) with any given decay rate

α < α′ if the sampling period h > 0 is small enough.

Proof is given in Appendix A.
Remark 2: Theorem 1(ii) explicitly defines the controller

parameters K0, Ki, qi (i = 1, . . . , r− 1), which depend on h.

To find appropriate sampling period h, one should reduce h
until the LMIs from (i) start to be feasible.

B. Event-triggered control

Event-triggered control allows to reduce the number of

signals transmitted through a communication network [13]–

[17]. The idea is to transmit the signal only when it changes

a lot. The event-triggering mechanism for measurements was

implemented in [1] for the system (1), (6) with relative degree

r = 2. Here, we consider the system with r ≥ 2 and introduce

the event-triggering for control signals, since the output event-

triggering leads to complicated conditions (see Remark 3).
Consider the system (Fig. 1)

ẋ(t) = Ax(t) +Bûk, t ∈ [tk, tk+1), k ∈ N0,
y(t) = Cx(t), x ∈ R

n, u ∈ R
m, y ∈ R

l,
(12)

where ûk = u(tk) if u(tk) from (6) was transmitted and ûk =
ûk−1 otherwise. The signal u(tk) is transmitted if its relative

change since the last transmission is large enough, namely, if

(u(tk)− ûk−1)
TΩ(u(tk)− ûk−1) > σuT (tk)Ωu(tk), (13)

where σ ∈ [0, 1) and 0 < Ω ∈ R
m×m are event-triggering

parameters. Thus, û0 = u(t0) and

ûk =

{

u(tk), (13) is true,

ûk−1, (13) is false.
(14)

Theorem 2: Consider the system (12) subject to (2). For

given sampling period h > 0, discrete-time delays 0 < q1 <
. . . < qr−1, controller gains K0, . . . ,Kr−1 ∈ R

m×l, event-

triggering threshold σ ∈ [0, 1), and decay rate α > 0, let there

exist positive-definite matrices P ∈ R
n×n, Ω,W0,Wi, Ri ∈

R
m×m (i = 1, . . . , r − 1) such that3 Φe ≤ 0, where

Φe =















Φ

PB σ([K0,K]MC̄)TΩ
0 σ1r ⊗ Ω
0 σ1r−1 ⊗ Ω

HCAr−1B 0
∗ ∗ ∗ ∗ −Ω 0
∗ ∗ ∗ ∗ 0 −σΩ















2Note that qi = i⌊h
1
r
−1⌋ ∈ N for small h > 0

3MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/TAC18

with M , K, C̄ defined in (8) and Φ, H given in Theorem 1.

Then the event-triggered controller (6), (13), (14) exponen-

tially stabilizes the system (12) with the decay rate α.
Proof is given in Appendix B.
Remark 3: The event-triggering mechanism (13), (14) is

constructed with respect to the control signal. This allows

to reduce the workload of a controller-to-actuator network.

To compensate the event-triggering error, we add (29) to V̇ ,

which leads to two additional block-columns and block-rows

in the LMI (confer Φ of Theorem 1 and Φe of Theorem 2).

One can study the event-triggering mechanism with respect

to the measurements by replacing y(tk), y(tk − qih) with

ŷk = y(tk) + ek, ŷk−qi = y(tk − qih) + ek−qi in (6). This

may reduce the workload of a sensor-to-controller network

but would require to add expressions similar to (29) to V̇
for each error ek, ek−q1 , . . . , ek−qr−1

. This would lead to

more complicated LMIs with two additional block-columns

and block-rows for each error. We study the event-triggering

mechanism with respect to the control for simplicity.
Remark 4: Taking Ω = ωI with large ω > 0, one can show

that Φe ≤ 0 and Φ ≤ 0 are equivalent for σ = 0. This happens

since the event-triggered control (6), (13), (14) with σ = 0
degenerates into periodic sampled-data control (6). Therefore,

an appropriate σ can be found by increasing its value from zero

while preserving the feasibility of the LMIs from Theorem 2.

