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ABSTRACT

A remarkable decline in the number of rain gauges is being faced in many areas of the world, as a compromise

to the expensive cost of operating andmaintaining rain gauges. The question of how to effectively deploy new or

remove current rain gauges in order to createoptimal rainfall information is becomingmore andmore important.

On the other hand, larger-scaled, remotely sensed rainfall measurements, although poorer quality compared

with traditional rain gauge rainfall measurements, provide an insight into the local storm characteristics, which

are sought by traditional methods for designing a rain gauge network. Based on these facts, this study proposes a

newmethodology for rain gauge network design using remotely sensed rainfall datasets that aims to explore how

many gauges are essential and where they should be placed. Principal component analysis (PCA) is used to

analyze the redundancy of the radar grid network and to determine the number of rain gauges while the potential

locations are determined by cluster analysis (CA) selection. The proposed methodology has been performed on

373 different storm events measured by a weather radar grid network and compared against an existing dense

rain gauge network in southwestern England. Because of the simple structure, the proposed scheme could be

easily implemented in other study areas. This study provides a new insight into rain gauge network design that is

also a preliminary attempt to use remotely sensed data to solve the traditional rain gauge problems.

1. Introduction

Rain is a major component of the water cycle on

Earth, which is a significant issue in many scientific fields

such as ecosystems, agriculture, and water environment.

Methods for measuring rainfall need to take into ac-

count its mutability in order tominimize uncertainty and

the errors found within the recorded data. The use of

rain gauges is one of the oldest and most common

methods employed in the world for measuring rainfall.

Nowadays, rain gauge rainfall is a vital source of in-

formation used for the calibration of remotely sensed

rainfall and verification of numerical weather model
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rainfall products. However, hydrologists and meteo-

rologists are facing a dilemma of rain gauge manage-

ment. Additionally, rain gauges are extremely desired

in many regions to improve the quality of local rainfall

measurement, especially in ungauged catchments, while

on the other hand, the expensive cost of operating and

maintaining rain gauges leads to shutting down of avail-

able rain gauges. A decline of roughly 50% of the number

of rain gauges has occurred in the period of 1989–2006 in

Europe, South America, and Africa (Lorenz and

Kunstmann 2012; Walsh 2012), and there has been an

approximately 50% decrease in the number of valid

daily reports in the period 2000–07 for APHRODITE

(Overeem et al. 2013; Yatagai et al. 2012). In an effort

to address this dilemma, an efficient and feasible

scheme for rain gauge network design is needed to

capture maximum rainfall information with a minimum

number of gauges.

The traditional rain gauge network design is classi-

fied by two types: haphazard manner and quantitative

method. The haphazard manner is generally based on

numerous technical guidelines or considerations. At

present, there is still no standard procedure in place in

most parts of the world for rain gauge network design.

The reason for this is because of the complexity of the

problem faced by both hydrologists and meteorolo-

gists. Rain gauges were distributed according to the

population, in order to be close to observers. This led to

areas of high rainfall having relatively few gauges.

Design requirements consist of determining the num-

ber of gauges and their locations, given the frequency in

time of sampling that minimizes the uncertainty of

rainfall estimation. Other factors also need consider-

ation, that is, the nature of the catchment, its topo-

graphic influences, its drainage patterns, the accessibility

and suitability of proposed locations, and the cost of

installing and maintaining the gauges. Moreover, the

purpose of the network and the regional climate should

be taken into consideration. The high variability of

rainfall over time and space is a significant issue and is

difficult to address; to typify rainfall patterns of high

variability and intermittency, a much denser network

would be needed (Barancourt et al. 1992; Rodríguez-

Iturbe and Mejía 1974).

Rain gauge network design based on quantitative

analysis attracts more attention. There are many

methods employed, such as spatial correlation, vario-

gram analysis, and entropy theory (Al-Zahrani and

Husain 1998; Bastin et al. 1984; Bogárdi et al. 1985;

Bradley et al. 2002; Bras and Rodríguez-Iturbe 1985;

Krstanovic and Singh 1992; Mishra and Coulibaly 2009;

Moore et al. 2000; Pardo-Igúzquiza 1998; Tsintikidis

et al. 2011; Volkmann et al. 2010; Yang and Burn 1994).

Statistical techniques such as variance reduction algo-

rithm, state-space stochastic models, and generalized

least squares are also adopted in numerous studies

(Bradley et al. 2002; Morrissey et al. 1995; Moss and

Tasker 1991; Shih 1982; Stedinger and Tasker 1985;

Tasker and Moss 1979). The more sophisticated tech-

niques of rain gauge network design can provide some

insight into the location of rain gauges as well as the

density of the network. These methods are generally

based on analyzing the available limited rain gauge in-

formation or duplicating the learned knowledge from a

mature network to a pioneering area. The nature of

these methods makes them difficult to implement and

often requires subjective parameter adjustments. An-

other shortcoming of most of the aforementioned

methods is that they require exhausting all possible

candidate networks to explore the optimum one.

Compared with the traditional methods that collect

and excavate the limited rainfall-related information

(such as rainfall spatial correlation and rainfall patterns)

from inside or outside a study area, adoption of remotely

sensed rainfall measurements for rain gauge network

design is obviously a more direct and efficient way.

