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Multi-agent paradoxes beyond quantum theory

V. Vilasini!, Nuriya Nurgalieva?, and Lidia del Rio?

1Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
?Institute for Theoretical Physics, ETH Zurich, 8093 Ziirich, Switzerland

Which theories lead to a contradiction between simple reasoningsprinciples and
modelling observers’ memories as physical systems? Frauchiger and Renner have
shown that this is the case for quantum theory [1]. Here we generalize the conditions
of the Frauchiger-Renner result so that they can be applied/fo arbitrary physical
theories, and in particular to those expressed as generalized probabilistic theories
(GPTs) [2, 3]. We then apply them to a particular GPT,sbox world, and find a
deterministic contradiction in the case where agents may share @PR box [!], which
is stronger than the quantum paradox, in that it doeés mot rely on post-selection.
Obtaining an inconsistency for the framework of GPTs, broadens the landscape of
theories which are affected by the application of classical rules.of reasoning to physical
agents. In addition, we model how observers’ memaoties may evolve in box world, in
a way consistent with Barrett’s criteria for allowed opera’tions [3, 5]

Ordinary readers, forgive my paradoxes: one must make them
when. one reflects; and whatever you may say, I prefer being a
man with paradoxes than a man with prejudices.

Jean-Jacques Rousseau, Emile or On Education

1 Motivation

In order to process information a}d make logical inferences, we would like to be able to apply
simple reasoning principles to all situations. By this we mean that ideally we would like inferences
such as “if I know that/a holdspand I know that a implies b, then I know that b holds” to be
valid independently of the mature of a and b — to take logic as a primitive that can be applied
to any physical setting. When €onsidering scenarios with several rational agents, this extends to
reasoning about each other’s knowledge. Examples include games like poker, complex auctions,
cryptographic seenarios, and of course logical hat puzzles, where we must process complex
statements of the sort “I know that she knows that he does not know a” to keep track of the
flows of knowledge.

On the'other hand, when we describe the world through physics, we would like to consider
ourselves a partdof it, and in particular we would like to model our brains and memories as
physical ‘systems’ described by some theory. When that theory is quantum mechanics, it turns
V. Yilasini: vww577@york.ac.uk
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(a) Inside perspective (Alice and Bob)

(b) Outside perspective (Ursula/and Wigner)

Figure 1: An entanglement-based version of the Frauchiger-Renner setting [1] from
different perspectives. Alice and Bob (inside agents) share a Hardy state |¥)pr = (]00) +
|10) +[11))/+/3, measure each their qubit (P and R respectively) and update their memories A
and B accordingly. Their labs are contained inside the labs of the outside observers Ursula and
Wigner, who can measure the systems AP. and RB respectively. The paradox arises when one
tries to combine the inside and outside perspectives of quantum measurements on an entangled
system into a single perspective. @), From their viewpoints, Alice and Bob measure their halves
of |¥)pr in the Z basis {|0),|l)} torebtain the outcomes a and b. They then perform a
classical CNOT (i.e., classical copy) to copy their classical outcome into their memories A and
B both initialised to |0). b) Ursula and Wigner perceive Alice and Bob’s memory updates
as implementing quantum CNOTs on A controlled by P and B controlled by R respectively.
The resultant joint state is |(W)uprg = (]0000) + [1100) + [1111))+/3. Hence, they see quantum
correlations between ‘the systemssand memories of the inside agents. Later, they measure the
joint systems AP and RB'in the “X basis” {|ok) = (]00) — |11))/v/2, | fail) = (|00) + [11))/v/2}
to obtain the outcommes wand w respectively. If they obtain u = w = ok, the agents can reason
about each others? knowledge to arrive at the paradoxical chain of statements u = w = ok = b =
1= a =1= w=yfail. We extend this scenario to box world where Alice and Bob share a PR
box instead of the Hardy state and find a suitable memory update operation and measurements
for the parties,such that a stronger version of the paradox is recovered, independently of the
outcomesrobtained:

out that these.two desiderata (applying to reason about each other’s knowledge, and modelling
memories a§\physical systems) are incompatible. This was first pointed out by Frauchiger and
Renner, in a thought experiment where agents who can measure each others memories (modelled
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as quantum systems) and reason about shared and individual knowledge may reach contradic-
tory conclusions [I]. We will not review the original experiment here, apart from a very brief
description in Figure 17; a pedagogical exposition can be found in our paper [0], but is not
necessary to follow this article.

Our ultimate goal is to understand whether this incompatibility between multi-agent logic
and physics is a peculiar feature of quantum theory, or if other physical theories also admit this
kind of contradictions. If the latter is true, we would like to outline a class of theeries where
these logical inconsistencies may arise. Such an analysis could help us identify the features/of
quantum theory responsible for such a paradox; in particular, here we investigate the landscape
of generalized probabilistic theories |2, 3].

Contributions of this work. In Section 2, we generalize conditions ofi reasoning, memories
and measurements so that they can be applied to any physical theory. The conditions can
be briefly summarized as: agents may use logic to reason about each others’” knowledge; a
physical theory allows agents to make predictions about the outcomes offinéasurements; and a
measurement by an agent Alice may be modelled by others as a,physical evolution on her lab
which preserve the information about the original system measured,(from the outside agents’
perspective). This generalizes the von Neumann view of measurementsias a unitary evolution
of the system and measurement apparatus [7]. In Section 3 werapply those conditions to the
framework of generalized probabilistic theories (GPTs) [2,/]; in particular we introduce a way to
describe an agent’s measurement from the perspective of other agents in the particular GPT of
box world. Finally, in Section 4 we derive a logical incensistency akin to one found in [!], using a
setup where agents share a PR box, a maximally non-local reseurce in box world. The paradox
found is stronger than the quantum one, in the sense that it does not rely on post-selection:
agents always reach a contradiction, independently of theOutcome”. An entanglement version
of the original experiment and it’s relation to eur extension is explained in Figure 1.

2 Generalized reasoning, memoriestand measurements

Here we generalize the Frauchiger-Renner conditions for inter-agent consistency to general phys-
ical theories. The conditions can béninstantiated by each specific theory. This includes but is
not limited to theories framed inthe approach of generalized probabilistic theories [2|. In some
theories, like quantum mechanies, and box world (a GPT), we will find these four conditions
to be incompatible, by finding a“direct/contradiction in examples like the Frauchiger-Renner
experiment or the PR-box/experiment described in Section 4. In other theories (like classical
mechanics and Spekkens? toyitheory/[10]) these four conditions may be compatible. A complete
characterization of theories where one can find these paradoxes is the subject of future work.