C. Example

Consider the triple integrator
...
y = u, which can be presented

in the form (1) with

A=

[

0 1 0
0 0 1
0 0 0

]

, B =

[

0
0
1

]

, C = [ 1 0 0 ] . (15)

These parameters satisfy (2) with r = 3. The derivative-

dependent control (4) with

K̄0 = −2× 10−4, K̄1 = −0.06, K̄2 = −0.342

stabilizes the system (1), (15). The LMIs of Theorem 1 are

feasible for

h = 0.044, q1 = 30, q2 = 60, α = 10−3,
K0 ≈ −0.265, K1 ≈ 0.483, K2 ≈ −0.219,

where Ki are calculated using (11). Therefore, the delayed

sampled-data controller (6) also stabilizes the system (1), (15).
Consider now the system (12), (15). The LMIs of Theorem 2

are feasible for h = 0.042, σ = 2×10−3 with the same control

gains K̄0, K̄1, K̄2, delays q1, q2, and decay rate α. Thus,

the event-triggered control (6), (13), (14) stabilizes the system

(12), (15). Performing numerical simulations for 10 randomly

chosen initial conditions ‖x(0)‖∞ ≤ 1, we find that the event-

triggered control (6), (13), (14) requires to transmit on average

455.6 control signals during 100 seconds. The amount of

transmissions for the sampled-data control (6) is given by

⌊ 100
h
⌋ + 1 = 2273. Thus, the event-triggering mechanism

reduces the workload of the controller-to-actuator network by

almost 80% preserving the decay rate α. Note that σ > 0 leads

to a smaller sampling period h. Therefore, the event-triggering

mechanism requires to transmit more measurements through

sensor-to-controller network. However, the total workload of

both networks is reduced by over 37%.
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III. EVENT-TRIGGERED PID CONTROL

Consider the scalar system

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) (16)

and the PID controller

u(t) = k̄py(t) + k̄i

∫ t

0

y(s) ds+ k̄dẏ(t). (17)

Here, we study sampled-data implementation of the PID

controller (17) that is obtained using the approximations
∫ t

0
y(s) ds ≈

∫ tk

0
y(s) ds ≈ h

∑k−1
j=0 y(tj),

ẏ(t) ≈ ẏ(tk) ≈ y(tk)−y(tk−q)
qh

,
t ∈ [tk, tk+1),

where h > 0 is a sampling period, tk = kh, k ∈ N0,

are sampling instants, q ∈ N is a discrete-time delay, and

y(tk−q) = 0 for k < q. Substituting these approximations into

(17), we obtain the sampled-data controller

u(t) = kpy(tk) + kih
∑k−1

j=0 y(tj) + kdy(tk−q),

t ∈ [tk, tk+1), k ∈ N0,
(18)

with y(tk−q) = 0 for k < q and

kp = k̄p +
k̄d

qh
, ki = k̄i, kd = − k̄d

qh
. (19)

Similarly to Section II-B, we introduce the event-triggering

mechanism to reduce the amount of transmitted control sig-

nals. Namely, we consider the system

ÿ(t)+a1ẏ(t)+a2y(t) = bûk, t ∈ [tk, tk+1), k ∈ N0, (20)

where ûk is the event-triggered control: û0 = u(t0),

ûk =

{

u(tk), if (22) is true,
ûk−1, if (22) is false,

(21)

with u(t) from (18) and the event-triggering condition

(u(tk)− ûk−1)
2 > σu2(tk). (22)

Here, σ ∈ [0, 1) is the event-triggering threshold.

Remark 5: We consider the event-triggering mechanism

with respect to the control signal, since the event-triggering

with respect to the measurements ŷk = y(tk)+ ek leads to an

accumulating error in the integral term:
∫ tk

0
y(s) ds ≈ h

∑k−1
j=0 ŷj = h

∑k−1
j=0 y(tj) + h

∑k−1
j=0 ej .

A. Stability conditions

To study the stability of (20) under the event-triggered PID

control (18), (21), (22), we rewrite the closed-loop system in

the state space. Let x1 = y, x2 = ẏ, and

x3(t) = (t− tk)y(tk) + h
∑k−1

j=0 y(tj), t ∈ [tk, tk+1).

Introduce the errors due to sampling

v(t) = x(tk)− x(t)
δ(t) = y(tk−q)− y(t− qh),

t ∈ [tk, tk+1), k ∈ N0.

Using Taylor’s expansion for y(t− qh) with the remainder in

the integral form, we have

y(tk−q) = y(t− qh) + δ(t) = y(t)− ẏ(t)qh+ κ(t) + δ(t),

where

κ(t) =
∫ t

t−qh
(s− t+ qh)ÿ(s) ds.

Using these representations in (18), we obtain

u(tk) = kpx1(tk) + kix3(tk) + kdy(tk−q)
= [kp + kd,−qhkd, ki]x+ [kp, 0, ki]v + kd(κ+ δ).

(23)

Introduce the event-triggering error ek = ûk−u(tk). Then the

system (20) under the event-triggered PID control (21), (22),

(23) can be presented as

ẋ = Ax+Avv +Bkd(κ+ δ) +Bek,
y = Cx,

(24)

for t ∈ [tk, tk+1), k ∈ N0, where

A =





0 1 0
−a2 + b(kp + kd) −a1 − qhbkd bki

1 0 0



 ,

Av =





0 0 0
bkp 0 bki
1 0 0



, B =





0
b
0



, C =
[

1 0 0
]

.