Currently, remotely sensed rainfall estimates are avail-

able in most parts of the world, as some satellites have

global rainfall observing ability, such as the Tropical

Rainfall Measuring Mission (TRMM) and the Global

Precipitation Measurement (GPM). Weather radars are

also extensively installed around the world, especially in

developed regions. Because of the poorer quality, these

rainfall products cannot replace rain gauge measure-

ments at present, and rain gauges will still be the first

choice in most hydrological applications in the near fu-

ture. However, these relatively inaccurate but larger-

scaled rainfall measurements are an ideal dataset to

provide insight into the local storm characteristics, such

as rainfall patterns and local topographic influences on

rainfall, which are the key components that the tradi-

tional rain gauge network-designed methods eagerly

expect to explore. Through analyzing the long-term re-

motely sensed rainfall dataset, we can reveal these

characteristics and consequently investigate the most

important locations for deploying rain gauges in the

study area. For this reason, this study presents a new

approach to rain gauge network design based on a

combination of principal component analysis (PCA)

and variable selection criteria using a weather radar

rainfall dataset to provide both the optimum rain gauge

density and rain gauge location. This scheme offers a

new insight into rain gauge network design and could be

easily adopted and implemented in other study areas.

This paper is organized as follows. After the in-

troduction, section 2 illustrates the study area and
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datasets used. Section 3 describes the algorithms of

determining the redundancy of networks and opti-

mum locations of gauges. Section 4 presents the out-

comes of the rain gauge network design and

evaluations of the proposed method. Section 5 elab-

orates on three key issues associated with this scheme,

and section 6 summarizes the key findings and the

future work.

2. Study area and data source

The Brue catchment in Somerset, southwestern En-

gland (51.088N, 2.588W), covering an area of 135 km2 to

its river gauging station at Lovington, is chosen as a case

study for the investigations carried out in this work. It is

mainly pastureland with some areas of woodland in the

higher eastern half of the domain. The choice of catch-

ment is based on the availability of quality data; fur-

thermore, the characteristics of the Brue catchment are

considered to be representative of rural U.K. catch-

ments used for rainfall–runoff modeling. With 6 years of

continuous data provided by a dense 49-rain-gauge

network (see Fig. 1), the Brue catchment provides

an ideal study area for the analysis of rain gauge net-

work design. The designed scheme can be carefully

evaluated with the large number of available rain

gauges. Operationally, most catchments are only ser-

viced by two rain gauges at best. The cost of main-

taining a denser network is too prohibitive for it to be

feasible on a larger scale. Clearly, the rich dataset

provided by a dense rain gauge network is rare and

contains information on rainfall events that would

normally be missed by catchments with just one or two

rain gauges.

Radar and rain gauge datasets weremaintained by the

National Rivers Authority as part of the Hydrological

Radar Experiment (HYREX). The dense rain gauge

network, radar, and a variety of related meteorological

data are available through the BritishAtmosphericData

Centre (BADC). The radar datasets are from the

WardonHill radar, located at a range around 40km from

the center of the catchment. The radar completes one

cycle through four different scan elevations every 5min,

and the rainfall intensity is recorded on two Cartesian

grids: 5 and 2km. The rain gauges installed on the Brue

catchment are typical of those used by the U.K. Envi-

ronment Agency: a Casella tipping-bucket gauge moun-

ted vertically on a concrete paving slab. The bucket size

was 0.2mm and the gauge aperture was 400 cm2. The tip

timewas recorded up to a time resolution of 10 s. The first

FIG. 1. The Brue catchment terrainmap. The purple dots represent the rain gauges and the grid

represents the real radar grids. The labeled number is the index of the corresponding grid.
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valid day was considered to be the day after which the

gauge recorded its first value (Wood et al. 2000). The

dense rain gauge networkwas designed so that all the rain

gauges would lie entirely in the catchment and that there

would be at least one rain gauge in the center of each

2-km radar grid square.

Rain gauge network design is carried out for 373

rainfall events from September 1993 to April 2000. Ex-

cept for some events where either radar or gauge data

are missing, these events cover almost all significant

storms during the period. To display the outcomes, 10

demonstrated typical events are chosen from them. The

event identifier (ID), durations, and averaged rainfall

over the catchment are listed in Table 1. The events

cover a wide range of scenarios; some of the rainfall is

consistent over several hours (events 3 and 4), and some

events are short lived but intense (events 2 and 9). Av-

eraged rainfall represents the areal-averaged rainfall

over a catchment with accumulated rainfall for an event.

It is calculated using radar rainfall measurements. With

possible systematic errors, the radar rainfall estimates

tend to be larger than gauge rainfall values in the Brue

catchment. Discussion of radar rainfall adjustment and

uncertainty analysis is outside of the scope of this work.

Interested readers can refer to our previous papers for

more information (Dai and Han 2014; Dai et al. 2014).

3. Methodology

a. PCA application for radar grid network

redundancy analysis

PCA is used first to examine the redundancy existing in

the dense radar grid network and second to isolate the grids

that provide the most significant contribution to the prin-

cipal components. The selected radar grids from the existing

radar grid network are considered to be ideal places for

deploying rain gauges, which are named optimum grids

(OGs). The center of each OG indicates one potential lo-

cation for a rain gauge. The appropriate number and

location ofOGs are dependent upon the amount of original

variance the network should retain. PCA is a technique

used in multivariate analysis where it is suspected that a

number of variables are interrelated. It is primarily used for

compressing a dataset while at the same time minimizing

the loss of information. This is achieved by generating a new

set of variables called principal components (PCs). In this

study, redundancy analysis of existing radar grid network

based on PCA is used to determine the number of OGs.

