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Abstract. Reliable estimation of hydrological soil mois-

ture state is of critical importance in operational hydrology

to improve the flood prediction and hydrological cycle de-

scription. Although there have been a number of soil mois-

ture products, they cannot be directly used in hydrological

modelling. This paper attempts for the first time to build a

soil moisture product directly applicable to hydrology us-

ing multiple data sources retrieved from SAC-SMA (soil

moisture), MODIS (land surface temperature), and SMOS

(multi-angle brightness temperatures in H–V polarisations).

The simple yet effective local linear regression model is ap-

plied for the data fusion purpose in the Pontiac catchment.

Four schemes according to temporal availabilities of the data

sources are developed, which are pre-assessed and best se-

lected by using the well-proven feature selection algorithm

gamma test. The hydrological accuracy of the produced soil

moisture data is evaluated against the Xinanjiang hydrologi-

cal model’s soil moisture deficit simulation. The result shows

that a superior performance is obtained from the scheme with

the data inputs from all sources (NSE = 0.912, r = 0.960,

RMSE = 0.007 m). Additionally, the final daily-available hy-

drological soil moisture product significantly increases the

Nash–Sutcliffe efficiency by almost 50 % in comparison with

the two most popular soil moisture products. The proposed

method could be easily applied to other catchments and fields

with high confidence. The misconception between the hy-

drological soil moisture state variable and the real-world soil

moisture content, and the potential to build a global routine

hydrological soil moisture product are discussed.

1 Introduction

Soil moisture is a key element in the hydrological cycle,

regulating evapotranspiration, precipitation infiltration, and

overland flow (Wanders et al., 2014). For hydrological appli-

cations, the antecedent wetness condition of a catchment is

among the most significant factors for accurate flow gener-

ation processes (Berthet et al., 2009; Matgen et al., 2012a).

Norbiato et al. (2008) reported that initial wetness conditions

are essential for efficient flash flood alerts. Additionally, an

operational system requires reliable hydrological soil mois-

ture state updates to reduce the time-drift problem (Aubert et

al., 2003; Berg and Mulroy, 2006; Dumedah and Coulibaly,

2013). However, currently there is no available soil moisture

product that can be used directly in hydrology modelling, pri-

marily because soil moisture is difficult to define and there

is no single shared meaning in various disciplines (Romano,

2014).

Although there have been many soil moisture measuring

projects (e.g., satellite missions such as advanced scatterom-

eter (ASCAT), soil moisture and ocean salinity (SMOS),

and Soil Moisture Active Passive (SMAP); ground-based

networks such as Soil Climate Analysis Network (SCAN),

U.S. Surface Climate Observing Reference Networks, and

COsmic-ray Soil Moisture Observing System), they are not

sufficiently used in hydrology due to the following rea-

sons: (1) misconception between the hydrological soil mois-

ture state variable and the real-field soil moisture content

(Zhuo and Han, 2016a); (2) unawareness of data availabil-

ity and strength/weakness of different data sources; (3) the

existing soil moisture products are mainly evaluated against

point-based ground soil moisture observations or airborne re-

trievals, which have significant spatial mismatch (both hori-

zontally and vertically) to catchment-scales, and are there-
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fore less applicable to hydrological modelling (Pierdicca et

al., 2013); (4) underutilisation of multiple data sources (e.g.,

multi-angle raw observations by satellite sensors).

Some studies have attempted to directly utilise the ex-

isting soil moisture products (i.e., data from satellites, land

surface models, and in situ methods directly) for flood pre-

diction improvement, for example, Brocca et al. (2010) ex-

plored that utilising the soil water index from ASCAT sensor

could improve runoff prediction mainly if the initial catch-

ment wetness conditions were unknown; Aubert et al. (2003)

assimilated in situ soil moisture observations into a sim-

ple rainfall–runoff model and acquired better flow prediction

performance; Javelle et al. (2010) suggested that estimations

of antecedent soil moisture conditions were useful in improv-

ing flash flood forecasts at ungauged catchments; contrarily,

the Chen et al. (2011) study showed assimilating ground-

based soil moisture observations was generally unsuccess-

ful in enhancing flow prediction; Matgen et al. (2012b) re-

vealed that satellite soil moisture products added little or no

extra value for hydrological modelling. Clearly those results

are rather mixed. Challenges remain in integrating soil mois-

ture estimated outside the hydrological field into hydrologi-

cal models. We believe if a hydrologically directly applicable

soil moisture product could be produced, the aforementioned

studies’ results would be significantly improved.

Therefore, the aims of this paper are to clarify the afore-

mentioned misconception between the hydrological model’s

soil moisture state and the real-world soil moisture, assess the

data availabilities for direct hydrological soil moisture state

estimation, and fuse those available data sources using a hy-

drologically relevant approach. It is hoped that the final prod-

uct has a superior hydrological compatibility over the exist-

ing soil moisture products. To achieve these aims, the Xinan-

jiang (XAJ) (Zhao, 1992) operational rainfall–runoff model

is used as a target to simulate flow and soil moisture state

information (i.e., soil moisture deficit, SMD) for the Pontiac

catchment in the central United States (U.S.). The reason for

adopting XAJ is explained in the following section. For the

purpose of hydrological soil moisture state estimation, it is

effective to adopt the data-driven method, which can map

multiple data sources into the desired dataset without com-

putational burden. In this study the local linear regression

(LLR) model is used. The multiple data sources applied in

this study include the SMOS (Kerr et al., 2010) multi-angle

brightness temperatures (Tbs) with both horizontal (H) and

vertical (V) polarisations, the moderate resolution imaging

spectroradiometer (MODIS) (Wan, 2008) land surface tem-

perature, and the soil moisture product by SAC-SMA (Xia et

al., 2014). The detail explanations of those datasets are cov-

ered in the methodology section. A well-proven feature se-

lection algorithm gamma test (GT) (Stefánsson et al., 1997;

Zhuo et al., 2016b) is employed to pre-assess the selected

data inputs and find the optimal combination of them for soil

moisture state calculation. In addition, an M-test (Remesan

et al., 2008) is adopted to explore the best size of the training

data. The desired soil moisture product is trained and tested

by the XAJ SMD simulation. In total four data-input schemes

are developed according to the temporal availability of the

selected data inputs, which are then combined to give a daily

hydrological soil moisture product.

