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Sampled-data H∞ filtering of a 2D heat equation

under pointlike measurements

Anton Selivanov and Emilia Fridman

Abstract— The existing sampled-data observers for 2D heat
equations use spatially averaged measurements, i.e., the state
values averaged over subdomains covering the entire space
domain. In this paper, we introduce an observer for a 2D heat
equation that uses pointlike measurements, which are modeled
as the state values averaged over small subsets that do not
cover the space domain. The key result, allowing for an efficient
analysis of such an observer, is a new inequality that bounds
the L2-norm of the difference between the state and its point
value by the reciprocally convex combination of the L2-norms
of the first and second order space derivatives of the state.
The convergence conditions are formulated in terms of linear
matrix inequalities feasible for large enough observer gain and
number of pointlike sensors. The results are extended to solve
the H∞ filtering problem under continuous and sampled in
time pointlike measurements.

I. INTRODUCTION

Partial differential equations model tremendous amount

of processes: heat transfer, fluid dynamics, fusion reactions,

wave propagation, etc. Such processes may require feedback

control to remain stable, e.g., chemical reactors [1], oil

drill strings [2], tokamaks [3], and rotating stall in axial

compressors [4]. Here, we construct observers for 2D heat

equations with continuous and sampled in time pointlike

measurements. These observers can be combined with state-

feedback controllers to stabilize 2D reaction-diffusion sys-

tems.

For 1D heat equations, point observers/controllers have

been constructed and analyzed under continuous [5], [6], [7],

[8], [9], [10] and sampled in time [7], [11] measurements.

N -D diffusion equations with averaged measurements (i.e.,

the state values are averaged over subdomains covering the

entire space domain) have been studied in [12], [13], [14].

Constructive analysis of 2D diffusion equations under point-

like measurements and actuators is a challenging problem,

especially in the presence of time-delays and disturbances.

In this paper, we develop a constructive method allowing

to solve the H∞ filtering problem in the case of a 2D

reaction-diffusion system with continuous and sampled in

time pointlike measurements.

Point measurements are often modeled using Dirac delta

functions. This leads to certain difficulties in the well-

posedness analysis and data sampling becomes hard to study

due to the unboundedness of the corresponding input/output

operators. We use a more convenient approach where point-

like measurements are presented as the average state value
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over a small enough domain subset. This allows to avoid

technical difficulties related to the well-posedness and allows

to study data sampling. Similarly to [15], which studied

1D domains, we use the mean value theorem to present

such measurements as the state point values. Inspired by

[16], we derive an inequality that bounds the L2-norm of

the difference between the state and its point value by

the reciprocally convex combination of the L2-norms of

the first and second order space derivatives of the state

(Lemma 5). Combining this inequality with a Lyapunov

functional, we derive the observer convergence conditions

in terms of linear matrix inequalities that are feasible for

a high enough observer gain and large enough number of

sensors (Section II). The results are extended to solve the

H∞ filtering problem under continuous (Section III) and

sampled in time (Section IV) pointlike measurements.

Notations: ‖ · ‖ is the L2-norm, supp f is the support of

function f , conv(G) is the convex hull.

The following lemmas will be used in the analysis.

Lemma 1: Let gi ∈ L2, i = 1, . . . , n. Then
∥∥∥∥∥

n∑

i=1

gi

∥∥∥∥∥

2

≤
n∑

i=1

1

αi
‖gi‖2

for any αi > 0 such that
∑

i αi = 1.

Proof. By the convexity of ‖ · ‖2,
∥∥∥
∑n

i=1 αi
gi
αi

∥∥∥
2

≤ ∑n
i=1 αi

∥∥∥ gi
αi

∥∥∥
2

=
∑n

i=1
1
αi

‖gi‖2.
�

Lemma 2 (Wirtinger’s inequality): For f ∈ H1(a, b),

‖f‖ ≤ 2(b− a)

π
‖f ′‖ if f(a) = 0 or f(b) = 0,

‖f‖ ≤ (b− a)

π
‖f ′‖ if f(a) = 0 and f(b) = 0.

Proof. See [17, Chapter 7.7].