Given a dataset of n variables (i.e., the number of

existing radar grids in the study area) with p observa-

tions (i.e., the number of hours, days, months, etc. ob-

served), the n 3 n covariance matrix C of the dataset is

first calculated. For PCA to work properly, the original

dataset is normalized by subtracting the mean from each

of the data dimensions. Since the eigenvectors of the

covariance matrix C are orthogonal, the n eigenvectors

can be used as a basis from which the principle compo-

nents are built, which is shown as follows:

eigenvector5
�

eig
1

eig
2

eig
3

::: eig
n

�

. (1)

Thus, the original data can be represented in terms of the

n eigenvectors via a linear transformation from the orig-

inal dataset X to a new dataset Z, where the variance of

each of the components is its corresponding eigenvalue:

Z
i
5X

1
eig

i,1
1X

2
eig

i,2
1⋯1X

n
eig

i,n
, i5 1, ... , n ,
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where Xi and Zi are the vectors of original and new

datasets, respectively. These new variables do not con-

tain any redundant information since each PC is a linear

combination of the original variables and all PCs are

orthogonal to each other (Jolliffe 1986).

Since the eigenvalue of each component is also its

variance, the eigenvector with the highest eigenvalue is

the PC of the dataset; this property is used to determine

the PCs that carry a set percentage of the variance found

in the data. Assessment of the network redundancy is

TABLE 1. Ten typical rainfall events measured over the Brue catchment. The averaged rainfall represents the accumulated radar rainfall

for an event and areal-averaged rainfall in the catchment.

Event ID Start date End date Averaged rainfall (mm)

1 0500 UTC 5 Oct 1993 2200 UTC 5 Oct 1993 126.39

2 0200 UTC 30 Dec 1993 1800 UTC 30 Dec 1993 153.45

3 1400 UTC 8 Nov 1994 2200 UTC 9 Nov 1994 334.51

4 0800 UTC 27 Jan 1995 0800 UTC 28 Jan 1995 230.02

5 1100 UTC 16 Jul 1995 0300 UTC 17 Jul 1995 150.68

6 1400 UTC 26 Nov 1995 1000 UTC 27 Nov 1995 115.41

7 2000 UTC 11 Feb 1996 1400 UTC 12 Feb 1996 167.29

8 0400 UTC 24 Oct 1998 0000 UTC 25 Oct 1998 230.53

9 1200 UTC 18 Dec 1999 0100 UTC 19 Dec 1999 260.52

10 0500 UTC 18 Apr 2000 0400 UTC 19 Apr 2000 180.65
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achieved by deciding on a threshold of desired variance

explained and then noting how many PCs are required

to obtain this threshold. If the threshold is q, then we

wish to maintain q (%) of variance found in the data,

and correspondingly, we accept a loss of (1 2 q) (%) of

the original information contained by original radar

grids. Thus, the number of principal components (say, k)

required to give us q (%) of explained variance is the

number of optimum grids. If k is much less than n, then

we can conclude that the network is heavily redundant

and many of the radar grids can be removed without

significant loss of information. On the contrary, if k is

quite close to n, then there is little redundancy in the

network. The choice of the variance threshold is based on

two conditions. Basically, the required number k obvi-

ously grows with the increase of variance threshold. The

growth rate will change when the threshold reaches a

critical value, which could be regarded as a threshold

value. In addition, some subjective factors are also worth

considering. For example, the budget-saving-prone or

information-remaining-prone designers may have dif-

ferent claims of threshold value under the same condi-

tion. A detailed discussion of threshold selection is given

in section 4c.

b. Selection criteria for determining optimum rain

gauge locations

The PCs are just linear data combinations of all

original variables (radar grids rainfalls), so it is necessary

to interpret the components in terms of the original

variables to select the OGs. In effect, we can try to

choose a subset of the original variables that approxi-

mate the information retained in k PCs. In this study,

cluster analysis (CA) is used to allocate the original

variables to a subset of clusters derived from the average

linkage method. One variable is retained from each

cluster and is chosen as the representative of that cluster.

The advantage of CA is that there is no prior knowledge

about which elements belong to which clusters. With

CA, we can select the OGs and consequently determine

the possible locations for rain gauges.

Formal definition of a cluster, group, or class is diffi-

cult and is often down to the judgment of the user.

Cormack (1971) talks of internal cohesion and external

isolation in defining clusters. Although there is no

standard definition of a cluster, it is generally felt that it

must have something to do with the recognition of rel-

ative distance between members, so certain properties

are attributed to clusters, such as density, variance,

shape, and separation, which are formed by assessing the

similarity and dissimilarity of each pair ofmembers to be

clustered. The proximity of each member to the other

can be measured in many ways depending on the type of

variables under investigation. As we already have con-

cluded, in the number of clusters (k asmentioned above)

based on PCA, k-means clustering is used to partition

original n variables into k clusters, in which each vari-

able belongs to the cluster with the nearest mean, which

uses an iterative algorithm to minimize the sum of dis-

tances from each object to its cluster centroid, over all

clusters. Cluster analysis for selecting OGs works with

five main steps: 1) initialize the centroid of the clusters;