Compared with previous work, our study contains the fol-

lowing new elements: (i) a hydrologically directly usable soil

moisture product is proposed; (ii) the GT and LLR tech-

niques are used for the first time in a data fusion of multiple

data sources for hydrological soil moisture state estimation;

(iii) the use of multiple data sources is useful, which allows

data users to analyse the availability of the different products

and compare the relative benefits of them.

2 Material and methods

2.1 Study area

In this study, the Pontiac catchment (1500 km2, Fig. 1)

is used for the calibration and the validation of the XAJ

model. The Pontiac (40.878◦ N, 88.636◦ W) lies on the north-

flowing Vermilion River, which is a tributary of the Illi-

nois River of the state of Illinois, U.S. The worst flood in

this area occurred on 4 December 1982, cresting at 5.84 m

above mean sea level (m.s.l.), and the most recent flood oc-

curred on 9 January 2008, cresting at 5.75 m m.s.l.; there-

fore, this catchment is likely located within a winter-flooding

region. Pontiac is covered with moderate canopy (the an-

nual mean normalised difference vegetation index retrieved

from the MODIS satellite is around 0.4), and when com-

pared with a densely vegetated catchment, it has more accu-

rate soil moisture estimations from satellites (Al-Bitar et al.,

2012). Based on the Köppen–Geiger climate classification,

this medium-sized catchment is dominated mainly by hot

summer continental climate (Peel et al., 2007). With refer-

ence to the University of Maryland Department Global Land

Cover Classification, it is used primarily for agriculture pur-

poses (Bartholomé and Belward, 2005; Hansen et al., 2000).

The soil mostly consists of Mollisols, which has deep and

high organic matter, and the nutrient-enriched surface soil is

typically between 60 and 80 cm in depth (Webb et al., 2000).

The study period is from January 2010 to December 2011.

The reason for using this 2-year period of data is because

there have been many data gaps from 2013 to 2017, and the

data quality in 2012 was poor. As a result, only the data in

2010–2011 are consistent and of high quality. As pointed out

by Liu and Han (2010), “Traditionally, hydrologists use rules

of thumb to select a certain period of hydrological data to

calibrate the models (i.e., 6-year data)”. However, their study

has shown “the information content of the calibration data

is more important than the data length; thus, 6-month data

may provide more useful information than longer data se-

ries”. Therefore, the 2 years of high quality data adopted in

the study are better than a longer period of poor quality data.

Hydrol. Earth Syst. Sci., 21, 3267–3285, 2017 www.hydrol-earth-syst-sci.net/21/3267/2017/
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Figure 1. The location and river network of the Pontiac catchment in the U.S., with the flow gauge and NLDAS-2 central grid points (Zhuo

et al., 2015a).

The North American Land Data Assimilation System 2

(NLDAS-2) (Mitchell et al., 2004) provides precipitation

and potential evapotranspiration information to run the XAJ

model. Both data forces are at 0.125◦ spatial resolution and

have been converted to daily temporal resolution. In order

to use those distributed forcing into the lumped XAJ model,

both forcing have been interpolated with the area-weighted

average method instead of the more complicated Kriging ap-

proach, because the latter could produce errors if not well

controlled (Wanders et al., 2014). The average annual rain-

fall depth is about 954 mm, and the average annual potential

evapotranspiration is approximately 1670 mm. The daily ob-

served flow data are acquired from the U.S. Geological Sur-

vey.

2.2 Hydrological model

The XAJ hydrological model is used for the simulation of

SMD and river flow at a daily time step. It is a simple lumped

rainfall–runoff model with many applications performed in

world-wide catchments (Chen et al., 2013; Gan et al., 1997;

Shi et al., 2011; Zhao, 1992; Zhao and Liu, 1995; Zhuo et al.,

2016a, 2015b). Since XAJ can obtain rather effective flow

modelling performances and requires only two meteorolog-

ical forcing (precipitation and potential evapotranspiration)

inputs (Peng et al., 2002), it is used more widely than the

more complicated semi-distributed/fully distributed hydro-

logical models for operational applications.

As shown in Fig. 2, the XAJ model has three main compo-

nents: evapotranspiration, runoff generation, and runoff rout-

ing. XAJ consists of soil layers (upper, lower and deep) in

its evapotranspiration calculations. Because XAJ adopts the

multi-bucket variable-size method in its modelling concept,

it has unfixed soil depths, which is more effective than the

fixed depths models (Beven, 2012). Other widely used mod-

els such as PDM (Moore, 2007), VIC (Liang et al., 1994),

and ARNO (Todini, 1996) also follow this concept.

In XAJ, the three-layer soil moisture state variables are all

calculated as SMD, which is an important soil-wetness vari-

able in hydrology. SMD is defined as the amount of water

to be added to a soil profile to bring it to the field capac-

ity (Calder et al., 1983; Rushton et al., 2006). In this study,

only the surface SMD (i.e., top layer) referring to the vege-

tation and the very thin topsoil, is utilised as a hydrological

soil moisture target. This is because the water held in the top

few centimetres of the soil has been widely recognised as a

key variable associated with water fluxes (Eltahir, 1998; En-

tekhabi and Rodriguez-Iturbe, 1994). Moreover, the current

satellite technology is only capable of acquiring the Earth in-

formation from the outermost layer of the soil. Therefore, as

a case study based on the XAJ model, we only focus on the

surface soil moisture state investigation here. Future research

will focus on the root-zone soil moisture product develop-

ment by using a similar method proposed in this study.