(25)

Note that the “integral” term in (18) requires to introduce

the error due to sampling v that appears in (24) but was

absent in (9). The analysis of v is the key difference between

Theorem 2 and the next result.

Theorem 3: Consider the system (20).

(i) For given sampling period h > 0, discrete-time delay q >
0, controller gains kp, ki, kd, event-triggering threshold

σ ∈ [0, 1), and decay rate α > 0, let there exist positive-

definite matrices P, S ∈ R
3×3 and nonnegative scalars

W , R, ω such that4 Ψ ≤ 0, where Ψ = {Ψij} is the

symmetric matrix composed from

Ψ11 = PA+ATP + 2αP +
[

0 0 0
0 1 0
0 0 0

]

Wk2dh
2e2αh,

Ψ12 = PAv

√
h, Ψ13 = Ψ14 = Ψ15 = PB,

Ψ16 =





kp+kd
−qhkd
ki



ωσ, Ψ26 =





kp
0
ki



ωσ
√
h,

Ψ17 = ATG, Ψ22 = −π2

4 Sh, Ψ27 = AT
vG

√
h,

Ψ36 = Ψ46 = ωσ, Ψ37 = Ψ47 = Ψ57 = BTG,

Ψ33 = −W π2

4 e
−2αqh, Ψ44 = −R 4

(qh)2 e
−2αqh,

Ψ55 = −ω, Ψ66 = −ωσ, Ψ77 = −G,
G = h2e2αhS +

[

0 0 0
0 1 0
0 0 0

]

Rk2d(qh)
2

with A, Av , B, C given in (25). Then, the event-triggered

PID controller (18), (21), (22) exponentially stabilizes the

system (20) with the decay rate α.

(ii) Let there exist k̄p, k̄i, k̄d such that the PID controller

(17) exponentially stabilizes the system (16) with a decay

rate α′. Then, the event-triggered PID controller (18),

(21), (22) with kp, ki, kd given by (11) and q = ⌊h− 1
2 ⌋

exponentially stabilizes the system (20) with any given

decay rate α < α′ if the sampling period h > 0 and the

event-triggering threshold σ ∈ [0, 1) are small enough.

Proof is given in Appendix C.

4MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/TAC18
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Remark 6: The event-triggered control (18), (21), (22) with

σ = 0 degenerates into sampled-data control (18). Therefore,

Theorem 3 with σ = 0 gives the stability conditions for the

system (16) under the sampled-data PID control (18).

Remark 7: Appropriate values of h and σ can be found in

a manner similar to Remarks 2 and 4.

B. Example

Following [8], we consider (16) with a1 = 8.4, a2 = 0, b =
35.71. The system is not asymptotically stable if u = 0. The

PID controller (17) with k̄p = −10, k̄i = −40, k̄d = −0.65
exponentially stabilizes it with the decay rate α′ ≈ 10.4.

Theorem 3 with σ = 0 (see Remark 6) guarantees that the

sampled-data PID controller (18) can achieve any decay rate

α < α′ if the sampling period h > 0 is small enough. Since α′

is on the verge of stability, α close to α′ requires to use small

h. Thus, for α = 10.3, the LMIs of Theorem 3 are feasible

with h ≈ 10−7, q = 4272, and kp, ki, kd given by (19). To

avoid small sampling period, we take α = 5.

For σ = 0, α = 5 and each q = 1, 2, 3, . . . we find the

maximum sampling period h > 0 such that the LMIs of

Theorem 3 are feasible. The largest h corresponds to

α = 5, σ = 0, q = 7, h = 4.7× 10−3,
kp ≈ −29.76, ki = −40, kd ≈ 19.76,

where kp, ki, kd are calculated using (19). Remark 6 implies

that the sampled-data PID controller (18) stabilizes (16).

Theorem 3 remains feasible for

α = 5, σ = 9× 10−3, q = 7, h = 4× 10−3,
kp ≈ −33.21, ki = −40, kd ≈ 23.21,

where kp, ki, kd are calculated using (19). Thus, the event-

triggered PID control (18), (21), (22) exponentially stabi-

lizes (20). Performing numerical simulations in a manner

described in Section II-C, we find that the event-triggered

PID control requires to transmit on average 628.4 control

signals during 10 seconds. The sampled-data controller (18)

requires
⌊

10
h

⌋

+ 1 = 2128 transmissions. Thus, the event-

triggering mechanism reduces the workload of the controller-

to-actuator network by more than 70%. The total workload of

both networks is reduced by more than 26%.