2.1 Reasoning about knowledge

This condition_dsstheory-independent. It tells us that rational agents can reason about each
other’s knowledge 4n the usual way. This is formalized by a weaker version of epistemic modal
logic, which we explain in the following (for the full derivation of the form used here see [(]).
Let us'start withia simple example. The goal of modal logic is to allow us to operate with
chained/statements like “Alice knows that Bob knows that Eve doesn’t know the secret key k,

!The paradoxsis originally presented in terms of a prepare and measure type scenario, however it can be
equivalently described by the entanglement-based scenario of Figure 1, because it leads to the same joint state
|¥ aprs) which is required to derived the required paradoxical chain.

“The joint state and the probability distributions of the original Frauchiger-Renner paradox are akin to those
of Hardy’s paradox [3]. For a comparison of Hardy’s paradox and PR box and why the latter allows for a
contradiction without post-selection, see [9].

3
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i . i (b) An agent Agtrusts another agent A;,
(2) AI.l agent usiig 'deductlon, applyl.ng the denoted by A; ~ Ay if they take all of A;’s
distribution axiom of modal logic. J J

knowledge to be truexfor A; as well.

Figure 2: Agents use logic to reason. A desiderata forfuseful physical theories is that agents
be allowed to make deductions and transfer knowledge from oneanother, given a trust relation
(Definition 1). For a short review of the modal logic framework and axioms, see Appendix A.

L Z

and Alice further knows that k = 1,” which can be expressed as
Ky [(KB -Krp k)N k= 1],

where the operators K; stand for “agent ¢ knows.” If in addition Alice trusts Bob to be a
rational, reliable agent, she can deduce from therstatement “I know that Bob knows that Eve
doesn’t know the key” that “I know that Eve'doesn’t know the key”, and forget about the source
of information (Bob). This is expressed as

KA(KB =-Kg k) — K4 -Kg k.

We should also allow Alice tommake.deductions of the type “since Eve does not know the secret
key, and one would need to know/the key in order to recover the encrypted message m, I conclude
that Eve cannot know the secret message,” which can be encoded as

KA[(5Kg k)N (K; m = K; k, Vi)] = Kuy—~Kg m.
Generalizing from this example, this gives us the following structure.

Definition 1 (Reasoning agents) An experimental setup with multiple agents Ay, ... An can
be described by knowledgeroperators Ky, ... Ky and statements ¢ € ®, such that K;¢ denotes
“agent A; knows(d.” It should allow agents to make deductions (Figure 2a), that is

Ki[p AN (¢ = )] = K; 9.

Furthermore, each experimental setup defines a trust relation between agents (Figure 2b): we
say that anfagent A; trusts another agent A; (and denote it by Aj ~ A;) iff for all statements
¢, we have

Ki(K; ¢) = K; ¢.
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Figure 3: Common knowledge. Here, a shared physical theory Tiis common knowledge: all
agents know that all agents know that ... (and so on) ... that theory T holds.

For the purposes of following the example of Section/4, thisfinformal definition suffices. The
full formal version of the axioms of modal logic used here can be found in Appendix A.?

A note on the complexity cost of reasoning.  Note that in general, even the most rational
physical agents may be limited by bounded proeessing power and memory capacity, and will
not be able to chain an indefinite number ofideductions within sensible time scales. That is,
these axioms for reasoning are an idealization of absolutely rational agents with unbounded
processing power (see |12] for amoverview of this and related issues). If we would like modal
logic to apply to realistic, physical agents, we might account for a cost (in time, or in memory)
of each logical deduction, and réquire it to stay below a given threshold, much like a resource
theory for complexity. However,\in the examples of this paper, agents only need to make a
handful of logical deductionsy and“these‘complexity concerns do not play a significant role.

2.2 Physical theories as commonknowledge

This condition is to be instantiated by each physical theory, and is the way that we incorporate
the physical theory/into the reasoning framework used by agents in a given setting. If all agents
use the same théory to model the operational experiment (like quantum mechanics, special
relativity, classical statistical physics, or box world), this is included in the common knowledge
shared by the agents. For example, in the case of quantum theory, we have that “everyone knows
that the probability of obtaining outcome |z) when measuring a state [+) is given by [(z])|?,
and everyone knows'that everyone knows this, and so on.”

INote that in‘general ‘one human # one agent. For example, consider a setting where we know that Alice’s
memory will be tampered with at time 7 (much like the original Frauchiger-Renner experiment, or the sleeping
beauty,paradox [11]). We can define two different agents A<, and A¢s. to represent Alice before and after the
tampering = and then for example Bob could trust pre-tampering (but not post-tampering) Alice, A¢<r ~> B.
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Definition 2 (Common knowledge) We model a physical theory shared by all agents {A;};
in a given setting as a set T of statements that are common knowledge shared by all agents, i.e.

peT << ({K;}i)" ¢, VneN,

where ({K;};)™ is the set of all possible sequences of n operators picked from {K;};. For ezample,
(K1 K5 K1 Ky) € ({K;}:)* and stands for “agent Ay knows that agent As knows thatfagent. Ay
knows that agent Ao knows.”

Note that the set T of common knowledge may include statements about‘the settingsiof.the
experiment, as well as complex derivations 4. To find our paradoxical contradietion, we may
only need a very weak version of a full physical theory: for example Frauchiger andyRenner
only require a possibilistic version of the Born rule, which tells us whether an eutcome will be
observed with certainty [1|. This will also be the case in box world.

2.3 Agents as physical systems o

In operational experiments, a reasoning agent can make statements@@about, systems that she
studies; consequently, the theory used by the agent must be able to,produce a description or a
model of such a system, namely, in terms of a set of states., For example, in quantum theory
a two-state quantum system with a ground state |0) and an excited state |1) (qubit) can be
fully described by a set of states {|1))} in the Hilbert space €2, where |1)) = «|0) + 3|1) with
o, € C and |a|? +|8|? = 1. Other examples of theories and respéetive descriptions of states of
systems include: GPTs, where e.g. a generalised bit (gbit) is a system completely characterized
by two binary measurements which can be performeéd on it.[3] 4& review of GPTs can be found
in Section 3); algebraic quantum mechanics, with states defined as linear functionals p : A — C,
where A is a Cx-algebra [7]; or resource theeries with some state space €2, and epistemically
defined subsystems |13, 11].