2) attribute the closest cluster to each radar grid; 3) set

the centroid position of each cluster to the mean of all

radar grids belonging to that cluster; 4) repeat steps 2

and 3 until it converges (each centroid stays in a stable

location or calculated time reaches the maximum iter-

ation) to form a given number of clusters; and 5) the OG

selected to represent each cluster is chosen in two dif-

ferent ways, the radar grid giving the maximum event-

averaged rainfall in a given cluster (CA Max) and the

radar grid giving the median of the event-averaged

rainfall (CA Med). Cluster analysis can measure dis-

tances that are Euclidean (can bemeasured with a ruler)

or distances based on similarity. The Euclidean distance

is the most straightforward and generally acceptable

way of computing distances between objects in a mul-

tidimensional space. Moreover, the rainfall connection

among different radar grids relies on their separated

distances. So we adopt the Euclidean distance measure

in the proposed scheme. Thus, each cluster has one OG,

and the given number of OGs makes up a new compact

but high-information engaged radar grid network, which

brings out a new rain gauge network. A flowchart of the

proposed method is shown in Fig. 2.

c. Validation methods

Performance evaluation of rain gauge network design

is a challenge because no standard assessment criteria

exist to indicate what kind of network is the most ap-

propriate one for the given study area. In essence, the

designed network should be an effective network, which

means the network should contain maximum in-

formation at the cost of a minimal number of gauges.

This principle can be interpreted by two major rules for

this study. First, the selected small number of OGs

should maintain the dominating rainfall information

of the original radar grid network. Second, further in-

crease in the number of OGs should not significantly

increase the amount of rainfall information.

The second rule can be achieved through use of an

information-component curve, which will be discussed

in section 4c. For the first rule, two indicators (the

Pearson correlation coefficient and Nash–Sutcliffe

coefficient) are introduced herein. The Pearson corre-

lation coefficient r can estimate the systematic deviation
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between OG rainfall Rm and the original radar grid

rainfall Ro, which is written as

r
Ro ,Rm

5
E(R

m
R

o
)2E(R

m
)E(R

o
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[E(R2
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m
)2]3 [E(R2

o)2E(R
o
)2]

q , (3)

where E calculates the mean value of the corresponding

vector. The Nash–Sutcliffe coefficient (Nash and

Sutcliffe 1970) is generally used to assess how well hy-

drological models predict events. The rainfalls of the

designed network and existing network are regarded as

modeled and observed values, respectively.

The Nash–Sutcliffe coefficient (NS) is calculated as

follows:

NS5 12
�(Rt

o 2Rt
m)

2

�[Rt
o 2E(R

o
)]2

, (4)

where the superscript t refers to the time step of the

storm and NS 2 [1,2‘). The closer NS is to 1, the more

accurate the designed scheme is.

In addition, because radar measurements have non-

negligible uncertainty, we speculate that this un-

certainty could be propagated to the design processing

and contaminate the designed network. Therefore, in

the second stage of validation, the less accurate radar

dataset was compared to the rain gauges dataset after

implementing the proposed scheme. An existing dense

and high-redundancy rain gauge network (with 49 rain

gauges allocatedwithin an area of 135km2) was used as a

reference network. The proposed scheme was carried

out using the rain gauge network and radar grid net-

work, and the corresponding gauge- and radar-designed

networks were produced. By comparing the differences

of gauge numbers and locations between the gauge- and

radar-designed networks, we can investigate the possi-

ble errors of the radar-designed network caused by ra-

dar rainfall uncertainty.

The mean number error EN and the mean location

error EL are defined to quantitatively describe the de-

signed errors. The mean number error represents the

averaged deviation of sizes between gauge- and radar-

designed networks, which is derived as

E
N
5

1

VN
�
VN

y51

jNy

o 2Ny

mj , (5)

where Ny

o and Ny

m refer to the number of gauges in the

gauge- and radar-designed networks for the given vari-

ance threshold y. To avoid the contingency of perfor-

mance evaluation due to using a certain variance

threshold, dozens of threshold values are used to design

rain gauge networks. Variable VN is the number of in-

volved variance thresholds.

The mean location error is used to illustrate the dis-

parity in space between two designed networks. The se-

lected radar grids and selected rain gauges are first paired

and the distances between each pair are accumulated.

The combined scheme with the least accumulated dis-

tance is adopted and the distance is defined as EL. If the

number of radar grids is smaller than that of rain gauges,

one radar grid may correspond to two rain gauges and

vice versa. As the difference of numbers between them is

quite small, the error thatmay be introduced is negligible.

The radar-designed network is explicitly optimal if its

gauge locations are exactly the same as those of the

gauge-designed network. In such cases, EL is equal to

zero; EL is calculated for each variance threshold.

4. Model computations and results

a. Radar grid network redundancy

With 28 radar grids located within an area of 135km2,

a redundancy of rainfall should exist in the radar grid

network. To show this, the correlation matrices of 28

radar grids are calculated and drawn in Fig. 3 for events 1

and 2. The Pearson correlation coefficients are computed

for every two radar grids. Almost all correlation co-

efficients in both events are larger than 0.5. For event 2,

the coefficients are generally even larger than 0.8. The

rainfall patterns of the last two radar grids are relatively

FIG. 2. Flowchart of the proposed method.
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exceptional compared with other grids in event 2. This is

explicable as the last two radar grids are located in the

southern boundary of the catchment and a bit far away

from others, so it is not surprising that the correlations

between them and other grids are relatively weak in a

certain event. Despite this, two rainfall measurements

(one for the southern region and the other for the re-

maining region) may be enough to represent the rainfall

diversity in this event. In summary, the radar grid net-

work could be heavily redundant and the analysis of its

redundancy can reveal the optimum number of key lo-

cations for deploying rain gauges.