In this study, a modified version of the XAJ model is

adopted, and interested readers are referred to Zhuo and

Han (2016b) for more details. All the XAJ’s 17 parameters

are used during the model calibration, which are shown in

Table 1. In this study, the genetic algorithm (Wang, 1991)

is used for parameter optimisation. Based on the genetic al-

gorithm result, minor trial and error adjustments to the pa-

rameters EX, B, WUM, WLM, and WDM are also carried

out to obtain the best model performance (Chen and Adams,

2006). The calibration and the validation results (during Jan-

uary 2010–April 2011 and May 2011 to December 2011,

respectively) of the XAJ model can be found in Zhuo et

al. (2015a). Discussion regarding the river flow and SMD

simulation results in this catchment have been published in

Zhuo and Han (2016b), with Nash–Sutcliffe efficiency (NSE)

www.hydrol-earth-syst-sci.net/21/3267/2017/ Hydrol. Earth Syst. Sci., 21, 3267–3285, 2017
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Figure 2. Adopted flowchart of the XAJ model (Zhao, 1992). The model consists of an evapotranspiration component (a), a runoff generating

component (b), and a runoff routing component (c). P, PET, and ET are the precipitation, potential evapotranspiration, and the simulated

actual evapotranspiration respectively; WU, WL and WD represent the upper, lower, and deep soil layers’ areal mean-tension water storage

respectively; WM is the areal mean field capacity; EU, EL, and ED stand for the upper, lower, and deep soil layers’ evapotranspiration output

respectively; S is the areal mean free water storage; a is the portion of the sub-catchment producing runoff; IMP is the factor of impervious

area in a catchment; RB is the direct runoff produced from the small portion of impervious area; R is the total runoff generated from the

model with surface runoff (RS), interflow (RI), and groundwater runoff (RG) components respectively. These three runoff components are

then transferred into QS, QI, and QG and combined as the total sub-catchment inflow (T) to the channel network. The flow outputs Q from

each sub-catchment are then routed to the catchment outlet to produce the final flow result (TQ). The rest of the symbols are explained in

Table 1.

Table 1. The XAJ model parameters used in the Pontiac catchment.

Symbol Model parameters Unit Range

K Ratio of evapotranspiration [–] 0.10–1.20

WUM The areal mean field capacity of the upper layer mm 30–50

WLM The areal mean field capacity of the lower layer mm 20–150

WDM The areal mean field capacity of the deep layer mm 30–400

IMP Percentage of impervious and saturated areas in the catchment % 0.00–0.10

B Exponential parameter with a single parabolic curve, which represents the non-

uniformity of the spatial distribution of the soil moisture storage capacity over

the catchment

[–] 0.10–0.90

C Coefficient of the deep layer that depends on the proportion of the catchment

area covered by vegetation with deep roots

[–] 0.10–0.70

SM Areal mean free water capacity, which represents the maximum possible deficit

of free water storage

mm 10–50

KG Outflow coefficient of the free water storage to groundwater relationships [–] 0.10–0.70

KSS Outflow coefficient of the free water storage to interflow relationships [–] 0.10–0.70

EX Exponent of the free water capacity curve [–] 1.10–2.00

KKG Recession constant of the groundwater storage [–] 0.01–0.99

KKSS Recession constant of the lower interflow storage [–] 0.01–0.99

CS Recession constant in the lag and route method for routing through the channel

system with each sub-catchment

[-] 0.10–0.70

L Lag in time [–] 0.00–6.00

V Parameter of the Muskingum method m s−1 0.40–1.20

dX Parameter of the Muskingum method [–] 0.00–0.40

Hydrol. Earth Syst. Sci., 21, 3267–3285, 2017 www.hydrol-earth-syst-sci.net/21/3267/2017/
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Table 2. General data-input properties relevant for this study.

SMOS-Tbs MODIS-LST SAC-SMA-SM

Product brightness temperature land surface temperature soil moisture

Unit Kelvin (K) Kelvin (K) m3 m−3

Near-real-time (NRT) Yes Yes Yes

Spatial resolution (km) 35–50 5.6 14

Data time step ∼ every 3 days ∼ daily Daily

Data availability for the 217 458 730

studying period (days)

obtained larger than 0.80 during both the calibration and val-

idation periods. The results are not repeated here.

2.3 Multiple data sources for hydrological soil moisture

state estimation

Data sources from SMOS, MODIS, and SAC-SMA are

used (Table 2). All data sources have been converted

into catchment-scale datasets by the area-weighted average

method. The detail description of each data source is given

as follows. The main reason for choosing those three data

sources is due to their near-real-time (NRT) availabilities

(MODAPS Services, 2015; Rodell, 2016) (SMOS becomes

available in NRT recently; ESA Earth Online, 2016), which

allows for fast implementation in flood forecasting.

2.3.1 SMOS multi-angle brightness temperatures

(SMOS-Tbs)

The SMOS (1.4 GHz, L-band) level-3 Tbs data covering

the studying period are available from the Centre Aval de

Traitement des Données SMOS (CATDS) (Jacquette et al.,

2010). The reason for choosing the SMOS satellite is because

compared with other satellite techniques (i.e., optical, and

thermal infrared), microwave bands (especially with longer

wavelength such as L-band, 21 cm) can penetrate deeper into

the soil (∼ 5 cm) and have less interruptions from weather

conditions (Njoku and Kong, 1977). Additionally, SMOS has

a relatively longer period of data record compares with other

satellite missions such as SMAP. SMOS retrieves the thermal

emission from the Earth in both H and V polarisations with

wide ranges of incidence angles from 0 to 60◦. The observa-

tion depth of SMOS is approximately 5 cm with a spatial res-

olution of 35–50 km depending on the incident angle and the

deviation from the satellite ground track (Kerr et al., 2012,

2010, 2001).

SMOS provides Tbs retrievals at all incidence angles av-

eraged in 5◦ width angle bins, which have been transformed

into the ground polarisation reference frame (i.e., H, and V

polarisations). Therefore, the number of the SMOS-Tbs in-

puts for the hydrological soil moisture estimation can be as

high as 24 (12 angle bins per polarisation), with the centre

of the first angle bin at 2.5◦ in both polarisations (Rodriguez-

Fernandez et al., 2014). As the satellite progresses, any given

location on the Earth’s surface is scanned a number of times

at various incidence angles, depending on the location with

respect to the satellite subtrack: the further away, the fewer

the angular acquisitions (Kerr et al., 2010). The data avail-

abilities of the SMOS-Tbs are illustrated in Fig. 3 (the avail-

abilities for H and V polarisations are the same). It can be

seen that the data availabilities among various incidence an-

gles are rather different. In this study the only angle range

that gives the most available record of data is from 27.5

to 57.5◦ (i.e., 7 for H and 7 for V polarisation), which is

therefore chosen for the hydrological soil moisture develop-

ment. This angle range is in line with the angle selection in

Rodriguez-Fernandez et al. (2014). In addition the SMOS

level-3 soil moisture product from the CATDS (SMOS-SM)

is also acquired for a comparison with the estimated soil

moisture product. Retrievals that are potentially contami-

nated with radio-frequency interference have been removed.