Definition 3 (Systems) A “physical system” (or simply “system”) is anything that can be an
object of a physical study’. A systém cammbe.characterized, according to the theory T, by a
set of possible states Ps. In addition, a system 15 associated with a set of allowed operations,
Og : Ps — Ps on these states.

Definition 4 (Parallel composition) For any two systems S and Sz, the union of the two
defines a new system S1 U So or simply $3.S2. The operator || denotes parallel composition of
states and operations such that ps, || ps, € Ps,s, whenever ps, € Pg, and ps, € Ps, and
similarly, og, || os, € Os, 8, whenever og, € Og, and og, € Og,. In other words, the state
ps, || ps, of S1S2 can be prepared by simply preparing the states ps, and ps, of the individual
systems S1 and S2 and(the operation og, || os, can be implemented by locally performing the
operations og, and ogs omnthe individual systems.

We assume no furgher structure to this operator. Note also that we do not assume that a
given composite system can be split into/described in terms of its parts even though combining
individual systemsin this manner allows us to define certain states of composite systems®. Now
we introduce/agents into the picture.

4One canvalso alternatively model a physical theory as a subset Tp of the set T of common knowledge, Tp C T,
in the case when details of experimental setup are not relevant to the theoretical formalism.

“We strive to be as general as possible and do not suppose or impose any structure on systems and connections
betwéen them; inparticular, we don’t make any assumptions about how composite systems are formally described
in terms of their parts.

SIn'fact, in box world, we can consider operations on two initial systems that transform it into a new, larger
system that can no longer be seen as being made up of 2 smaller systems. We call this “supergluing", see
Section 5.2 for a discussion.
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Definition 5 (Agents) A physical setting may be associated with a set A of agents. An agent
A; € A is described by a knowledge operator K; € K4 and a physical system M; € M 4, which
we call a “memory.” Fach agent may study other systems according to the theory T. An agent’s
memory M; records the results and the consequences of the studies conducted by A;. The meémory
may be itself an object of a study by other agents.

2.4 Measurements and memory update

Here we consider measurements both from the perspective of an agent who perferms them, and
that of another agent who is modeling the first agent’s memory.

In an experiment involving measurements, each agent has the subjectivelexperience of only
observing one outcome (independently of how others may model her memeory), and we can see
this as the definition of a measurement: if there is no subjective experience of observing a single
outcome, we don’t call it a measurement. We can express this experience as statements such as
oo = “The outcome was 0, and the system is now in state |0).” Letas explainfurther after the
formal definition.

Definition 6 (Measurements) A measurement is a type of study that can be conducted by
an agent A; on a system S, the essential result of which is the obtained “outcome” r € Xg.
If witnessed by another agent A; (who knows that A; performed theaneasurement but does not
know the outcome), the measurement is characterized by a set ofwpropositions {¢,} € ®, where
¢ corresponds to the outcome x, satisfying:

o KJ(K,L(H x € XS : K’L ¢z)); y

o K; K; ¢ = K; K; ~(¢y), Yy

The first condition tells us that A; knows that from Aj’s perspective, she must have observed one
outcome x € X, and A; would have used.this knowledge to derive all the relevant conclusions,
as expressed by the proposition ¢,. Fomexample, if the measurement represents a perfect Z
measurement of a qubit, ¢p may include stateéments like “the qubit is now in state |0); before the
measurement it was not in state |1); if I measure it again in the same way, I will obtain outcome
0;” and so on. Note that this condition does not imply that the measurement outcome stored
in A;’s memory is classical for 4;. In factyin the quantum case A; may see A;’s memory as a
quantum system entangled with the system that A; measured. Despite this, A; knows that from
A;’s perspective, this outcome appears to be classical, which is what the first condition captures.
The second condition implements A;’s experience of observing a single outcome, and the fact
that the outside agent,A; knows that this is the case from A;’s perspective. If A; observes z,
they conclude that the‘conelusions ¢, that they would have derived had they observed a different
outcome y are not valid and Ajknows that A; would do so. In the previous example, they would
know that it does mot hold ¢; = “the qubit is now in state |1); before the measurement it was
not in state |0); iLT measure it again I will see outcome 1.” This condition also ensures that the
conclusions {¢@, }, are mutually incompatible, i.e. that the measurement is tightly characterized.

A measurement of another agent’s memory is also an example of a valid measurement. In
other wordsy agent _Aj can choose A;’s lab, consisting of A;’s memory and another system S
(which A; studies), as an object of her study.

Thus, vany agent’s memory can be modelled by the other agents as a physical system un-
dergoing an évolution that correlates it with the measured system. In quantum theory, this
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corresponds to the unitary evolution

N-1 N-1
(Z Dz ‘x>system> ® ‘O>mem0ry — Z Pz |x>system ® ‘l‘)memory . (1)

=0 =0

= |Z)sm
The key aspect here is that the set of states of the joint system of observed system and memory;,
Psy = span{|z)system ® ‘-r)memory}i\]:_()l is post-measurement isomorphic to the set of states
Ps system alone. That is, for every transformation eg that you could apply to theisystem
before the measurement, there is a corresponding transformation egy; acting on the Pgpr that
is operationally identical. By this we mean that an outside observer would not be able,to tellif
they are operating with eg on a single system before the measurement, or with,egys on system
and memory after the measurement. In particular, if eg is itself another measurement on S
within a probabilistic theory, it should yield the same statistics as post-measurement egy;. For
a quantum example that helps clarify these notions, consider S to e a qubit /initially in an
arbitrary state «|0)s + 5|1)s. An agent Alice measures S in the Z hasis and'stores the outcome
in her memory A. While she has a subjective experience of seeing omnly one possible outcome,

an outside observer Bob could model the joint evolution of .S and A»as

(@|0)s + B1)s) @[0)a — @|0)5]0) 4 46|1)s[1)a-

Suppose now that (before Alice’s measurement) Bob was interested in performing an X mea-
surement on S. This would have been a measurement with projectors {|+)(+|s, |—)(—|s}, where
|£)s = %(|O)S +|1)s). However, he arrived too lateisAlice has already performed her Z mea-
surement on S. If now Bob simply measured X on/S he'wouldyobtain uniform statistics, which
would be uncorrelated with the initial state of S."S6 what can he do? It may not be very
friendly, but he can measure S and Alice’s memory A ‘jointly, by projecting onto