PCA applied to the dense radar grid network pro-

vides a measurement of the network redundancy for an

accepted loss of total information. The analysis is con-

ducted on each storm and highlights the different event

characteristics, which are shown in Fig. 4. For most of

the events, the first principal component carries close to

90% of the total variance, with the second component

bringing this to over 95% of the total variance. This

FIG. 3. Correlation matrices for events (left) 1 and (right) 2, with each pixel representing a correlation coefficient

between the grid indexed from left to right and the grid indexed from up to down.

FIG. 4. Variances explained by the PCs for the 10 typical events.
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again indicates a very high level of redundancy in the

network, so much so that just one component contains

90% of the total information. However, events 5 and 6

have a noticeably different component weighting. In the

case of event 5, the first component can account for

around 80% of the total information; in order to reach

90%, both the first and second components are required.

The situation is worse for event 6, where the first

component carries just around 75% of the information;

in order to retain 90% of the information, three com-

ponents are required. This shows that there is less re-

dundancy in the network for events 5 and 6, indicating

that the rainfall amount measured in the radar grids is

more varied. This suggests that these two events are less

uniform than the other eight events, and so the network

will require more radar grids. However, considering 28

radar grids in total, many radar grids are still un-

essential for these two events. It is worth remarking

that the analysis of radar grid network redundancy is

served for rain gauge network design. The argument

that most radar grids in the current network are

unnecessary does not mean we encourage one to apply

only part of radar dataset in other applications. In re-

ality, one of the most important advantages of weather

radar is that it can take millions of measurements

from a single platform and consequently reveal spatial

variation of rainfall.

To better show the relationship between principal

component numbers and variance explained, thresholds

of desired variance explained are set to 75%, 80%, 85%,

90%, 92.5%, 95%, 97.5%, and 99%. The required

numbers of components are summarized in Table 2.

Leaving aside events 5 and 6, it can be seen that two

components are sufficient (although not always neces-

sary) to retain 90% of the information. In addition, to be

sure to get at least 95% of the information, three com-

ponents should be used (although two components is

sufficient for six of the events).

b. Location of rain gauges

After establishing the level of redundancy in the radar

grid network, it is necessary to determine which grids to

select so that the maximum level of information will

be retained and unnecessary repeated measurements

would be removed. Since the components do not rep-

resent physical radar grids, cluster analyses (CA Max

and CA Med) are used.

The locations of OGs for each event derived from

PCA and CA Max are shown for retaining at least 90%

of the total variance, as explained in Fig. 5. Each event

has a different combination of radar grids and suggests

that the optimum locations of a small number of radar

grids depends on the rainfall event itself. The selected

optimum radar grids tend to be located at the boundary

TABLE 2. The number of components to reach the variance

threshold for individual events.

Variance 1 2 3 4 5 6 7 8 9 10

75% 1 1 1 1 1 1 1 1 1 1

80% 1 1 1 1 1 2 1 1 1 1

85% 1 1 1 1 2 2 1 1 1 1

90% 2 1 1 1 3 3 2 1 1 1

92.5% 2 1 1 2 3 3 2 2 1 2

95% 3 2 2 2 4 3 3 2 2 2

97.5% 4 2 3 3 5 4 4 3 3 3

99% 7 4 4 5 5 5 6 4 4 5

FIG. 5. Locations of the OGs derived from the CA Max method for the 10 typical events (total variance explained $90%).
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of the catchment, especially for events that claim only

one or two grids. For example, in event 1, two OGs are

located at the southern boundary of the catchment,

while the OG is chosen from the northern boundary in

event 2. The corresponding derived OGs using the CA

Med method are shown in Fig. 6. Inspection of Figs. 5

and 6 shows that the different variable selection

methods produce different OG locations. In some cases,

the OG locations differ just slightly (e.g., event 10), and

in other cases the locations differ substantially (e.g.,

events 8 and 9).

It is not practical or cost effective to choose the most

suitable location based on one type of rainfall event.

Figures 7 and 8 show the envelope of all event-based

locations for each method of variable selection. The

total number of radar grids needed to satisfy each event

is nine for the CAMax case, which is at least 3 times the

requirement of each individual case but still less than

half of the original number of 28 radar grids. Figure 7

shows the distribution of the required nine gauges is

predominately at the boundary region of the catch-

ment. The total number of radar grids increases to 14

for the CA Med case (see Fig. 8). Figure 8 shows that

the distribution of the required grids is more evenly

spread in contrast to the CA Max selection criterion.

These envelopes give an interesting insight into the

preferential areas for rain gauge location; however,

analysis of individual events demonstrates that just

three radar grids are needed to provide a catchment

average rainfall close to the 28 radar grids catchment

average (see section 4d); therefore the envelope of

all radar grid locations does not lead to an efficient

network.

c. Comparison of designed networks by radar and

gauge datasets

The selection procedure of OGs is carried out for each

event, while each event gives different outcomes. In an

effort to produce an efficient and reliable network for all

events, PCA is repeated on the concatenated set of

rainfall data, by concatenating the 373 events that

cover a period of 6 years. The numbers of components to

reach the given variance thresholds (75%, 80%, 85%,

90%, 92.5%, 95%, 97.5%, and 99%) for concatenated

events are shown in Table 3. The first principal compo-

nent carries at least 85% of the total information held in

the dense radar grid network. A further two components

are required to carry 90%of the total information. It can

FIG. 6. Locations of the OGs derived from the CA Med method for the 10 typical events (total variance explained $90%).