Readers are referred to Kerr et al. (2012) for a full de-

scription of the SMOS-retrieving algorithms, and Njoku and

Entekhabi (1996) for good knowledge of how passive mi-

crowaves relate to soil moisture variations.

2.3.2 MODIS land surface temperature (MODIS-LST)

The MODIS/Terra (Earth Observing System AM-1 plat-

form) (Wan, 2008) daily MOD11C1-V5 land surface tem-

perature covering the studied period is downloaded from the

Land Processes Distributed Active Archive Centre website.

MODIS is chosen among other operational optical satellites

for its suitable features, mostly, due to its frequent revisiting

time and free NRT data availability. It measures 36 spectral

bands between 0.405 and 14.385 µm, and acquires data at

three spatial resolutions 250, 500, and 1000 m respectively,

while the adopted MOD11C1 V5 product incorporates 0.05◦

(5.6 km) spatial resolution. The benefit of adding land sur-

face temperature information is that previous studies have

shown the variations in soil moisture have a strong linkage

with land surface temperature (Carlson, 2007; Goward et al.,

2002; Mallick et al., 2009). One reason is the changes of land

surface temperature are mainly affected by albedo and di-

urnal heat capacity, and the diurnal heat capacity is mainly

controlled by soil moisture (Price, 1980). Wan (2008) com-

www.hydrol-earth-syst-sci.net/21/3267/2017/ Hydrol. Earth Syst. Sci., 21, 3267–3285, 2017
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Figure 3. SMOS-Tbs data availabilities. It is noted that the available dates for the horizontal and the vertical polarisations are the same;

therefore, only one is shown here.

pared MOD11C1-V5 land surface temperatures in 47 clear-

sky cases with in situ measurement and revealed that the ac-

curacy was better than 1 K in the range from −10 to 58 ◦C in

about 39 cases. Cloud-contaminated data have been removed

by a double-screening method, and its details can be found

in Wan et al. (2002).

2.3.3 SAC-SMA soil moisture estimation

(SAC-SMA-SM)

The reason for choosing the SAC-SMA land surface mod-

elled soil moisture product is because satellites can often

have missing data due to various weather and canopy con-

ditions (e.g., rainfall, frozen weather, and vegetation cover-

age); therefore, this daily dataset is essential in producing

a temporally completed hydrological soil moisture product.

In this study, the surface soil moisture (0–10 cm) simulated

from the SAC-SMA model is selected. This is because its

estimated soil moisture gives a high accuracy against the

observational soil moisture and a good correlation with the

XAJ SMD (Zhuo et al., 2015b). The daily SAC-SMA-SM

is given in a spatial resolution of 0.125◦. The dataset can be

download from http://www.emc.ncep.noaa.gov/mmb/nldas/.

Readers are referred to Xia et al. (2012) for a full description

of the SAC-SMA data products.

2.3.4 Data availabilities

As shown in Table 2, the availability of the three data sources

is rather different. Unlike SMOS and MODIS, SAC-SMA-2

SM is a model-based product that runs in a NRT mode, and

therefore it produces valid data every day during the whole

studying period. Whereas the two satellites’ data are more

exiguous and depend on weather and surface conditions.

Compared with MODIS, the SMOS’s retrieval is even sparse

and the biggest data shortage normally occurs in the win-

ter season where its returned microwave signal is mostly af-

fected by frozen soils (Zhuo et al., 2015a). Based on the data

availability analysis, the proposed hydrological soil moisture

product is built from four data-input schemes as presented

in Table 3. Those four schemes enable us to test and com-

pare the estimated soil moisture state more comprehensively.

Since the continuity of a soil moisture product is essential

for any operational applications, SAC-SMA-SM is included

in all of the schemes.

2.4 Data fusion

2.4.1 Gamma test for feature selection

Before model building, it is important to carry out a feature

selection process, because it can simplify the model inputs,

shorten training times, and reduce overfitting problems. In

this study a proper combination of the incidence angles from

the SMOS Tbs is vital for the best soil moisture state cal-

culation. For this purpose, a feature selection method called

GT is adopted. It has been effectively used in numerous stud-

ies for model-input selection (Durrant, 2001; Jaafar and Han,

2011; Noori et al., 2011; Remesan et al., 2008; Tsui et al.,

2002; Zhuo et al., 2016b). In addition to the feature selection,

GT can also give a useful indication of the underlying model

complexity. It is a near-neighbour data analysis routine that

Hydrol. Earth Syst. Sci., 21, 3267–3285, 2017 www.hydrol-earth-syst-sci.net/21/3267/2017/
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Table 3. Four data-input schemes: scheme 1: SAC-SMA-SM;

scheme 2: SAC-SMA-SM and MODIS-LST; scheme 3: SAC-SMA-

SM and SMOS-Tbs; scheme 4: SAC-SMA-SM, MODIS-LST, and

SMOS-Tbs.

SAC-SMA-SM MODIS-LST SMOS-Tbs

Scheme 1 x

Scheme 2 x x

Scheme 3 x x

Scheme 4 x x x

determines the minimum mean-squared error (MSE) that can

be achieved based on the input–output dataset utilising any

continuous non-linear models (Zhuo et al., 2016b). The cal-

culated minimum MSE is referred to as the gamma statistics

and denoted as Ŵ. For detailed calculations about the GT al-

gorithm, interested readers are referred to Koncar (1997), Pi

and Peterson (1994), and Stefánsson et al. (1997). Here only

the basic knowledge about the GT is shown:

{(xi,yi) , 1 ≤ i ≤ M} , (1)

where the inputs xi ∈ Rm are vectors restricted by a closed

bounded set C ∈ Rm, and their corresponding outputs yi ∈ R

are scalars, M stands for the sample points. The outputs y are

determined by the input vectors x that carry predictively use-

ful messages. The only assumption made is that their latent

relationship is from the following function:

y = f (x1. . .xm) + r, (2)

where f is built up as a smooth model with r representing

random noise. Without loss of generality, the assumption of

r noise distribution is that its mean is always zero, because

all the constant bias has been considered within the f model.

Additionally, r’s variance (Var(r)) is restricted within a set

boundary. The observations’ potential model is now defined

within the class of smooth functions.