1

[4+)sa = 2(|0)S\O>A 1) s[1)4)

ol
|=)sa = N,.
which yields the same statistics ofsBob’s originally planned measurement on S, had Alice not
measured it first. This equivalencershould also hold in the more general case where the observed
system may have been previously correlated,with some other reference system: such correlations
should be preserved in the measurement process, as modelled from the “outside” observer Bob.
There are many optiong to formalize this notion that “every way that an outside observer
could have manipulated the system bhefore the measurement, he may now manipulate a subspace
of ‘system and observer’s memory;“with the same results.” A possible simplification to restrict
our options is to take ‘subsystems and the tensor product structure as primitives of the theory,
which may apply 0 GPTs [ but not for general physical theories (like field theories; for a
discussion see [14]). In the interest of time, we will for now restrict ourselves to this case,
and leave a moresgeneral formulation of this condition as future work. For simplicity, we also
restrict ourselves to information-preserving measurements (excluding for now those where some
information may/ave leaked to an environment external to Alice’s memory), which are sufficient
to derivethe contradiction.

S

(10)s10)a — [1)s[1) ),

Definition 7 (Information-preserving memory update) Let Pg be a set of states of a sys-
temaS that isybéing studied by an agent A; with a memory M;, and Psp, be a set of states of
the joint system SM;. If for a given initial state q}&"i € Pu, of the memory, there exists a map
u? *Psar, = Psar, (€ Osag,) that satisfies the following conditions (1) and (2), then u? is called
an information-preserving memory update.

Page 8 of 36
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1

2

3

4

: S ) —9—

6 A10) —bD—

7

8 (b) Bob’s perspective on Alice

9 performing a measurement. The memory

10 (a) Alice’s perspective. The measurement update of Alice, after she measures thesystem

1 in Z basis performed by Alice, who writes the g i 7 basis, as seen from the pgint of viewsof

12 classical result down to her memory A. the outside observer, corresponding,to the

13 memory update u.

14

::2 Esa [Zv X]

17 v r-—-—-1T — - R

18 S TN T

19 ~

20 Alo) ~o—o%gF -

22 B 10) >

23

24 (¢) Bob’s perspective. Bob performs a (d) Bob’s perspective on performing a

25 measurement in the X basis of a system S.  measurement after Alice. Bob performing

26 a measurement i 2X basis of systems S and

57 A after Alice’s memory update u.

;2 Figure 4: The measurement and memory update'in quantum theory from different
30 perspectives. From Alice’s point of view, the measurement of the system S either in Z
31 basis yields a classical result, which she recordsito her memory A, performing a classical CNOT
32 (Figure 4a). For an outside observer, Bob who'is netiaware of Alice’s measurement result, Alice’s
33 memory is entangled with the system and the CNOT"is a quantum entangling operation which
34 corresponds to the memory update @ (Figures4b)., Further, there is no classical measurement
35 outcome from Bob’s perspective even though he knows that Alice would perceive one in her
g? perspective. If Bob had access to.the system Syprior to the measurement by A, and wanted to
38 measure it in X basis ({|+)s, |—)s })sthe would have to perform an operation £g[Z, X] (and then
39 copy the classical result into his memory B) (Figure 4c). If the system S was initially in a state
40 |¢)) = |+)s, then a proposition which would correspond to this operation is ¢[Es[Z, X](|¢)s)] =
41 “s = +7. However, if the measurement.in Z is already performed by A and the result is written
42 to her memory, the whole/progess described by Bob as a memory update u, and in order to
43 comply his initial wish to measure S only, he can perform an operation Eg4[Z, X] on S and A
Zg together 'instead, yvhicl.l is a.measurement in {|+)sa,|—)sa} basis (Figure 4d). A propositi.on
46 which this operationayields is ¢[€sns, o u(|p)s @ [0)4)] = “sa = +” (as |{)sa = |[+)s4), which
47 naturally follows from “s'=.+", given the structure of the memory update u.

48

gg 1. Local operations onS before the memory update can be simulated by joint operations on S
51 and M; after the update. That is, for all ps € Ps, og € Og, Aj € A, ¢, there exists an
52 operation ognz € Ogny, such that

53 )

54 Kj ¢los(ps)] = K; dlosa, o u?(ps || qiy,)];

55

56 wherel@|. . .| are arbitrary statements that depend on the argument.

g; 2. ‘Thesmemory update does not factorize into local operations. That is, there exist no opera-
59
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tions oy € Og and oy, € Oy, such that
/ /
u! = og || oy,

Condition (1) was explained in previous paragraphs. Condition (2) is required because,the
trivial map which entails doing nothing to the system and memory (i.e., the identity )ssatisfies
Condition (1) even though such an operation should certainly not be regarded as @@ memony
update. Condition (2) requires that u? does not factorise into local operations over‘S and M; is
required in order to rule out such trivial operations that cannot be taken to represent a memeory
update. See Figure 4 for an example of u? in the quantum case where it is a reversible unitary
operation and the initial state of the memory, qf@i is |0)az,. In general, the memory update map
u? need not be reversible; for example, in box world it is an irreversible transformation, as we
will see later.

Note that it is enough to consider the memory update map u? corresponding to a particular
choice of initial state qﬁ\’/}i since the map u? corresponding to any othier state, q% € P, can be
obtained by first locally transforming the memory state into ¢} and then applying u?. Thus
without loss of generality, we will consider only specific initial states in the paper and drop the
label ¢ on this map, simply calling it u. For example, in the quantum ecase, it is enough to
consider the memory update with the memory initialised to the state, |0y, .