FIG. 7. Locations of the OGs satisfying all typical events. Derived

from PCA and CAMax method (total variance explained$90%).
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be seen that the 28-radar-grid network still has a high

level of redundancy. However, the number of compo-

nents required to retain 99% of the total information

increased from 4 to 7 for most individual events to at

least 12 for the set of concatenated events.

To evaluate the performance of rain gauge network

design by radar data, a dense rain gauge network is also

used as a comparison. As mentioned above, the mean

number error and the mean location error are twomajor

indicators for the evaluation. The relationships between

variances explained and principal components for con-

catenated events using radar and rain gauge data, re-

spectively, are shown in Fig. 9. As the variances

explained refer to the information the given number of

components can achieve, the relationship is also called

the information-component curve. It is clear that the

disparity between radar and gauge is quite small. For the

variance less than 98%, the differences are nomore than

one component. Moreover, the mean number error

calculated using Eq. (1) is only 0.59. These facts prove

the radar data have similar performance as rain gauge

data in determining the optimum number of gauges. For

both radar and rain gauge cases, the required number

grows gradually with the increment of the threshold

value when the variance threshold is small. From Fig. 9,

we can observe that the inflection point appears at

around 95% variance threshold. The required compo-

nents merely climb from one at 84% to three at 95% for

both radar and gauge cases. Nevertheless, the growth

rate is remarkable when the variance is larger than

95%. In other words, if we expect to maintain more

than 95% information, only quite limited additional

information can be gained while spending more on

numerous additional components. This is obviously not

cost effective compared to the easy harvest of in-

formation when variance is less than 95%. In summary,

analysis of the information-component curve is a

promising method to investigate the efficiency of

principal components and guide the determination of

variance threshold.

As in the individual event, cluster analysis is used to

derive the best locations for the rain gauges using con-

catenated events that correspond to different levels of

variance explained given by the principal components

(85%, 90%, 95%, and 99%). Figure 10 displays the lo-

cations of the selected radar grids and rain gauges by CA

Max criterion using radar and gauge datasets, re-

spectively. The dots represent gauges of the gauge-

designed network while boxes illustrate the grids of

the radar-designed network. It can be seen from the

figure that although selected radar grids (OGs) cannot

capture all rain gauge points, the distributions of them

are quite similar. Take 90% variance, for example: two

FIG. 8. Locations of the OGs satisfying all typical events. Derived

from PCA and CAMed method (total variance explained$90%).

TABLE 3. The number of components to reach the variance

threshold for concatenated events.

Variance Component

75% 1

80% 1

85% 1

90% 2

92.5% 3

95% 3

97.5% 6

99% 12

FIG. 9. Relationships between the variance explained and PCs for

concatenated events derived by radar and rain gauge datasets.
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rain gauges just locate in the neighboring grids of se-

lected OGs. The same conclusion can also be drawn

from Fig. 11, which shows the CA Med case. One can

observe that a rain gauge is exactly captured by an OG

in 90% variance case. As many gauges and grids are

required to retain 99% variance, the corresponding

relationship between radar- and gauge-designed net-

works is not clear in Figs. 10 and 11. To quantitatively

describe the differences of locations between two net-

works, the mean location errors of the radar-designed

network are calculated, which is shown in Table 4. The

center of the OG is used to measure distance toward

the rain gauge, so mean location error still exists even

when the OG captures the corresponding rain gauge. In

Table 4, it is observed that the mean location errors are

less than 3 km in all cases. For 90% variance using CA

Med, the errors are as low as 1.02 km. The averaged

values of 1.85 and 1.99 km for CA Max and CA

Med, respectively, also indicate the strong agreement

between radar- and gauge-designed networks. Thus, it

can be said that the rain gauge network design using

radar dataset can represent gauge dataset; in other

words, the effect of radar rainfall uncertainty on de-

signing rain gauge network using the proposed scheme

is inconsiderable.

d. Rain gauge network design evaluation

As mentioned above, it is important to evaluate

whether the radar-designed network can maintain the

dominated information of the original radar grid net-

work. Figures 12 and 13 show the scatterplots of each

event comparing the 28 radar grids’ catchment average

with the catchment average produced by each of the

variable selection method. Overall, both methods (CA

FIG. 10. Comparison of radar grids and rain gauges from radar- and gauge-designed networks with variance

thresholds of 85%, 90%, 95%, and 99% using the CA Max method. ‘‘Var’’ refers to the corresponding variance

threshold.
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Max and CAMed) produce good estimates for average

catchment rainfall on an event basis. This is confirmed

in Table 5, which gives the corresponding Pearson’s

correlation coefficient for each method and event.

It is found that all correlation coefficients are larger

than 0.90 and even reach 0.99 for event 6 using CA

Max.

The ability to produce dependable catchment average

for each individual event was again determined by the

Nash–Sutcliffe coefficient, and these results are given in

Table 6. The values are generally larger than 0.90 for the

CA Med case and fairly stable for different events. In

terms of the CA Max case, we cannot only observe

events with poor coefficients (e.g., 0.42 of event 4 and

0.45 of event 10), but also some high-performance

events (e.g., 0.97 of event 6). A measure of the range

of coefficients given by the interquartile range can

provide a clue to the reliability of each method for

producing a rain gauge network suitable for all tested

events (see Fig. 14). The greater range occurs with CA

Max, which suggests that for this case study this method

produces the less reliable network.