The Ŵ is related to N [i,k], which represents as the kth

(1 ≤ k ≤ p) nearest neighbours of each vector xi (1 ≤ i ≤

M), written as xN [i,k](1 ≤ k ≤ p), where p is a fixed inte-

ger. In order to determine the gamma function from the input

vectors, the delta function is used:

δM(k) =
1

M

M
∑

i=1

∣

∣xN [i,k] − xi

∣

∣

2
(1 ≤ k ≤ p), (3)

where the function
∣

∣xN [i,k] − xi

∣

∣ calculates the Euclidean

distance. The gamma function for its output values is ex-

pressed as in Eq. (4), and the Ŵ can be determined from

Eqs. (3) and (4):

γM(k) =
1

2M

M
∑

i=1

∣

∣yN [i,k] − yi

∣

∣

2
(1 ≤ k ≤ p), (4)

where yN [i,k]is the corresponding output values for the kth

nearest neighbours xi (xN [i,k]). To find Ŵ a least-squared re-

gression line for the p points (δM(k),γM(k)) is built using

the following equation:

γ = Aδ + Ŵ, (5)

where Ŵ can be determined when δ is set as zero. The detailed

explanation is

γM(k) → Var(r), when δM(k) → 0. (6)

Equation (5) gives us valuable information about the under-

lying system; not only that the Ŵ is a useful indicator of the

optimal MSE result that any smooth functions can achieve,

but also its gradient A provides guidance about the underly-

ing model complexity (i.e., the steeper the gradient the more

sophisticated the model should be adopted). In this study, the

winGamma™ software is used for GT calculation (Durrant,

2001). The mathematical feasibility of GT has been pub-

lished in Evans and Jones (2002).

2.4.2 M-test for training data-size selection

A common practice in non-linear modelling is to split the

dataset into training and testing parts. However, there is no

universal solution on how to divide the datasets (i.e., the pro-

portion of each part) so that the best modelling results could

be obtained. Here, an M-test is carried out, where M stands

for the training data size. M-test is accomplished by calculat-

ing the Ŵ for increasing the Mvalue (i.e., expanding the train-

ing data) and exploring the resultant graph to judge whether

the Ŵ approaches a stable asymptote. Such an approach is

straightforward and effective in finding the optimal sizes of

training and testing datasets, while avoiding overfitting prob-

lems and reducing unsystematic attempts.

2.4.3 Local linear regression

Various data fusion techniques have been developed (Prakash

et al., 2012; Srivastava et al., 2013; Wagner et al., 2012);

however, their methods require high computational time to

run and this, in a real-time flood forecasting framework,

could not match the operational needs. Comparatively, the

LLR model is a simpler method and requires relatively low

computational time. Therefore it is chosen in order to test if a

simple method is able to provide effective performance. LLR

is a non-parametric regression model that has been applied in

Liu et al. (2011), Pinson et al. (2008), Sun et al. (2003), and

Zhuo et al. (2016b) for forecasting and smoothing purposes.

LLR builds local linear regression based on the nearest points

(pmax) of a targeted point, and repeats such a process over the

whole training dataset to produce a piecewise linear model.

There are many methodologies in selecting the pmax, in this

study a method called influence statistics is used (Durrant,

2001; Remesan et al., 2008), which is outlined as below.
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Assume there are pmax nearest points, then Eq. (7) can be

built:

Xm = y, (7)

here X is a pmax × d matrix, which shows the d-dimensional

information of pmax, xi are the nearest points confined be-

tween 1 and pmax, y is the output vector with pmax dimen-

sion, and m is a set of parameters formed in a vector, which

plays an important role in mapping the solution from X to y.

Therefore Eq. (7) can be expanded as











x11 x12 x13 · · · x1d

x21 x22 x23 · · · x2d

...
...

...
. . .

...

xpmax1 xpmax2 xpmax3 · · · xpmaxd





















m1

m2

...

md











=











y1

y2

...

ypmax











. (8)

In order to solve the equation, the following two conditions

are set: (a) if X is square and non-singular then Eq. (7) can be

simply calculated as m = X−1y; (b) if X is not square or sin-

gular, Eq. (7) needs to be rearranged and m can be obtained

by finding the minimum of

|Xm − y|2 (9)

with the distinct solution of

m = X#y, (10)

where X# is the pseudo-inverse matrix of X (Penrose, 1955,

1956).

3 Results

In this section, different combinations of input data (Table 3)

are adopted to examine their impacts on hydrological soil

moisture estimation. XAJ SMD is used as a hydrological soil

moisture state benchmark for the training and testing. More

discussion about the misconception between the hydrolog-

ical model’s soil moisture state variable and the real-world

soil moisture content is covered in Sect. 4. During GT and

M-test processes, all data inputs need to be normalised so

that their mean is zero and standard deviation is 0.5. This

step is necessary in reducing the impacts of numerical dif-

ference from various inputs, hence improving the GT effi-

ciency (Remesan et al., 2008). Five statistical indicators are

used for the soil moisture estimation analysis: Pearson prod-

uct moment correlation coefficient (r), MSE, which is the

same value as the gamma statistic Ŵ, standard error (SE),

NSE (Nash and Sutcliffe, 1970), and root mean square error

(RMSE).

3.1 Scheme 1: SMD estimation using SAC-SMA-SM as

input

Although in this scheme, there is no need for data feature

selection because only one data input is involved, the GT

is still carried out to explore the useful information about

the underlying relationship between the XAJ SMD and the

SAC-SMA-SM. The calculated gamma statistics are shown

in Table 4. The Ŵ of 0.072 indicates that the optimal MSE

achievable using any modelling technique is 0.072; and the

small value of SE shows the precision and accuracy of the

GT result. Ŵ is a significant target value in the M-test to find

the most suitable training data size. As presented in Fig. 4a,

when more training data (i.e., M increases in steps of one)

is used the Ŵ changes dramatically. Eventually at M = 292,

Ŵ starts to stabilise around 0.072. The M-test allows us to

confidently apply the first 292 datasets to build a model of a

given quality, in the sense of predicting with a MSE around

the asymptotic level. The corresponding gamma gradient (A)