The characterization of measurements introduced in thisssection. isaather minimal. In phys-
ical theories like classical and quantum mechanics, measurements,have other natural properties
that we do not require here. Two striking examples are®after her measurement, Alice’s memory
becomes correlated with the system measured in such'a way that, for any subsequent operation
that Bob could perform on the system, there is an fequivalent:dperation he may perform on her
memory” and “the correlations are such that there exists a joint operation on the system and
Alice’s memory that would allow Bob to conclude which measurement Alice performed.” While
these properties hold in the familiar classical and quantum worlds, we do not know of other
physical theories where measurements_can satisfy. them; and they require Bob to be able to act
independently on the system and on“Alice’Ssmemeory, which may not always be possible. For
example, we will see that in box world, these two subsystems become superglued after Alice’s
measurement, and that Bob only has access tonthem as a whole and not as individual compo-
nents.” As such, we will not requireithese properties out of measurements, for now. We revisit
this discussion in Section 5.

3 Box world: states and n\wemories

Generalised probabiligti¢theories |24 7] (GPTs) provide an an operational framework for describ-
ing probabilistic theoriesyincluding classical and quantum theories where the physical systems
are taken as black boxes; characterized only by their input and output behaviour. The state
of a system is represented by a probability vector P that encodes the probabilities of possible
outcomes given all the possible choices of measurement. This is a single-shot characterization of
a system: the/post-measurement state can be represented by a new probability vector, and the
update rules depend on the specific theory.

In thisspaper, welemploy the framework for information processing in GPTs presented by
Barrett in [3], and use we the term “box world” to denote the set of theories that Barrett
originally\calls Generalised No-Signalling Theories. We will derive the paradox in box world,
which is a particular instance of a GPT. However, the general assumptions proposed in Section 2
can also befapplied to more general GPTs that do not obey the standard no signalling principle

"Thus the state-space Psas; can also contain such “super-glued states’.

10
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[15, 16] or that which obey different physical principles. We present here the minimal formalism
needed to follow the argument; see Appendix B for more details.

3.1 States and operations (review)

Individual states. The so-called generalised bit or gbit is a system completely characterized
by two binary measurements which can be performed on it [3]. Such sets of measurements that
completely characterise the state of a system are known as fiducial measurements. The,state of
a gbit is thus fully specified by the vector

P(a=0|X =0)
P Pla=1X =0) ()
ot Pla=0/X=1) |’

Pla=1|X = 1)

where X = 0 and X = 1 represent the two choices of measurements andsa"€ {0,1} are the
possible outcomes (Figure 5a). Analogously, a classical bit is a system«€haracterized by a single
binary fiducial measurement,

Pbit = < ) b

and, in quantum theory, a qubit is characterized by three fiducial,measurements (correspond-
ing, for example, to three directions X, Y and Z in the Bloch sphere),

P(a=0|X =0)

Pla=1|X =0) 3)

P(a=0[X £0) \}"

P(a=1]X =0)

| Plas0]X =1)
Pqubzt = P(a _ 1|X _ ) (4)

P(a =0|X =2)

Pla=1X =2)

For normalized states, we have, |P| = Y, P(@=i|X = j) = 1,V j. The set of possible states
of a gbit is convex, with extremes

1 1 0 0

0 N 0 1 1
Po=|—|. 4 Por= |, Po=|—=| Pu=|— 5
00 . 01 0 10 11 0 (5)

0 1 0 1

These correspond to pure states. In the qubit case, the extremes correspond to all the points on
the surface of the Bloch sphere, for example

1 0
0 1
1/2 1/2

1/2
1/2
1/2

1/2
1/2
1/2

P == s P N = s P = P - 6
pHe L4y 2= el IV =y (6)
1/2 1/2 1 0
1/2 1/2 0 1

Note that in'box world, pure gbits are deterministic for both alternative measurements, whereas
in quantum/ theory at most one fiducial measurement can be deterministic for each pure qubit,
as reflected by uncertainty relations. We denote the set of allowed states of a system A by S4.

11
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-

P(a=0|X =0) ° 9> .
o - 0
/) _ I aj[l = l‘\ = U:, | - »
S P(a = 0] X 1) | | 09 ]
- P(a | X L) h ]
—A N ) |
(b) PR box. The PR box has two binazyinputs X,Y and
two binary outputs a, b, satisfying X¥ = a @ b, and otherwise
uniformly random (state vector on the right). Usually it is
applied in the context of two space-like'separated agents, each
providing one of the inputs and obtaining the respective

output. The box is non-signalling, and maximally violates the
CHSH inequality [1].

(a) G-bit. A gbit is a function with
binary input and output,
characterized by the probability
vector P g, also called the state
vector.

Figure 5: Boxes in Generalized Probabilistic Theories. The modular objects of GPTs
are input/output functions depicted as boxes and charaeterized by probability vectors. Each
function (or box) can be evaluated once, and it may Or not correspond to a physical system
being probed; even if it is, nothing is assumed about|/the post-evalutation state of the system
(unlike quantum theory, which specifies the postemeasurement state of a system given its initial
state and the measurement device).

Composite states. The state of a bipartite §ystem AB, denoted by PAB € S4B can be
written in the form PA? = Y, r; PARPP where r; are real coefficients® and P € S4, PP € SP
can be taken to be pure and normalised states of the individual systems A and B [3]. Thus,
a general 2-gbit state P4 can be*written as in Figure 5b (left), where X,Y € {0,1} are the
two fiducial measurements on the first andysecond gbit and a,b € {0,1} are the corresponding
measurement outcomes. The PR\bOX Ppr, on the right, is an example of such a 2 gbit state
that is valid in box world, which/satisfies the condition a ® b = zy [1].

State transformations. Validsoperations are represented as matrices that transform valid
state vectors to valid state wectors (Appendix B). In addition, we only have access to the (single-
shot) input/outputdbehaviour of systems, so in practice all valid operations in box world take
the form of classical wirings between boxes, which correspond to pre- and post-processing of
input and output,values, and convex combinations thereof [3]. For example, bipartite joint
measurements on @& 2-gbit. system can be decomposed into convex combinations of classical
“wirings”, as 'shown in/ Figure 6. In contrast, quantum theory allows for a richer structure of
bipartite sneasurements by allowing for entangling measurements (e.g. in the Bell basis), which
cannot be decomposed into classical wirings. Bipartite transformations on multi-gbit systems
turn out te be classical wirings as well [3]. Reversible operations in particular consist only of
trivial wirings: local operations and permutations of systems [5]. One cannot perform entangling

SNote that it is not necessary that the coefficients r; be positive and sum to one. If this is the case, then the
composite state would be separable and hence local, otherwise, the state is entangled [3].