Lemma 3 (Exponential Wirtinger’s inequality): If α ∈ R

and f ∈ H1(a, b) is such that f(a) = 0 or f(b) = 0, then
∫ b

a

e2αtf2(t) dt ≤ e2|α|(b−a) 4(b− a)2

π2

∫ b

a

e2αtḟ2(t) dt.

Proof. See [18, Lemma A.18].

Lemma 4 (Jensen inequality): If ρ : [a, b] → [0,∞) and

f : [a, b] → R are such that the integration concerned is well-

defined, then
[∫ b

a
ρ(s)f(s) ds

]2
≤

∫ b

a
ρ(s) ds

∫ b

a
ρ(s)f2(s) ds.

Proof. See [19, Lemma 1].



Fig. 1. Subdomains Ωi and the subset supp ci ⊂ Ωi

II. POINTLIKE OBSERVER FOR A 2D HEAT EQUATION

Consider the reaction-diffusion system

zt(x, t) = ∆Dz(x, t) + az(x, t), x ∈ Ω, t > 0,

z|∂Ω = 0, z|t=0 = z0
(1)

defined on Ω = (0, 1) × (0, 1) ⊂ R
2 with the state z : Ω ×

[0,∞) → R, reaction coefficient a, and diffusion term

∆Dz = div(D∇z), 0 < D =
[
d1 d2

d2 d3

]
∈ R

2×2. (2)

Remark 1: Any open parallelogram Ω̃ ⊂ R
2 can be

transformed to Ω = (0, 1)×(0, 1) using a nonsingular change

of variable x = Ax̃+ b. In this case, D = AD̃AT .

Remark 2: For simplicity, we consider a linear system.

The results can be extended to Lipschitz and sector-bounded

nonlinearities in a manner similar to [7], [13].

Let Ω be divided into N square subdomains Ωi (Fig. 1)

with a sensor placed in each Ωi providing the measurements

yi(t) =

∫

Ωi

ci(ξ)z(ξ, t) dξ,

0 ≤ ci ∈ L2(Ωi),

∫

Ωi

ci = 1, i = 1, . . . , N.

(3)

For example,

ci(ξ) =

{
1
ε2 , |ξ − xic|∞ < ε

2 ,
0, |ξ − xic|∞ ≥ ε

2

(4)

with a small ε ∈ (0, 1/
√
N ] model point measurements at

xic ∈ Ωi. The case of ε = 1/
√
N was considered in [13].

We study the observer

ẑt(x, t) = ∆D ẑ(x, t) + aẑ(x, t)

+ L
∑N

i=1 χi(x)
[
yi(t)−

∫
Ωi

ci(ξ)ẑ(ξ, t) dξ
]
,

ẑ|∂Ω = 0, ẑ|t=0 = 0
(5)

with the injection gain L and characteristic functions

χi(x) =

{
1, x ∈ Ωi,
0, x 6∈ Ωi,

i = 1, . . . , N. (6)

The estimation error z̄(x, t) = z(x, t)− ẑ(x, t) satisfies

z̄t = ∆D z̄ + az̄ − L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ)z̄(ξ, t) dξ,

z̄|∂Ω = 0, z̄|t=0 = z0.
(7)

Definition 1: A (classical) solution of (7) is a function

z̄ ∈ C1([0,∞);L2(Ω)) such that z̄(·, t) ∈ H2(Ω) ∩H1
0 (Ω)

for t ≥ 0 and z̄ satisfies (7).

Since A : D(A) ⊂ L2(Ω) → L2(Ω), Aw = ∆Dw,

with D(A) = H2(Ω) ∩ H1
0 (Ω) generates a C0-semigroup

[20, Theorem 7.2.7] and B : L2(Ω) → L2(Ω), Bw =
aw − L

∑N
i=1 χi

∫
Ωi

ciw, is bounded, the operator A + B
generates a C0-semigroup [21, Theorem 3.2.1]. By [21,

Theorem 3.1.3], (7) has a unique classical solution for

z0 ∈ D(A) = H2(Ω) ∩H1
0 (Ω).

By the mean value theorem (this idea comes from [15]),∫

Ωi

ci(ξ)z̄(ξ, t) dξ = z̄(xi(t), t),

where xi(t) ∈ conv(supp ci) for t ≥ 0 and i = 1, . . . , N .