suggests the complexity of the underlying system: the larger

the A value is the more complex the system is. For example

if A is significantly large, a more complicated model like a

support vector machine might be required, but A = 1.353 in

scheme 1 is small (Remesan et al., 2008); therefore, a LLR

model should be able to simulate the system. For LLR mod-

elling, its complexity level is controlled by the pmax param-

eter. As illustrated in Fig. 5, pmax is identified from a trial

and error method. The procedure is to increase the LLR pmax

value from 2 to 100 to analyse the variations of their corre-

sponding Ŵ results. It can be seen from Fig. 5 that the small-

est Ŵ is achieved at pmax = 4, which is therefore adopted for

the LLR modelling. The training and testing scatter plots for

the LLR modelling are shown in Fig. 6a. It is observed that

there are some points lying far above the bisector line during

the training period signifying higher estimations, whereas

some points sit far below the bisector line during the testing

period indicating underestimation of the SMD. For the test-

ing results, when XAJ-simulated soil moisture states have al-

ready reach the total dryness (i.e., XAJ SMD peaks at around

0.080 m), the predicted soil moisture state is still in the drying

process. Figure 7a plots the time series of the estimated and

the targeted SMD. The plot shows that the estimated SMD

follows the seasonal trend of the soil moisture fluctuations

well; therefore, it is wetter during the winter season and exs-

iccated during the hot summer season. However, it is clear to

see that the model is not able to capture the extreme situations

very well, especially during the wet season when the XAJ

SMD becomes smaller (e.g., between day 300 and day 350).

3.2 Scheme 2: SMD estimation using SAC-SMA-SM

and MODIS-LST as inputs

Land surface temperature is the product of the soil temper-

ature multiplied by the emissivity, and the emissivity de-

pends on the dielectric constant of the soil and soil moisture
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Table 4. Model statistical performances and modelling information, where Ŵ is the calculated gamma statistic, which is the minimum MSE

that can be achieved from a modelling method; A is the gamma gradient; SE is the Standard error; pmax is the nearest points for LLR

modelling; M is the training data size; and SMOS IA is the chosen incidence angle of SMOS-Tbs.

Ŵ A SE pmax M SMOS IA

Scheme 1 0.072 1.353 0.004 4 292 –

Scheme 2 0.060 0.568 0.002 2 199 –

Scheme 3 0.033 0.152 0.004 7 120 H: 27.5–47.5, 57.5◦

V: 27.5–42.5, 52.5, 57.5◦

Scheme 4 0.029 0.119 0.006 5 62 H: 37.5–57.5◦

V: 37.5–42.5, 57.5◦

Figure 4. M-test to find the best training data size: (a) scheme 1, (b) scheme 2, (c) scheme 3, and (d) scheme 4.

(Rodriguez-Fernandez et al., 2015). Therefore, the additional

MODIS-LST information could potentially improve the soil

moisture estimation. The modelling process is the same as in

scheme 1. In Table 4, it is clear to observe that by adding the

MODIS-LST input, the Ŵ is improved to 0.060 and its corre-

sponding gradient A is reduced significantly to less than half

of scheme 1. Meanwhile the SE value is decreased remark-

ably as well showing the accuracy of the GT. The M-test in

Fig. 4b shows the graph settles to an asymptote around 0.060,

which is consistent with the calculated Ŵ result. Training data

size of 199 is chosen here because it gives the lowest Ŵ value.

For the LLR modelling, the best pmax value is found to be 2

from the trial and error result in Fig. 5. The LLR training and

testing performances are presented in Fig. 6b. Although the

problem of underestimation of extremely dry soil still exists

(i.e., the points concentrate at the right end of the training and

testing plots), overall the model’s prediction ability during

both phases is better than that of scheme 1 (i.e., data points

are closer to the 45◦ line). The improvement can also be seen

clearly in the time series plot in Fig. 7b. For example, the

big disparities between the estimated and the targeted SMDs

around day 300 and day 350 are reduced evidently.

3.3 Scheme 3: SMD estimation using SAC-SMA-SM

and SMOS-Tbs as inputs

The multi-angle Tbs retrievals are the main data inputs for

SMOS soil moisture calculation; therefore, their inclusion

should also add a positive effect to the hydrological soil

moisture estimation. As aforementioned, an efficient feature

selection of the SMOS incidence angles is important for the

best SMD calculation. In this study all the possible combina-

tions from all inputs variables are examined with the Ŵ result

as the statistical indicator. This method is capable of exam-

ining every combination (16 383 embeddings in this case) of

data inputs to target the optimal combination that gives the
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Figure 5. Gamma statistic (Ŵ) variations for increasing the LLR pmax value.

Figure 6. LLR modelling during the training and testing phases for (a) scheme 1 and (b) scheme 2.
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Figure 7. The time series plots of the XAJ SMD and the estimated SMD from the four schemes: (a) scheme 1, (b) scheme 2, (c) scheme 3,

and (d) scheme 4.

smallest absolute Ŵ value. As discussed in Sect. 2.3.4, SAC-

SMA-SM is a compulsory data input; therefore, it is not in-

cluded in the selecting process. The best set of SMOS-Tbs

to retrieve soil moisture state is composed of H polarisation

at the incidence angles of 27.5–47.5, 57.5◦, and V polarisa-

tion at the incidence angles of 27.5–42.5, 52.5, 57.5◦. This

result demonstrates that using a combination of H and V Tbs

gives a better soil moisture estimation, which is logically sen-

sible because different polarisations carry distinct informa-

tion of the Earth’s surface. However, some incidence angles

could hold common features, which when putting together

could result in a negative effect to the LLR modelling, and

are therefore not included. The detailed investigation of the

possible common features is outside the scope of this paper,

which is mainly due to the SMOS working mechanism.

As seen from Table 4, the inclusion of SMOS-Tbs signif-

icantly improves the Ŵ result by 54 %, while the gradient

A is reduced greatly by 89 % as compared with scheme 1.

The small A value illustrates that the underlying system

is more straightforward and easier to model than that of

scheme 1. The M-test analysis in Fig. 4c produces an asymp-

totic convergence from a 120 training data size of Ŵ value

around 0.033. It is interesting to see that the proportion of

the required training data is relatively larger than those in

schemes 1 and 2. The potential reason could be explained

by the larger amount of data inputs in this scheme. For LLR

modelling, the pmax that gives the smallest Ŵ is 7 (Fig. 5).

The SMD estimations during the training and the testing are

presented in Fig. 8a. It can be seen that the SMD prediction

ability of this scheme is remarkably better than the previ-

ous ones, as most of the points lie on the bisector line al-

beit there are still some under- and overestimations. The rea-

son SMOS outperforms MODIS in SMD estimation could

be due to the long wavelength the microwave has; therefore,

it presents the top few centimetres of the soil while MODIS

LST (thermal infrared) only provides information at the soil

surface. The used LLR algorithm has been double checked to

filter out the potential of an overfitting problem. The check-

ing processes are performed by muddling the SMD target in

the testing datasets as well as altering the input file, and its

efficiency stays the same. Hence, it is believed that the LLR

model is very useful in calculating SMD from this scheme.