12
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Figure 6: Bipartitite measurements in boxworld. Any bipartite' measurement on a 2-gbit
box world system can be decomposed into a procedure (or convexicombinations thereof) of the
following form. Alice first performs a measurement X ‘on one of the gbits (labelled A), and
forwards the outcome a to Bob. Bob then performs a measurement Y = fi(a), which may
depend on a, on the other gbit (labelled B), obtaining the outcome b. The final measurement
outcome o of the joint measurement can be gomputed by Bob as a function fa(a,b). All allowed
bipartite measurements are convex combinationsiof this type of classical wirings [3].

operations such as a coherent copy (the quantum CNOT gate) [3, 17], which is required in the
original version of the Frauchiger-Renner experiment.

3.2 Agents, memory and measurement in box world

We will now instantiate our general conditions for agents, memories and measurements (defini-
tions definitions 5 to 7) in box wad. As there is no physical theory for the dynamics behind
box world, there is plenty 6f freedom in the choice of implementation. In principle each such
choice could represent a different physical theory leading to the same black-box behaviour in the
limit of a single agent with an implicit memory. This is analogous to the way in which different
versions of quantum theory,(Bohmian mechanics, collapse theories, unitary quantum mechanics
with von Neumann/measurements) result in the same effective theory in that limit.

Definition 8 (Agents in box world) Let T be the theory that describes box world, according
to [7]. As peridefinition 5, an agent A; € A is described by a knowledge operator K; € K4 and
a physical memory M; € My.

We willsfocus,on the case where the memory consists of bit or gbits. Fach agent may study
other systems aceording to the theory T. An agent’s memory records the results and the conse-
quences‘of.the studies conducted by them, and may be an object of a study by other agents.

It is worth mentioning that boxes do not correspond to physical systems, but to input /output
funetions that can only be evaluated once. As such, the post-measurement state of a physical
system 18 described by a whole new box. The notion of an individual system itself, as we will see,

13
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p
1-p
q
1—¢q

P, | Y) =B Bo ™

Figure 7: Measurement: observer’s perspective. An agent Alice measures a system with
measurement setting X, and obtains outcome a with a given probability. {In \the language of
GPTs this corresponds to running the box that encodes the measurementsstatisties. Alice may
then the measurement data (input and output) to memory. If this is a ¢lassical memory, like a
notebook, the procedure corresponds to preparing a new box (to be rumglater by herself), which
outputs the pair (X, a) deterministically. ~

may be unstable under measurements — some measurements glue the,system to the observer’s
memory, in a way that makes individual access to the originalisystem impossible.

Measurement: observer’s perspective. From the|point of.view of the observer who is
measuring (say Alice), making a measurement on a systém eorresponds simply to running the box
whose state vector encodes the measurement statistiés. Alice may then commit the result of her
measurement to a physical memory, like a notebook where shie Wwrites ‘I measured observable X
and obtained outcome a.” To be useful, this should be a memory that may be consulted later, i.e.
it could receive an input Y =‘start: open and read the meémory’, and output the pair (X, a). In
the language of GP'Ts, this means that Alice, from herown perspective, prepares a new box with a
trivial input Y =‘start’ and two outputs (X', a’); with the behaviour P((X’,a)|Y) = 0x x/0q.q’,
which depends on her observations (Figure 7).%She may later run this box (look at her notebook)
and recover the measurement data. The exact dimension of the box will depend on how Alice
perceives and models her own memory; for example it could consist of two bits, or two gbits,
or, if we think that before the meaSurement she stored the information about the choice of
observable elsewhere, it could bg¢ a singlenbit or ghit encoding only the outcome. We leave this
open for now, as we do not want {) constrain the theory too much at this stage.

Measurements: inferences.. To see the kind of inferences and conclusions that an agent
can take from a measurément in box world, it’s convenient to look at the example where Alice
and Bob share a PR box» Suppose that Alice measured her half of the box with input X =1
and obtained outcome @ = 0:From the PR correlations, XY = a @ b, she can conclude that
if Bob measures Y. = 0, he must obtain b = 0, and if he measures ¥ = 1, he must obtain
b = 1. This is independent of whether Bob’s measurement happens before or after Alice (or
even space-liké separated). She could reach similar deterministic conclusions for her other choice
of measurement and possible,outcomes. In the language of Definition 6, we have

bx—0a—0=“[Y =0 = b=0] A 1 ]
Px=0a=1 =Y =0 = b=1]A[Y =1 ]
bx—1a=0=“Y =0 = b=0]A[Y =1 = b=1]",
Px=10=1="Y =0 = b=1A[Y =1 ]

14
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Alice’s memory quate Alice’s memory update
(as seen by Ursula, at time t=1) (as seen by Ursula, at time t=1)

li'/, I

— —_ )
0
\0/ ‘ l
\ d
(b) In box world, if the two initial systems
(a) Generally, in GPTs with some notion of correspond to small gbit boxes, and Alice’s
subsystems, Ursula can think of the physical memory is initialized as shown, and if we want
system measured by Alice, and Alice’s to preserve the global systeQ dimensions, then
memory pre_measurement as two bOXES, Which the I‘ules fOI‘ allOWed tranSfOI‘matiOnS hmlt the
Ursula could in principle run if Alice chose not statistics of Ursula’sfinal box to be of the
to measure (left). From Ursula’s perspective, form shown in theright (Appendix C). The
Alice’s measurement corresponds to some asterisks represent arbitrary values, which will
transformation that results on a final state on depend on'the choice of implementation of
Which Ursula can later act. This ﬁnal state AliCG’S measurement. Thls tranSfOI‘matiOn is
can be represented by a new box available to in principle non-reversible: note that in the
Ursula, which will have in principle a different final'box, Ursula‘cannot address system and
behaviour, depending on the concrete physical memory independently, but only the global,
theory. & superglued box.

Figure 8: Memory update after a measurement: ‘an_outsider’s perspective. Here Alice
makes a measurement of a system (blue, top) at,time ¢ = 1 and stores her outcome in her
memory (pink, bottom). The question is how am outsider, Ursula, models Alice’s measurement.
In particular, what can Ursula do with the,post-measurement state?