Denoting

σ(x, t) = Lz̄(x, t)− L
∑N

i=1 χi(x)z̄(x
i, t), x ∈ Ω, t ≥ 0,

(8)

we present (7) as

z̄t = ∆D z̄ + (a− L)z̄ + σ, x ∈ Ω, t > 0,

z̄|∂Ω = 0, z̄|t=0 = z0.
(9)

If σ ≡ 0, then the system (9) is stable for a large enough

injection gain L. If Ω = (0, 1), the error σ 6≡ 0 can

be bounded using Wirtinger’s inequality as ‖σ(·, t)‖ ≤
2/(Nπ)‖z̄x(·, t)‖, which was used in [7] to prove the stabil-

ity of (9) for large L and N . We prove the following lemma

to bound the error σ in the case of Ω = (0, 1)2. This lemma

refines [16, Lemma 4.1].

Lemma 5: Let f ∈ H2((0, l)2;R), f(0, 0) = 0. Then

‖f‖2 ≤ 1

α1

(
2l

π

)2 ∥∥∥∥
∂f

∂x1

∥∥∥∥
2

+
1

α2

(
2l

π

)2 ∥∥∥∥
∂f

∂x2

∥∥∥∥
2

+
1

α3

(
2l

π

)4 ∥∥∥∥
∂2f

∂x1∂x2

∥∥∥∥
2

(10)

for any positive α1, α2, α3 such that α1 + α2 + α3 = 1.

Proof. Since α2 ∈ (0, 1),

‖f‖2 = ‖f(·, 0) + (f(·, ·)− f(·, 0))‖2
Lem.1

≤ 1
1−α2

‖f(·, 0)‖2 + 1
α2

‖f(·, ·)− f(·, 0)‖2
Lem.2

≤ 1
1−α2

(
2l
π

)2 ‖fx1
(·, 0)‖2 + 1

α2

(
2l
π

)2 ‖fx2
‖2.

Since α1

1−α2

+ α3

1−α2

= 1,

‖fx1
(·, 0)‖2 = ‖fx1

(·, ·) + (fx1
(·, 0)− fx1

(·, ·))‖2
Lem.1

≤ 1−α2

α1

‖fx1
‖2+ 1−α2

α3

‖fx1
(·, 0)−fx1

(·, ·)‖2
Lem.2

≤ 1−α2

α1

‖fx1
‖2 + 1−α2

α3

(
2l
π

)2 ‖fx1x2
‖2.

Combining these inequalities, we obtain (10). �

Corollary 1: Let f ∈H2((0, l)2;R), f(0, 0) = 0, η > 0.

Then

η‖f‖2 ≤ λ1

(
2l

π

)2 ∥∥∥∥
∂f

∂x1

∥∥∥∥
2

+ λ2

(
2l

π

)2 ∥∥∥∥
∂f

∂x2

∥∥∥∥
2

+ λ3

(
2l

π

)4 ∥∥∥∥
∂2f

∂x1∂x2

∥∥∥∥
2

(11)



Fig. 2. Four rectangles cornered at xi
∈ supp ci

for any λ1, λ2, λ3 satisfying

diag{λ1, λ2, λ3} ≥ η
[
1 1 1
1 1 1
1 1 1

]
. (12)

Proof. By the Schur complement, (12) is equivalent to
[
η−1 diag{λ1, λ2, λ3} 13

1
T
3 1

]
≥ 0,

where 13 = (1, 1, 1)T , which is equivalent to

0 < diag{λ1, λ2, λ3},
0 ≤ 1−η1T

3 diag{λ−1
1 , λ−1

2 , λ−1
3 }13 = 1−η∑3

i=1 λ
−1
i .