Generally the NSE, r and RMSE statistical indicators show a

high agreement during both training and testing phases. For

the time series plot in Fig. 7c, it is clear to see that most of

the estimated points lie closely to the benchmark line. The

observed outliers could be partly due to the data shortage in

this scheme so that not all the scenarios are covered in the

datasets.

3.4 Scheme 4: SMD estimation using SAC-SMA-SM,

MODIS-LST, and SMOS-Tbs as inputs

In this scheme, all the three data sources are used to test if

the modelling performance can be further improved. Here

the full embedding calculation is again carried out to explore

the most suitable incidence angles from the SMOS-Tbs. This

is because the added MODIS-LST data could carry identi-

cal (i.e., redundant) features with some of the SMOS-Tbs

datasets. As a result of the full embedding calculation, the

best set of SMOS-Tbs is composed of H polarisation at the

incidence angles of 37.5–57.5◦, and V polarisation at the in-

cidence angles of 37.5–42.5, 57.5◦. As seen in Fig. 4d, the to-

tal amount of data is significantly reduced due to the shortage

of simultaneously available days between the MODIS and

the SMOS observations. Interestingly the M-test graph vi-
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Figure 8. LLR modelling during the training and testing phases for (a) scheme 3 and (b) scheme 4.

brates more significantly than the other three schemes, which

could be due to the smaller data size and the larger amount

of data inputs in this scheme. Here the training data size is

chosen as 62 with Ŵ obtained at around 0.030. The optimal

pmax is identified to be 5 (Fig. 5). The LLR modelling results

are shown in Figs. 7d and 8b. It is obvious that this scheme

further improves the accuracy of the SMD estimation, espe-

cially with the high statistical performances achieved during

both training and testing phases. Comparatively, this scheme

is more stable for SMD estimation, albeit it requires more

data inputs and is only realisable when both the MODIS and

the SMOS observations are available.

3.5 Produce an unintermitted soil moisture product

The data availability of the four schemes varies. As shown in

Fig. 9, scheme 1, which has the poorest soil moisture state

estimation, gives the most data availability, while scheme 4,

which has the most accurate soil moisture state estimation,

shows the least data availability. In order to produce an

unintermitted hydrological soil moisture product, the four

schemes need to be combined together to complement each

other. The combining method is by selecting the best avail-

able soil moisture estimation. For example, if all the schemes

have available data at the same time, the best scheme’s soil

moisture data are chosen (i.e., scheme 4 in this situation),

whereas if just one scheme has data on that day, only that

scheme’s soil moisture data are used. The performances of

the four schemes as well as the combined product are sum-

marised in Table 5. Although the combined soil moisture

state is obtained with lower statistical performances than that

of schemes 3 and 4, it is still hydrologically very accurate

especially when compared to the SMOS’s official soil mois-
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Figure 9. Data availability plots of the four schemes: scheme 1: SAC-SMA-SM input; scheme 2: SAC-SMA-SM and MODIS-LST inputs;

scheme 3: SAC-SMA-SM and SMOS-Tbs inputs; scheme 4: SAC-SMA-SM, MODIS-LST, and SMOS- Tbs inputs. The total available days

for the four schemes are 730, 458, 217, and 140 respectively.

Figure 10. Time series plot of the combined daily hydrological soil moisture state estimations.

ture product (Table 5). The time series of the combined soil

moisture state is plotted in Fig. 10. It can be seen that the

general trend of the produced soil moisture state follows the

targeted data very well. However, it tends to overestimate

some of the wet events during the rainy season and signif-

icantly underestimate the dryer soil condition in September

2011. Those poor estimations are mostly from schemes 1 and

2 where schemes 3 and 4 are not available. Since more and

more microwave satellite observations are becoming obtain-

able, those new data sources could add extra benefits into the

proposed model, and the accuracy of the soil moisture prod-

uct is expected to be further enhanced.

4 Discussion

4.1 What is a soil moisture state variable?

This study uses the XAJ’s SMD simulation as a target be-

cause it is directly produced by a hydrological model. How-

ever, it is argued that models with different parameters values

can generate equally good flow results called the equifinality

effect, because they are all calibrated based on the observed

flow. For this reason, their soil moisture state variables can

be distinct among each other.

In order to investigate this effect in more details, the XAJ

model is manipulated by increasing one of its parameters

WUM by 30 %. By doing so, the XAJ’s flow simulation re-
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Figure 11. SMD variations from the manipulated XAJ calibration (i.e., the WUM parameter is increased by 30 %) and its original calibration.

Table 5. Summary of SMD estimation performances. It is noted that

RMSE is in the unit of metres.

Training Testing

NSE r RMSE NSE r RMSE

Scheme 1 0.752 0.870 0.011 0.688 0.830 0.014

Scheme 2 0.767 0.877 0.011 0.747 0.865 0.012

Scheme 3 0.928 0.965 0.006 0.876 0.940 0.008

Scheme 4 0.912 0.957 0.007 0.912 0.960 0.007

Combined – – – 0.790 0.889 0.011

SMOS-SM – – – 0.420 0.650 0.017

mains as effective as its original form (the same NSE val-

ues), but its soil moisture state changes significantly from its

original values. For a better visualisation, an enlarged plot of

the SMD simulations between day 222 and day 344 is pre-

sented. As seen from Fig. 11a although the soil moisture state

variables from two equally good calibrations have a wide

range of value differences (NSE = 0.34), they both follow the

same pattern: when it rains they become wet by the similar

amount; when there is a dry period they all move into a dryer

state in a similar rate to the actual evapotranspiration. There-

fore, they appear as in parallel movements and the latter plot

(Fig. 11b) shows a very strong linear correlation (r = 1.0) be-

tween them. It is important to note that the selection of the

dry period (i.e., high SMD values) is because it is the most

critical period of time for the need of accurate soil moisture

values for hydrological modelling. This is because during the

real-time flood forecasting, after a long period of dryness, the

accumulation of error in the hydrological models can become

larger and larger with time. With accurate soil moisture infor-

mation, the error could be corrected.