Measurement: memory update from an outsider’s perspective. Next we need to
model how an outside agent, Ursulapmodels Alice’s measurement, in the case where Alice does
not communicate her outcome tofUrsulay’. Suppose that all agents share a time reference frame,
and Alice makes her measurement at time ¢t = 1. From Ursula’s perspective, in the most
general case, this will correspondsto,Alice preparing a new box, with some number of inputs
and outputs, which Ursula/can daterirun (Figure 8a). The exact form of this box will depend
on the underlying physical théory for measurements: in the quantum case it corresponds to a
box with the measurement statistics of a state that’s entangled between the system measured
and Alice’s memory,-as. we saws In classical mechanics, it will correspond to perfect classical
correlations between those two subsystems. In the other extreme, we could imagine a theory of
very destructive measurements, where after Alice’s measurement, the physical system she had
measured would wvanish:.From Ursula’s perspective, this could be modelled by a box with a
void associated distribution. Now suppose that we would like to have a physical theory where
the dimension eof systems is preserved by measurements: for example, if the system that Alice
measures is instantiated by a box with binary input and output (e.g. a gbit, or half of a PR-
box), and Alice’s memory, where she stores the outcome of the measurement (as in Figure 7) is
also representeddas a gbit, then we would want the post-measurement box accessible to Ursula

YNaming convention: as we will see in Section 4, the proposed experiment feature two “internal” agents, Alice
and Bob, who will in turn be measured by two “external” agents, Ursula and Wigner. In the example of Section 2,
the internal agent was Alice and the external Bob, so that their different pronouns could help keep track of whose
memory we were referring to, but we trust that the reader has got a handle on it by now. Ursula is named after

Le Guin.
15
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Ursula’s box
(prepared by Alice at time t=1)

1—p — = ! 3
12 H ——————— b
g !
o) — o~ Iy
ae a
(a) From Ursula’s perspective, Alice has (b) In order for the model to,be
not yet run the boxes corresponding to information-preserving, we need Ursula to be able
the system measured and her memorys; to do some pre- and post-processing’ (outer pink
she simply wired the outputs of the two box), such that the final box hasthe same
boxes with a controlled-NOT gate, so that behaviour as the initial state“ef the system
the measurement output is copied to the measured by Alice (innersblue box on top). This is
output of the memory. This is analogous achieved, for example, by Ursula fixing her second
to the quantum case, where from input to 0, and undoing the,controlled-NOT gate at
Ursula’s view Alice has not performed a the end, discatding the second (trivial) output.
projective measurement, but simply The result is asbox with. bifiary input X and binary
entangled system and memory. When output @, which has the desired behaviour. This
Ursula later runs the outer green box, property earries on to bipartite scenarios where
she provides two inputs, which go Adice measures half of a joint state.
through the circuit shown, resulting in e

two identical outputs.

Figure 9: Information-preserving memory update. This (trivial) physical implementation
of Alice’s measurement in box world satisfies the c¢onditions of Figure 8b and is information-
preserving, in the sense that an external agent, Ursula, can run the final box as if it were the
original, pre-measurement state of the systemithat\Alice measured, in analogy to the quantum
case (Figure 4). The crucial detail is that Ursula is not allowed to open her box (in green) and
access the circuitry inside. Not@ithat there areother possibilities for modelling measurements
— this is the simplest one that still allows us to derive the paradox. For example, the choice of
keeping two binary inputs in Ursula’s box and discarding the second one (replacing it with 0)

is an arbitrary one, picked for simplicity.) Details and proofs in Appendix C.
N

to have in total two binaryinputs and two binary outputs (or more generally, four possible
inputs and four possiblé outputs)sNote that this is not a required condition for a theory to be
physical per se — it is justha familiar rule of thumb that gives some persistent meaning to the
notion of subsystems and dimensions. In such a theory that supports box world correlations,
we find that thetallowed statistics of Ursula’s box must satisfy the conditions of Figure 8b
(proof in Appendix C). These conditions still leave us some wiggle room for possible different
implementations.

Measuréments: information-preserving memory update. In order to find a multi-agent
paradox, we will'meed a model of memory update that is information-preserving, in the sense of
Definition 7. This does not imply that Alice’s transformation (as seen by Ursula) be reversible:
in fact, we find that in general, it can glue two subsystems such that Ursula will only be able
to address them as a whole (since separating them could lead to a violation of no-signalling),
but therelevant fact is that Ursula can apply some post-processing in order to obtain a new

16
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box with the same behaviour as the pre-measurement system that Alice observed. In Figure 9
we give an example of a model that satisfies these conditions, in addition to the conditions of
Figure 8b. It is a minimal implementation among many possible, which already allows us to
derive such a paradox beyond quantum theory. We further discuss some of the limitations and
alternatives to this model in Section 5.2. What is important here (and proven in Appendix €)
is that this model generalizes to the case where Alice measures half of a bipartite state, like a
PR box. That is, suppose that Alice and Bob share a PR box. Imagine that at timext = 1 Alice
makes her measurement X, obtaining (from her perspective) an outcome a, and that Bebunakes
his measurement Y at time ¢ = 2, obtaining outcome b. As usual, if Alice and»Bob werexto
communicate at this point, they would find that XY = a ®© b, and indeed the (propositions ¢x
and ¢y, that represent their subjective measurement experience would hold.“But now suppose
that Alice and Bob do not get the chance to communicate and compare théir input and outputs;
instead, at time ¢ = 3, an observer Ursula, who models Alice’s measurement a$ in Figure 9a,
runs the box corresponding to Alice’s half of the PR box and Alice’ssmemeory, and applies the
post-processing of Figure 9b. Ursula’s input is X and her output i§ a. Fhen the claim is that
XY = a@®b: that is, Ursula and Bob effectively share a PR box. [T'higiis proven in Appendix C.
We now have all the ingredients needed to find a multi-agent epistemic paradox in box world.