Thus, for

α1 =
η

λ1
, α2 =

η

λ2
, α3 =

η

λ3
,

we have α1 + α2 + α3 ≤ 1. Clearly, Lemma 5 remains true

for α1 + α2 + α3 ≤ 1 implying (11). �

Each rectangle cornered at xi ∈ supp ci and lying in Ωi

(see Fig. 2) has sides smaller than

l = max
i=1,...,N

max
ω∈∂Ωi

d∈supp ci

|ω − d|∞. (13)

Applying Corollary 1 to σ defined in (8) on each of such

rectangles and summing over them, we obtain

0 ≤ −η ‖σ‖
2

L2
+ λ1

(
2l

π

)2

‖z̄x1
‖2

+ λ2

(
2l

π

)2

‖z̄x2
‖2 + λ3

(
2l

π

)4

‖z̄x1x2
‖2 (14)

with η > 0, λ1, λ2, λ3 satisfying (12). The positive terms

in (14) can be made arbitrarily small by reducing l, i.e., by

increasing the number of sensors N .

Theorem 1: Consider the system (1) with the measure-

ments (3). For a given injection gain L and decay rate α > 0,

let there exist1

P = [ p1 p2

p2 p3
] > 0, η > 0, λi > 0, i = 1, . . . , 6,

such that (12) is true, Φ ≤ 0, and Φ∇ ≤ 0, where

Φ =



Φ11 0 1
∗ Φ22 −p̄
∗ ∗ −η/L2


 ,

Φ11 = 2(a− L+ α)− (λ5 + λ6)π
2,

Φ22 = −p̄d̄T − d̄p̄T +

[
0 0 λ4

0 λ3(2l/π)
4−2λ4 0

λ4 0 0

]
,

Φ∇ = −2D + 2(a− L+ α)P + (2l)2

π2

[
λ1 0
0 λ2

]
+

[
λ5 0
0 λ6

]

1MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/CDC18

with l defined in (13), p̄ = (p1, 2p2, p3)
T , and d̄ =

(d1, 2d2, d3)
T . Then the state of the observer (5) exponen-

tially converges to the state of the system (1) in the H1
0 -norm

for any initial conditions z0 ∈ H2(Ω) ∩H1
0 (Ω):

∃C > 0: ‖z(·, t)− ẑ(·, t)‖H1

0
≤ Ce−αt‖z0‖H1

0
.

Proof. Differentiating V0 = ‖z̄‖2 along (9), we obtain

V̇0 = 2
∫
Ω
z̄z̄t = 2

∫
Ω
z̄ [∆D z̄ + (a− L)z̄ + σ] .

Since z̄|∂Ω = 0, by the divergence theorem,

2
∫
Ω
z̄∆D z̄ = 2

∫
Ω
z̄ div(D∇z̄) = −2

∫
Ω
(∇z̄)TD∇z̄.

Therefore,

V̇0 + 2αV0 = −2
∫
Ω
(∇z̄)TD∇z̄

+ 2(a− L+ α)
∫
Ω
z̄2 + 2

∫
Ω
z̄σ. (15)

If σ ≡ 0, (15) is nonpositive for a large L implying the

exponential stability of (9) in L2. To compensate σ 6≡ 0, we

will use (14) that contains ‖z̄x1x2
‖2. For z̄ ∈ C∞

0 integration

by parts yields

0 = −2λ4

∫

Ω

z̄2x1x2
+ 2λ4

∫

Ω

z̄x1x1
z̄x2x2

. (16)

Since C∞
0 is dense in H2 ∩ H1

0 , the latter holds for z̄ ∈
H2 ∩H1

0 . To compensate z̄x1x1
and z̄x2x2

, we consider

V1 =
∫
Ω
(∇z̄(x, t))TP∇z̄(x, t) dx. (17)

Since z̄|∂Ω = 0, by the divergence theorem,

V̇1 = 2

∫

Ω

(∇z̄)TP∇z̄t = −2

∫

Ω

div (P∇z̄) z̄t.

Substituting z̄t, we obtain

V̇1 + 2αV1 = −2
∫
Ω
div (P∇z̄) div (D∇z̄)

+ 2(a− L+ α)
∫
Ω
(∇z̄)TP∇z̄ − 2

∫
Ω
div (P∇z̄)σ, (18)

where we used the divergence theorem to obtain the second

summand. Wirtinger’s inequality (Lemma 2) implies

0 ≤ −(λ5 + λ6)π
2

∫

Ω

z̄2 +

∫

Ω

(∇z̄)T
[
λ5 0
0 λ6

]
∇z̄. (19)