Scatterplots of concatenated events comparing the 28

radar grids’ catchment average are also shown in Fig. 15,

together with Pearson’s correlation coefficients listed in

Table 7. Correlation coefficients as high as 0.92 and 0.93

indicate a fine agreement between the radar-designed

network and the original radar grid network. In terms of

Nash–Sutcliffe coefficient, CAMax ismuch smaller than

FIG. 11. Comparison of radar grids and rain gauges from radar- and gauge-designed networks with variance

thresholds of 85%, 90%, 95%, and 99% using the CA Med method.

TABLE 4. Mean location errors (km) for different variance

thresholds derived by the two selection methods.

Method 85% 90% 95% 99% Averaged

CA Max 1.74 1.87 2.62 1.17 1.85

CA Med 2.80 1.02 2.83 1.29 1.99
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CA Med (0.69 vs 0.84). For this reason, the rain gauge

network designed by the CAMed method can maintain

more information than CA Max does in the Brue

catchment with the same number of OGs.

5. Discussion

Asimple, efficient, and quantifiedmethod is proposed in

this study, and a series of evaluations proves the good

performance of the method. However, there are still some

key concerns that readers should be aware of. All methods

consistently reduce the dense radar grid network from

28 grids down to five or fewer. The main difficulty is in

determining the optimal positioning of the rain gauges and

the stability of the designed network. The initial study,

which analyzed the events individually, produced signifi-

cant differences in location for each event and method to

the point that it was not possible to identify any general

pattern. The envelope of all chosen rain gauges produced a

network capable of detecting the variability of the rainfall

field for all events; however, this led to networks of be-

tween 9 and 14 radar grids, substantiallymore than needed

for any one of the events. To tackle this problem, the 373

events covering a period of 6 years were considered as a

whole. The proposed scheme was implemented using such

concatenated events, and the required number of radar

FIG. 12. Rainfall correlations between the original 28 radar grids and the radar-designed network using the CA Max method.

FIG. 13. Rainfall correlations between the original 28 radar grids and the radar-designed network using the CA Med method.
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grids dropped to three. The locations of the selected OGs

given by each selection criterion are more consistent. The

analysis of Nash–Sutcliffe and correlation coefficients be-

tween the radar-designed and original network also sup-

ports the rationality of this scheme.

In addition, concernsmay be raised regarding whether

the remotely sensed rainfall (radar rainfall in this study)

uncertainty will influence and contaminate the out-

comes of the rain gauge network design. It is true that

there are numerous yet-to-be-tackled problems associ-

ated with weather radar, such as ground clutter, anom-

alous propagation, signal attenuation, beam blockage,

and vertical variability of the reflectivity (Cluckie et al.

2000; Villarini and Krajewski 2010). Many groups have

made significant efforts to adjust or describe radar

rainfall errors (Borga et al. 2002; Ciach et al. 2007;

Collier 1986; Dai et al. 2013, 2015; Kirstetter et al. 2010;

Rico-Ramirez and Cluckie 2007; Villarini et al. 2008). In

fact, the overall bias of weather radar will not signifi-

cantly influence this study. For example, if rainfall values

of all radar pixels is multiplied by a given ratio, the de-

signed network using the proposed scheme will not

change.However, the random error of radar will to some

extent affect the final results. To evaluate the possible

errors of the radar-designed network caused by radar

rainfall uncertainty, this study investigated two networks

using radar and rain gauge datasets, respectively. The

small differences of gauge numbers and locations be-

tween the gauge- and radar-designed networks prove the

effectiveness of the proposed scheme. In addition, to

reduce the effect of radar rainfall uncertainty on the

proposed scheme, we adopted a relatively trustworthy

radar dataset herein, which is from theHydrology Radar

Experiment conducted by the Natural Environment

Research Council (NERC) Special Topic Programme.

Typical errors for radar data have been identified and

reduced in the initial processing (Bringi et al. 2011;

Moore et al. 2000). Moreover, we used long-term radar

rainfall records instead of individual events for the rain

gauge network design, which could, to some extent,

remove the outliers and produce a more stable outcome.

In fact, we propose that a stricter way to solve the un-

certainty problem is to integrate the radar rainfall

uncertainty model with the proposed scheme. This ap-

proach may be necessary in other regions, such as hilly

areas where weather radar suffers more problems. The

radar rainfall uncertainty model refers to a mathemati-

cal approach that elaborately formulates all un-

certainties associated with radar rainfall (Dai et al. 2014;

Krajewski et al. 1991). An ensemble generation of a

large number of probable ‘‘true rainfall’’ is currently

a popular type of radar rainfall uncertainty model

(AghaKouchak et al. 2010; Dai et al. 2014; Germann

et al. 2009). For example, we can generate 100 rainfall

values that satisfy the error distribution and other re-

stricted conditions of radar rainfall and input them into

the proposed scheme to produce 100 possible rain gauge

networks. Thus, the designed outcome can be expressed

in a probabilistic form instead of a determinate network.

A decision-making scheme under uncertainty could be

introduced to choose the optimum rain gauge network.

This study makes the assumption that only the center of

the radar grid can be used as the potential location of a rain

gauge. The spatial resolution of radar data used herein is

2km. Weather radars with higher spatial resolutions such

as 1km or hundreds of meters are becoming increasingly

popular all over the world (Emmanuel et al. 2012;

Sandford 2015; Smith et al. 2012; Thorndahl et al. 2014;

Wright et al. 2013). Considering the natural spatial conti-

nuity of rainfall, there should be a distance error tolerance

in rain gauge network design. The so-called distance error

refers to the distance differences between the practical

designed rain gauge network and the ideal rain gauge

network that perfectly satisfies the requirements of maxi-

mum rainfall information with a minimum number of

gauges. For example, in this study, where there are no

dramatic changes of land surface terrain, a distance error

of hundreds of meters is considered to be acceptable.