Although the absolute values of the models’ soil moisture

state variables are not quite meaningful and comparable, their
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Figure 12. Normalised SMD variations from the manipulated XAJ calibration (i.e., the WUM parameter is increased by 30 %) and its original

calibration.

variations are the true reflection of the soil moisture fluctua-

tions in the real world. This clarification is a very important

concept, because there has been a wide spread of misunder-

standing about the hydrological model’s soil moisture state

and its connection with the real-world soil moisture.

4.2 Soil moisture state normalisation

One deficiency of this study is that the generated soil mois-

ture state is based on a hydrological model’s SMD simula-

tion, and therefore it is model parameter dependent. It is de-

sirable to produce a soil moisture indicator that is indepen-

dent from model parameters and dimensionless with vari-

ables between 0 and 1. Normalised hydrological soil mois-

ture state (NHSMS) indicators are produced as presented in

Fig. 12 (corresponding to the SMD simulations shown in

Fig. 11). The normalisation method is obtained by adopting

the following equation:

NHSMS =
SMD − min(SMD)

max(SMD) − min(SMD)
. (11)

Such an approach is very effective as demonstrated by the

almost identical SMD curves between the two XAJ simula-

tions. In the future it is planned to use the same process on

other hydrological models to test if the normalised soil mois-

ture indicators are not only model parameter independent

but also model structure independent. Since all hydrologi-

cal models are driven by the same physics laws on the con-

servation of mass, their normalised soil moisture indicators

should respond in a similar way (soil becomes wetter when
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it rains and drier when there is no rain). If this is true, a new

soil moisture product based on NHSMS could be generated

as a routine product by the operational organisations such as

NASA and ESA. Such a soil moisture product will also be

very useful to the meteorological and hydro-meteorological

fields in their land surface modelling because the current

land surface models suffer from poor performance in their

runoff estimations. As aforementioned, all current soil mois-

ture products such as those from ESA and NASA are not

optimised for different application fields. Our study gives

an example of simulating the soil moisture data targeted to

serve the hydrological community. It is possible other prod-

ucts serving farmers in agriculture, ecologists in the environ-

ment, and geotechnical engineers in construction could be

produced using the proposed method.

4.3 Application of the produced soil moisture data

Another area needing further work is the hydrological appli-

cation of the produced data. Generally, effective hydrological

application of soil moisture data needs three pre-conditions:

(1) a good soil moisture data relevant to hydrology, (2) a hy-

drological model compatible with such data, and (3) an ef-

fective data assimilation scheme. This paper tackles the first

point, and the other two points would need further research

because there are significant knowledge gaps in them. If all

the three points are solved, such a data has a huge potential in

operational hydrological modelling. For example, initialisa-

tion of the model could be shortened, which reduces the need

for model warm-up. This is important during real-time flood

forecasting when there is not enough data to warm up the

model for an imminent flood event. Such a warm-up period

could be very long, as demonstrated by the study in Ceola et

al. (2015). In addition the XAJ SMD data used here is based

on the calibration of the observed rainfall and flow so that

the targeted SMD is interpolated between observations and

there is a minimum time drift. In real-time flood forecasting,

the errors in precipitation and evapotranspiration could ac-

cumulate, which cause time-drift problems. Therefore, a soil

moisture product such as the one produced in this study (i.e.,

based on minimal time-drift SMD) could help one avoid such

a problem. The proposed soil moisture data are also valuable

for the validation of land surface models, especially useful

for their runoff simulations. Due to the limit of time and re-

sources, this study has not tackled all the issues, but has laid

a good foundation for their future research.

4.4 XAJ model under frozen conditions

The Pontiac catchment is characterised by soil-freezing

events in winter seasons. During freezing events, soil mois-

ture transfer fundamentally differs from the unfrozen condi-

tions (e.g., Gelfan, 2006). Although the XAJ model has been

successfully applied in simulating flows in frozen soil con-

ditions (e.g., see Zhou et al., 2008), as well as in this case

study, the lumped XAJ model does not explicitly consider

soil freezing; thus, SMD simulations can be inaccurate for

winter seasons and further research is needed to investigate

this issue further.

5 Conclusions

A hydrological soil moisture product is produced for the Pon-

tiac catchment using the GT and the LLR modelling tech-

niques based on four data-input schemes. Three data sources

are considered including the soil moisture product from the

SAC-SMA model, the land surface temperature retrieved by

the MODIS satellite, and the multi-angle brightness temper-

atures acquired from the SMOS satellite. The four data-input

schemes are built from the four combinations of the data

sources. The generated soil moisture product (unintermitted

with no missing data) for a period of 2 years (2010–2011) is

compared with the XAJ hydrological model’s SMD simula-

tion to test its hydrological accuracy. It is concluded that the

GT and the LLR modelling techniques together with the cho-

sen data inputs can be used with high confidence to estimate

an unintermitted hydrological soil moisture product, and the

proposed method could be easily applied to other catchments

and fields.

In this study it has been found that different data sources

have their own unique information contents, so that they can

complement each other using data fusion technique. Their

synergy can be best achieved to produce an enhanced soil

moisture product. In data fusion an important principle is

MRmr (maximum relevance minimum redundancy). The soil

moisture state in this study is generated from a large number

of data inputs, and their selection is carried out by the GT,

which is one of the methods in MRmr. This is the first time

that the GT is used in a data fusion of satellite multiple Tbs

scans, land surface temperature and external soil moisture

information for producing a hydrological soil moisture prod-

uct. Future studies should explore other MRmr methods in

addition to GT, to compare if they are more effective input se-

lection methods. As to the data fusion regression model, LLR

is chosen in this study because it is easily applied and very

effective. However, it is possible there may exist other better

models. We encourage the community to apply the proposed

methodology using other regression models.

Data availability. The NLDAS-2 datasets used in this arti-

cle can be obtained through the https://ldas.gsfc.nasa.gov/nldas/

NLDAS2forcing_download.php (NASA, LDAS, 2017) website,

the SMOS level-3 brightness temperatures and soil moisture are

from the CATDS at http://www.catds.fr/Products/Products-access

(CATDS, 2017), and the MODIS level-3 land surface temperature

can be obtained from the LP DAAC website at https://lpdaac.usgs.

gov/dataset_discovery/modis/modis_products_table/mod11c1 (LP

DAAC, 2014).
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