Summing up (14)–(19), for V = V0 + V1 we obtain

V̇ + 2αV ≤
∫

Ω

ϕTΦϕ+

∫

Ω

(∇z̄)TΦ∇∇z̄ ≤ 0,

where ϕ = (z̄, z̄x1x1
, z̄x1x2

, z̄x2x2
, σ)T . Thus, V̇ ≤ −2αV

implying the exponential stability of (9) in the H1
0 -norm. �

Remark 3 (Feasibility of LMIs): The LMIs of Theorem 1

are always feasible for a large enough injection gain L and

small enough l defined in (13). Indeed, D > 0 implies d1d3−
d22/ν > 0 for a large enough ν < 1. Since

2
[

0 −d1d2

−d1d2 0

]
≤ 2 diag{νd21, d22/ν},

2
[

0 −d2d3

−d2d3 0

]
≤ 2 diag{d22/ν, νd23},

https://github.com/AntonSelivanov/CDC18


for l = 0, p1 = d3, p2 = 0, p3 = d1, and λ4 = d21 + d23,

Φ22≤



−2(d1d3− d2

2

ν ) 0 0
0 −2(1−ν)λ4 0

0 0 −2(d1d3− d2

2

ν )


<0.

Therefore, Φ < 0 for large enough L and η. Clearly, Φ∇ < 0
for a large enough L and (12) holds for large enough λ1, λ2,

and λ3. Thus, the LMIs of Theorem 1 are feasible for l = 0.

By continuity, they remain so for a small enough l.
Corollary 2: The observer (5) provides exponentially con-

verging state estimate of the system (1), (3) if the injection

gain L is large enough and l defined in (13) is small enough

(i.e., the number of sensors N is large enough).

Remark 4 (Boundary conditions): The results can be ex-

tended to (1) with the boundary conditions

z|ΓD
=0, ∂z

∂n |ΓN
=0, ∂Ω=ΓD ∪ ΓN , ΓD ∩ ΓN =∅,

where n denotes the normal to ΓN . All the calculations of

Theorem 1 remain valid except for (19), which according to

the Wirtinger inequality (Lemma 2) should be replaced by

0 ≤ −λ5c1π2
∫
Ω
z̄2 + λ5

∫
Ω
z̄2x1

,
0 ≤ −λ6c2π2

∫
Ω
z̄2 + λ6

∫
Ω
z̄2x2

,

where

c1 =





1, if z(0, x2) = z(1, x2) = 0, ∀x2 ∈ (0, 1)
1
4 , if z(0, x2) = 0 or z(1, x2) = 0, ∀x2 ∈ (0, 1)
0, otherwise,

c2 =





1, if z(x1, 0) = z(x1, 0) = 0, ∀x1 ∈ (0, 1)
1
4 , if z(x1, 0) = 0 or z(x1, 0) = 0, ∀x1 ∈ (0, 1)
0, otherwise.

Remark 5 (3D domains): If Ω = (0, 1)3, an upper bound

for σ similar to (14) can be derived. This bound will involve

the 3rd order space derivative, which we do not know how to

compensate. Thus, it is not clear how to extend the proposed

method to 3D domains.

III. H∞ FILTERING OF A 2D HEAT EQUATION

Consider the reaction-diffusion system

zt(x, t) = ∆Dz(x, t) + az(x, t) + w(x, t), t > 0, x ∈ Ω

z|∂Ω = 0, z|t=0 = z0
(20)

defined on Ω = (0, 1) × (0, 1) ⊂ R
2 with the state z : Ω ×

[0,∞) → R, diffusion term (2), reaction coefficient a, and

disturbance w ∈ L2(0,∞;L2(Ω)).
Similarly to the previous section, the domain Ω is divided

into N square subdomains Ωi (Fig. 1) with a sensor placed

in each Ωi providing the measurements

yi(t) =

∫

Ωi

ci(ξ)z(ξ, t) dξ + vi(t),

0 ≤ ci ∈ L2(Ωi),

∫

Ωi

ci = 1, i = 1, . . . , N,

(21)

where vi ∈ L2(0,∞) is the measurement noise.