However, the resolution of satellite rainfall is relatively

lower, although it increases rapidly. For example, the

TABLE 5. Correlation coefficients between the 28-radar-grid network and the radar-designed network for individual events.

Method 1 2 3 4 5 6 7 8 9 10

CA Max 0.97 0.93 0.95 0.91 0.98 0.99 0.98 0.97 0.98 0.90

CA Med 0.94 0.98 0.97 0.96 0.98 0.98 0.97 0.96 0.98 0.98

TABLE 6. Nash–Sutcliffe coefficients between the 28-radar-grid network and the radar-designed network for individual events.

Method 1 2 3 4 5 6 7 8 9 10

CA Max 0.86 0.67 0.80 0.42 0.86 0.97 0.73 0.75 0.82 0.45

CA Med 0.89 0.95 0.91 0.92 0.94 0.95 0.95 0.92 0.95 0.90
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spatial resolutions of postprocessed rainfall products from

TRMMandGPMare just 5 and 4km, respectively (Matsui

et al. 2013; Simpson et al. 1988). In such situations, scale

differences between point rain gauges and areal satellite

grids may be worth notice. Such point-to-area error has

been studied by numerous hydrologists andmeteorologists

in remotely sensed rainfall fields, and abundantmethods of

describing or reducing this error have been proposed

(Bringi et al. 2011; Ciach and Krajewski 1999; Habib et al.

2004). Integration of these methods and the proposed

scheme offers a promising solution to rain gauge network

design using satellite rainfall measurements.

6. Conclusions

The results of this study show that PCA combined with

simple selection criteria is an effective tool for rain gauge

network design and for the given case study.Moreover, this

new methodology can be used in ungauged catchments,

as it only requires rainfall data that could be provided by

weather radar, satellite, or other remote sensors. The very

nature of PCA is to identify how much information in a

dataset is useful; this property has been successfully

exploited to provide the number of rain gauges needed

for a chosen level of retained information. The principal

components derived from the PCA method do not repre-

sent physical rain gauges; therefore, criteria selection

methods are required to identify the best rain gauge loca-

tions. Cluster analysis methods presented in this study are

both simple and effective in determining rain gauge loca-

tions. For individual events, the best rain gauge locations

vary significantly for different events, and this means that it

is impossible to have an optimum network for individual

events unless all the best rain gauge locations of all the

events are installed. However, such a network would be

impractical and expensive to implement. Therefore, a

compromise must be made based on the concatenated

events to derive an overall optimized rain gauge network.

For the presented case study, two selection criteria (CA

Max and CA Med) are used to determine the optimum

locations of rain gauge network. Both methods can ensure

the network designed by radar dataset has similar charac-

teristics as that by the gauge dataset. It is found that CA

Max tends to pick the radar grids located at the boundary

of catchment, while the selected radar grids from CAMed

are distributedmore evenly over the catchment.Moreover,

CAMedproduces a higher-performance network from the

view of Nash–Sutcliffe coefficient.

Except for cluster analysis, there is also a range of other

selection criteria can be used to choose a subset of the

original variables that approximate the retained principal

components. For example, loading combination criteria

(LC), variable deselection (B2), and variable retention

(B4) methods (Al-Kandari and Jolliffe 2001, 2005) can

also be introduced into the proposed scheme. LC, B2, and

FIG. 14. The range of Nash–Sutcliffe coefficients for the two se-

lection criteria applied on 10 typical events.

FIG. 15. Rainfall correlations between the original 28 radar grids and the reduced radar grids of the radar-designed

network using the (left) CA Max and (right) CA Med methods for concatenated events.
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B4 selection criteria choose variables according to a given

associationwith the original p variables and the loadings of

either the first few components (for variable retention) of

or the last (p 2 q) components (for variable deselection).

A detailed description of these methods is given by Al-

Kandari and Jolliffe (2001). The cluster analysis can be

easily replaced by these methods in the proposed scheme.

There is no intrinsic disparity among these selection cri-

teria, but they may have different performances in differ-

ent study areas. One of the major advantages of this study

is that the local storm characteristics have already been

contained in radar measurements and can be derived

through the analysis of long-term radar data. So, we be-

lieve this study can be easily and effectively extended to

other study areas. Since this is the first time that PCA has

been used in rain gauge network design, we hope more

study areas with diverse climate and geographical condi-

tions could be explored by the research community to

further verify and improve the proposed scheme.

As stated above, hydrologists and meteorologists are

facing a decrease in the number of the available rain

gauges (Overeem et al. 2013), so the proposed scheme can

be used for both rain gauge network design in an ungauged

catchment and to help reduce the number of current

gauges in a reasonable form. Since the emergence of re-

motely sensed rainfall measurements, rain gauges contin-

ually assist remote sensors in offering more trustworthy

rainfall measurements. This study is a preliminary attempt

at using remote sensor datasets to solve the traditional rain

gauge problems. Based on remotely sensed rainfall in-

formation, other problems such as wind effect on rain

gauges may also be studied with a new insight, and the

original complicated problems may be solved by a simple

scheme just as what has been discussed in this study.
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