APPENDIX A

PROOF OF THEOREM 1

(i) Consider the functional

V = V0 + Vδ0 + Vδ + Vκ (26)

with

V0 = xTPx,

Vδ0 = h2e2αh
∫ t

tk
e−2α(t−s)ẏT (s)KT

0 W0K0ẏ(s) ds

− π2

4

∫ t

tk
e−2α(t−s)[y(s)− y(tk)]

TKT
0 W0×

K0[y(s)− y(tk)] ds,

Vδ = h2e2αh
∑r−1

i=1

∫ t

tk−qih
e−2α(t−s)ẏT (s)KT

i WiKiẏ(s) ds

− π2

4

∑r−1
i=1

∫ t−qih

tk−qih
e−2α(t−s)[y(s)− y(tk − qih)]

T×
KT

i WiKi[y(s)− y(tk − qih)] ds,

Vκ =
∑r−1

i=1

∫ t

t−qih
e−2α(t−s)(s− t+ qih)

r×
(y(r)(s))TKT

i RiKiy
(r)(s) ds.

The term Vκ, introduced in [12], compensates Taylor’s remain-

ders κi, while Vδ0 and Vδ , introduced in [9], compensate the

sampling errors δ0 and δ. The Wirtinger inequality (Lemma 1)

implies Vδ0 ≥ 0 and Vδ ≥ 0. Using (9) and (3), we obtain

V̇0 + 2αV0=2xTP [Dx+BK0δ0+BKδ+BKκ]+2αxTPx,

V̇δ0 + 2αVδ0 = h2e2αhxT (K0CA)
TW0(K0CA)x

−π2

4 δ
T
0 K

T
0 W0K0δ0,

V̇δ + 2αVδ = h2e2αh
∑r−1

i=1 x
T (KiCA)

TWi(KiCA)x

−π2

4

∑r−1
i=1 e

−2αqihδTi K
T
i WiKiδi.

Using y(r) = CAr−1ẋ (which follows from (3)) and Jensen’s

inequality (Lemma 2) with ρ(s) = (s− t+ qih)
r−1, we have

V̇κ + 2αVκ =
∑r−1

i=1 (qih)
r(y(r)(t))TKT

i RiKiy
(r)(t)

−
∑r−1

i=1 r
∫ t

t−qih
e−2α(t−s)(s− t+ qih)

r−1×
(y(r)(s))TKT

i RiKiy
(r)(s) ds

≤ ∑r−1
i=1 (qih)

rẋT (Ar−1)TCTKT
i RiKiCA

r−1ẋ

−∑r−1
i=1

(r!)2

(qih)r
e−2αqihκTi K

T
i RiKiκi.

Summing up, we obtain

V̇ + 2αV ≤ ϕT Φ̄ϕ+ ẋT (CAr−1)TH(CAr−1)ẋ, (27)

where

ϕ = col{x,K0δ0, . . . ,Kr−1δr−1,K1κ1, . . . ,Kr−1κr−1}
(28)

and Φ̄ is obtained from Φ by removing the last block-column

and block-row. Substituting (9) for ẋ and applying the Schur

complement, we find that Φ ≤ 0 guarantees V̇ ≤ −2αV .

Since V (tk) ≤ V (t−k ), the latter implies exponential stability

of the system (9) and, therefore, (1), (6).

(ii) Since qi = O(h
1
r
−1), [12, Lemma 2.1] guaranties

M−1 = O(h
1
r
−1), which implies Ki = O(h

1
r
−1) for

i = 0, . . . , r − 1. Since D = D̄ (with D̄ defined in (10))

and (1), (4) is exponentially stable with the decay rate α′,
there exists P > 0 such that PD + DTP + 2αP < 0 for

any α < α′. Choose W0 = O(h−
1
r ), Wi = O(h−

1
r ), and

Ri = O(h1−
1
r ) for i = 1, . . . , r − 1. Applying the Schur

complement to Φ ≤ 0, we obtain

PD +DTP + 2αP +O(h
1
r ) < 0,

which holds for small h > 0. Thus, (i) guarantees (ii).