Consider the observer (5). The estimation error z̄(x, t) =
z(x, t)− ẑ(x, t) satisfies (cf. (7))

z̄t = ∆D z̄ + az̄ − L
∑N

i=1 χi(x)z̄(x
i, t) + w − v,

z̄|∂Ω = 0, z̄|t=0 = z0,
(22)

where

v(x, t) = L
∑N

i=1 χi(x)vi(t).

We assume that w and v are such that (22) is well-

posed. E.g., if w, v ∈ C1([0,∞), L2), the system (22) has a

unique classical solution for any z0 ∈ H2(Ω) ∩H1
0 (Ω) [21,

Theorem 3.1.3].

We say that (22) has an L2-gain not greater than γ, if
∫ ∞

0

‖z̄(·, t)‖2 dt ≤ γ2
∫ ∞

0

[
‖w(·, t)‖2 + ‖v(·, t)‖2

]
dt

(23)

for z0 = 0 and any w, v ∈ L2(0,∞;L2(Ω)).
Theorem 2: Consider the system (20) with the measure-

ments (21). For a given injection gain L and decay rate

α > 0, let there exist2

P = [ p1 p2

p2 p3
] > 0, η, γ1, γ2 > 0, λi > 0, i = 1, . . . , 6,

such that (12) is true, Ψ ≤ 0, and Φ∇ ≤ 0, where

Ψ =




1 1
Φ̄ −p̄ −p̄

0 0
∗ ∗ ∗ −γ2 0
∗ ∗ ∗ ∗ −γ2



,

Φ̄ coincides with Φ from Theorem 1 except for

Φ̄11 = 2(a− L+ α)− (λ5 + λ6)π
2 + γ1,

p̄ = (p1, 2p2, p3)
T , and Φ∇ is given in Theorem 1. Then

(22) has an L2-gain not greater than γ =
√
γ2/γ1.

Proof. Using (8), we present (22) as (cf. (9))

z̄t = ∆D z̄+(a−L)z̄ + σ + w − v, x ∈ Ω, t > 0,
z̄|∂Ω = 0, z̄|t=0 = z0.

(24)

Differentiating V0 = ‖z̄‖2 and V1 defined in (17) along (24)

and using the divergence theorem, we obtain (cf. (15), (18))

V̇0 + 2αV0 = −2
∫
Ω
(∇z̄)TD∇z̄ + 2(a− L+ α)

∫
Ω
z̄2

+ 2
∫
Ω
z̄σ + 2

∫
Ω
z̄[w − v], (25)

V̇1 + 2αV1 = −2
∫
Ω
div (P∇z̄) div (D∇z̄)

+ 2(a− L+ α)
∫
Ω
(∇z̄)TP∇z̄ − 2

∫
Ω
div (P∇z̄)σ

− 2
∫
Ω
div (P∇z̄) [w − v]. (26)

Summing up (14), (16), (19), (25), and (26), for V = V0+V1
we obtain

V̇ + 2αV + γ1‖z̄(·, t)‖2 − γ2
[
‖w(·, t)‖2 + ‖v(·, t)‖2

]

≤
∫
Ω
ψTΨψ +

∫
Ω
(∇z̄)TΦ∇∇z̄ ≤ 0, (27)

where ψ = (z̄, z̄x1x1
, z̄x1x2

, z̄x2x2
, σ, w,−v)T . Integrating

(27) from 0 to ∞ with z̄(·, 0) = 0, we obtain (23) with

γ =
√
γ2/γ1. �

2MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/CDC18

https://github.com/AntonSelivanov/CDC18


IV. SAMPLED-DATA H∞ FILTERING

Consider the reaction-diffusion system (20). Let the do-

main Ω be divided into N square subdomains Ωi (Fig. 1)

with a sensor placed in each Ωi providing the sampled in

time measurements (cf. (21))

yi,k =

∫

Ωi

ci(ξ)z(ξ, tk) dξ + vi,k,

0 ≤ ci ∈ L∞(Ωi),

∫

Ωi

ci = 1, i = 1, . . . , N,

(28)

where vi,k is the measurement noise and the sampling

instants tk with k ∈ N satisfy

0 = t1 < t2 < · · · , lim tk = ∞, tk+1 − tk ≤ h.

We study the sampled-data observer (cf. (5))

ẑt(x, t) = ∆D ẑ(x, t) + aẑ(x, t) + L
∑N

i=1 χi(x)×[
yi,k−

∫
Ωi

ci(ξ)ẑ(ξ, tk) dξ
]
, t ∈ [tk, tk+1), k ∈ N,

ẑ|∂Ω = 0, ẑ|t=0 = 0
(29)

with the injection gain L and characteristic functions χi

defined in (6). The estimation error z̄(x, t) = z(x, t)−ẑ(x, t)
satisfies (cf. (7), (22))

z̄t = ∆D z̄ + az̄ − L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ)z̄(ξ, tk) dξ

+ w − v, t ∈ [tk, tk+1),
z̄|∂Ω = 0, z̄|t=0 = z0,

(30)

where v(x, t) = L
∑N

i=1 χi(x)vi,k for t ∈ [tk, tk+1). The

existence of a unique classical solution of (30) for z0 ∈
H2(Ω) ∩H1

0 (Ω) can be established using the step method.

Theorem 3: Consider the system (20) with the measure-

ments (28). For a given injection gain L, decay rate α > 0,

and maximum sampling period h, let there exist3

P = [ p1 p2

p2 p3
] > 0, η, γ1, γ2, ν > 0, λi > 0, i = 1, . . . , 6,

such that (12) is true and Υ ≤ 0, Φ∇ ≤ 0, where

Υ =




1 νh(a− L)
−p̄ νhd̄

Ψ 0 νh
0 νh
0 νh

∗ ∗ ∗ ∗ ∗ −ν νh
∗ ∗ ∗ ∗ ∗ ∗ Υ77




,

Υ77 = − π2Nνe−2αh

4L2 maxi ‖ci‖∞

,

Ψ is given in Theorem 2, p̄ = (p1, 2p2, p3)
T , d̄ =

(d1, 2d2, d3)
T , and Φ∇ is given in Theorem 1. Then (30)

has an L2-gain less or equal than γ =
√
γ2/γ1.

Proof. By the mean value theorem, for t ∈ [tk, tk+1)

L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ)z̄(ξ, tk) dξ

= L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ)z̄(ξ, t) dξ − κ(x, t)

= L
∑N

i=1 χi(x)z̄(x
i(t), t)− κ(x, t)

= Lz̄(x, t)− σ(x, t)− κ(x, t)

3MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/CDC18

with xi(t) ∈ conv(supp ci), σ(x, t) defined in (8), and

κ(x, t) = L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ) [z̄(ξ, t)− z̄(ξ, tk)] dξ,

x ∈ Ω, t ∈ [tk, tk+1).

Then the error system (30) takes the form (cf. (24))

z̄t = ∆D z̄ + (a− L)z̄ + σ + κ+ w − v,
z̄|∂Ω = 0, z̄|t=0 = z0.

(31)

Let V = V0 + V1 + Vκ with V0 = ‖z̄‖2, V1 from (17), and

Vκ = 4νh2

π2 e2αh
∫ t

tk
e−2α(t−s)

∫
Ω
κ2t (x, s) dx ds

− ν
∫ t

tk
e−2α(t−s)

∫
Ω
κ2(x, s) dx ds, t ∈ [tk, tk+1).

Due to Lemma 3, Vκ ≥ 0. Moreover, Vκ does not grow at

the jumps tk, since Vκ(tk) = 0. Differentiating V along (31),

we have (cf. (25), (26))

V̇0 + 2αV0 = −2
∫
Ω
(∇z̄)TD∇z̄ + 2(a− L+ α)

∫
Ω
z̄2

+ 2
∫
Ω
z̄σ + 2

∫
Ω
z̄κ+ 2

∫
Ω
z̄[w − v], (32)

V̇1 + 2αV1 = −2
∫
Ω
div (P∇z̄) div (D∇z̄)

+ 2(a− L+ α)
∫
Ω
(∇z̄)TP∇z̄ − 2

∫
Ω
div (P∇z̄)σ

− 2
∫
Ω
div (P∇z̄)κ− 2

∫
Ω
div (P∇z̄) [w − v], (33)

V̇κ + 2αVκ = 4νh2

π2 e2αh
∫
Ω
κ2t (x, t) dx− ν

∫
Ω
κ2(x, t) dx.