APPENDIX B

PROOF OF THEOREM 2

Denote ek = ûk − u(tk), k ∈ N0. The event-triggering

mechanism (13), (14) guarantees

0 ≤ σuT (tk)Ωu(tk)− eTkΩek. (29)

Substituting ûk = u(tk)+ek into (12) and using (7), we obtain

(cf. (9))

ẋ = Dx+BK0δ0 +BKδ +BKκ+Bek, t ∈ [tk, tk+1)
(30)

with D given in (9). Consider V from (26). Calculations

similar to those from the proof of Theorem 1 lead to (cf. (27))

V̇ + 2αV
(29)

≤ V̇ + 2αV + σuT (tk)Ωu(tk)− eTkΩek
≤ ϕT

e Φ̄eϕe + ẋT (CAr−1)TH(CAr−1)ẋ+ σuT (tk)Ωu(tk),
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where ϕe = col{ϕ, ek} (with ϕ from (28)) and Φ̄e is

obtained from Φe by removing the blocks Φij with i ∈ {4, 6}
or j ∈ {4, 6}. Substituting (30) for ẋ and (7) for u(tk)
and applying the Schur complement, we find that Φe ≤ 0
guarantees V̇ ≤ −2αV . Since V (tk) ≤ V (t−k ), the latter

implies exponential stability of the system (30) and, therefore,

(12) under the controller (6), (13), (14).

APPENDIX C

PROOF OF THEOREM 3

(i) Consider the functional

V = V0 + Vv + Vδ + Vκ

with

V0 = xTPx,

Vv = h2e2αh
∫ t

tk
e−2α(t−s)ẋT (s)Sẋ(s) ds

−π2

4

∫ t

tk
e−2α(t−s)vT (s)Sv(s) ds,

Vδ =Wk2dh
2e2αh

∫ t

tk−qh
e−2α(t−s)(ẏ(s))2 ds

−Wk2d
π2

4

∫ t−qh

tk−qh
e−2α(t−s)[y(s)− y(tk − qh)]2ds,

Vκ = Rk2d
∫ t

t−qh
e−2α(t−s)(s− t+ qh)2(ÿ(s))2 ds.

The Wirtinger inequality (Lemma 1) implies Vv ≥ 0 and Vδ ≥
0. Using the representation (24), we obtain

V̇0 + 2αV0 = 2xTP [Ax(t) +Avv(t) +Bkd(κ+ δ) +Bek]
+2αxTPx,

V̇v + 2αVv = h2e2αhẋT (t)Sẋ(t)− π2

4 v
T (t)Sv(t),

V̇δ + 2αVδ =Wk2dh
2e2αh(x2(t))

2 −Wk2d
π2

4 e
−2αqhδ2(t).

Using Jensen’s inequality (Lemma 2) with ρ(s) = (s−t+qih),
we obtain

V̇κ + 2αVκ = Rk2d(qh)
2(ÿ(t))2

−Rk2d2
∫ t

t−qh
e−2α(t−s)(s− t+ qh)(ÿ(s))2 ds

≤ Rk2d(qh)
2(ẋ2(t))

2 −Rk2d
4

(qh)2 e
−2αqhκ2(t).

For ω ≥ 0, the event-triggering rule (21), (22) guarantees

0 ≤ ωσu2(tk)− ωe2k.

Thus, we have

V̇ + 2αV ≤ V̇ + 2αV + [ωσu2(tk)− ωe2k]

≤ ψT Ψ̄ψ + ẋT (t)Gẋ(t) + ωσu2(tk),

where ψ = col{x, v/
√
h, kdδ, kdκ, ek} and Ψ̄ is obtained from

Ψ by removing the last two block-columns and block-rows.

Substituting (24) for ẋ and (23) for u(tk) and applying the

Schur complement, we find that Ψ ≤ 0 guarantees V̇ ≤
−2αV . Since V (tk) ≤ V (t−k ), the latter implies exponential

stability of the system (24) and, therefore, (18), (20)–(22).

(ii) The closed-loop system (16), (17) is equivalent to ẋ =
Āx with

Ā =





0 1 0
−a2 + bk̄p −a1 + bk̄d bk̄i

1 0 0



 , x =





y
ẏ

∫ t

0
y(s) ds



 .

Since q = O( 1√
h
), relations (19) imply kp = O( 1√

h
), kd =

O( 1√
h
). Since (16), (17) is exponentially stable with the decay

rate α′ and (19) implies A = Ā, there exists P > 0 such that

PA+ATP +2αP < 0 for any α < α′. Choose S = O( 1
h
√
h
),

W = O( 1√
h
), R = O(

√
h), and ω = O( 1√

h
). Applying the

Schur complement to Ψ ≤ 0, we obtain

PA+ATP + 2αP +O(
√
h) + σF < 0

with some F independent of σ. The latter holds for small

h > 0 and σ ≥ 0. Thus, (i) guarantees (ii).
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