(34)

The positive term in (34) can be bounded as

∫
Ω
κ2t (x, t) dx

=
∫
Ω

(
L
∑N

i=1 χi(x)
∫
Ωi

ci(ξ)z̄t(ξ, t) dξ
)2

dx

= L2
∫
Ω

∑N
i=1 χi(x)

(∫
Ωi

ci(ξ)z̄t(ξ, t) dξ
)2

dx
Lem.4

≤ L2
∫
Ω

∑N
i=1 χi(x)

∫
Ωi

ci(ξ)z̄
2
t (ξ, t) dξ dx

≤ L2 maxi ‖ci‖∞
∫
Ω

∑N
i=1 χi(x)

∫
Ωi

z̄2t (ξ, t) dξ dx

= maxi ‖ci‖∞ L2

N

∫
Ω
z̄2t (ξ, t) dξ.

Summing up (14), (16), (19), (32)–(34), we obtain

V̇ + 2αV + γ1‖z̄(·, t)‖2 − γ2
[
‖w(·, t)‖2 + ‖v(·, t)‖2

]

≤
∫
Ω
υT Ῡυ +

∫
Ω
(∇z̄)TΦ∇∇z̄

+ 4νh2

π2 e2αh maxi ‖ci‖∞ L2

N

∫
Ω
z̄2t (x, t) dx,

where υ = (z̄, z̄x1x1
, z̄x1x2

, z̄x2x2
, σ, w,−v, κ)T and Ῡ is

obtained from Υ by eliminating the last block-column and

block-row. Substituting (31) for z̄t and using the Schur

complement, we obtain that Υ < 0 and Φ∇ < 0 guarantee

V̇ + 2αV + γ1‖z̄(·, t)‖2 − γ2
[
‖w(·, t)‖2 + ‖v(·, t)‖2

]
≤ 0.

Integrating it from 0 to ∞ with z̄(·, 0) = 0, we obtain (23)

with γ =
√
γ2/γ1. �

https://github.com/AntonSelivanov/CDC18


Fig. 3. Performance index J(T ) on [0, 3] for continuous-time measure-
ments (21) with γ = 2.4 (solid line) and sampled-data measurements (28)
with h = 10−3 and γ = 4.6 (dashed line).

V. EXAMPLE

Consider the system (20) with D = diag{1, 0.8} and a =
2π2. Let the domain Ω = (0, 1)2 be divided into N = 36
squares of side length 1/

√
N = 1/6. Let the measurements

be given by (21) with ci defined in (4), where xic are the

centers of Ωi and ε = 0.05. Then l = 1/(2
√
N)+ε/2 ≈ 0.1

according to (13). The LMIs of Theorem 2 are feasible for

L = 5, γ = 2.4, α = 0.01. Thus, the observer (5) provides

H∞ filtering of the system (20) with the L2-gain not greater

than γ = 2.4. Fig. 3 shows the evolution of

J(T ) =

∫ T

0

[
‖z̄(·, t)‖2 − γ2‖w(·, t)‖2 − γ2‖v(·, t)‖2

]
dt

for z0 ≡ 0, w(x, t) = e−t sin(πx) sin(πy), vi(t) = e−t.

It remains negative implying that (23) is satisfied. For this

choice of w and vi the smallest L2-gain obtained from the

numerical simulations is γ = 1.2.

The LMIs of Theorem 3 are feasible for γ = 4.6 and

h = 10−3 (other parameters are the same). Therefore, the

sampled-data observer (29) provides H∞ filtering of the

system (20) with the L2-gain not greater than γ = 4.6.

VI. CONCLUSIONS

Design of sampled-data observers for 2D parabolic sys-

tems with point measurements was an open problem [13].

This paper suggested a solution to this problem for linear 2D

reaction-diffusion systems with the pointlike measurements

modeled as the state values averaged over small subdomains.

The solution is based on a novel bound on the L2-norm

of the difference between the state and its point value in

terms of a reciprocally convex combination of the L2-norms

of the first and second order state derivatives. The results

can be extended to semilinear systems as considered in [13].

Extension of the results to the controller design is a topic of

the future research.
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