4 Finding the paradox

In this section we find a scenario in box world where reasoning, physical agents reach a logical
paradox. We compare it to the result to the contradiction obtained by Frauchiger and Renner
[1] in the next section. v

Experimental setup. The proposed thoughtiexperiment is similar in spirit to the one pro-
posed by Frauchiger and Renner [I| (recall Figurenl). Alice and Bob share a PR box (the
corresponding box world state is given in Figure 5b); they each will measure their half of the
PR box and store the outcomes in their localimemories. Let Alice’s lab be located inside the
lab of another agent, Ursula’s lab such that Ursula can now perform joint measurements on
Alice’s system (her half of the PR, box) and memory, as seen in the previous section. Similarly,
let Bob’s lab be located inside Wigner’s lab, such that Wigner can perform joint measurements
on Bob’s system and memory. We assume,that Alice’s and Bob’s labs are isolated such that no

information about their measurement outcomes leaks out. The protocol is the following:
N

t=1 Alice measures her half of the PR box, with measurement setting X, and stores the outcome
a in her memory A.

t=2 Bob measures his half of the PR box, with measurement setting Y, and stores the outcome
b in his memory B.

t=3 Ursula measures the box corresponding to Alice’s lab (as in Figure 9b), with measurement
setting X = X @ Iy7obtaining outcome a.

t=4 Wignermeasures the box corresponding to Bob’s lab, with measurement setting ¥ = Y &1,
obtaining outcome b.

Agents can agree on their measurement settings beforehand, but should not communicate once
thedexperiment begins. The trust relation, which specifies which agents consider each other to
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be rational agents (as opposed to mere physical systems), is
Ai—12 &~ Bi—12
Bi—z3 ¢ Up=s
Ui=3.4 ¢~ Wiy
Wizy e~ Ap—1.

The common knowledge T shared by all four agents includes the PR box correlations)the way
the external agents model Alice and Bob’s measurements, and the trust structure above.

Reasoning. Now the agents can reason about the events in other agents’dabs. We take here
the example where the measurement settings are X =Y = 0, X =Y = _lyand where Wigner
obtained the outcome b = 0; the reasoning is analogous for the remaining cases.

1. Wigner reasons about Ursula’s outcome. At time t = 4, Wignersknows that, by virtue of
their information-preserving modelling of Alice and Bob’s méasurements, he and Ursula
effectively shared a PR box ’. He can therefore use the PR ‘correlations XY = a @ b to
conclude that Ursula’s output must be 1,

Ky(b=0 = a= 1)

2. Wigner reasons about Ursula’s reasoning. Now Wigner thinks about what Ursula may
have concluded regarding Bob’s outcome. He knéws that at time ¢t = 3, Ursula and Bob
effectively shared a PR box'?, satisfying XY =.a@@b, and that therefore Ursula must have
concluded v

KyKy(a=1"= b=1).

3. Wigner reasons about Ursula’s reasoning about Bob’s reasoning. Next, Wigner wonders
“What could Ursula, at time ¢t = 3, conclude about Bob’s reasoning at time ¢t = 27" Well,
Wigner knows that she knows that Bob knew that at time ¢ = 2 he effectively shared a
PR box with Alice, satisfying X¥ = a @ bpand therefore concludes

KwKUKB(b =1 = a= 1).

4. Wigner reasons about Ursula’s reasoning about Bob’s reasoning about Alice’s reasoning.
We are almost there. Now' Wigner thinks about Alice’s perspective at time ¢ = 1, through
the lenses of Bob (at time ¢ = 2) and Ursula (¢t = 3). Back then, Alice knew that
she obtained some outcome a, and that Wigner would model Bob’s measurement in an
information-preserving way, such that Alice (at time ¢ = 1) and Wigner (of time ¢t = 4)
share an effective PR box!’, satisfying X Y = a @ b, which results, in particular, in

KwKyKpKala=1 = b=1).
5. Wigner applies trust relations. In order to combine the statements obtained above, we need

to apply the trust relations described above, starting from the inside of each proposition,
for example,

KwKyKpKala=1 = b=1)
— KwKyKpla=1 = b=1) [A~ B
— KwKyla=1 = b=1) [B~ U]
— Ky(a=1 = b=1), (U~ W]

103ee Appendix C for a proof.
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and similarly for the other statements, so that we obtain

We could have equally taken the point of view of any other observer, and from any/particular
outcome or choice of measurement, and through similar reasoning chains reached the following
contradictions,

Ka[la=0 = a=1)A(a=1 = a=0),
Kp[b=0 = b=1)A(b=1 = b=0)],
Kyla=0 = a=1)Aa=1 = a=0)],
Kwlb=0 = b=1)A(b=1 = b=0).

5 Discussion

We have generalized the conditions of the Frauchiger-Renner theorem andymade them applicable
to arbitrary physical theories, including the framework of generalized/probability theories. We
then applied these conditions to the GPT of box world and found an experimental setting that
leads to a multi-agent epistemic paradox.

5.1 Comparison with the quantum thought experiment v

We showed that box world agents reasoningfabout each others’ knowledge can come to a deter-
ministic contradiction, which is stronger than theeriginal paradox, as it can be reached without
post-selection, from the point of view of every agent and for any measurement outcome obtained
by them.

Post-selection. In contrast to the original, Frauchiger-Renner experiment of [1], no post-
selection was required to arrive atythis contradictory chain of statements as, in fact, all the
implications above are symmetriggfor example

i=0 < K:O = q=0 = b=0 = a=1.

As a result, one can arrive at a gimilar (symmetric) paradoxical chain of statements irrespective
of the choice of agentyand outcome/for the first statement. In other words, irrespective of the
outcomes observed byievery agent, each agent will arrive at a contradiction when they try to
reason about the outcomes of ether agents. This is because, as shown in [9], the PR box exhibits
strong contextuality and me global assignments of outcome values for all four measurements
exists for any choice of local assignments. In contrast, the original paradox of [I| admits the
same distribution as thatof Hardy’s paradox [3]. It is shown in |9] that this distribution is an
example of logical’contiextuality where for a particular choice of local assignments (the ones that
are post-selected on in'the original Frauchiger-Renner experiment), a global assignment of values
compatible with the support of the distribution fails to exist, but this is not true for all local
assignments. This makes the paradox even stronger in box world, since it can be found without
postsselectionzand by any of the agents, for any outcome that they observe. In particular, the
paradox wotld already arise in a single run of the experiment. For a simple method to enumerate
all possible contradictory statements that the agents may make, see the analysis of the PR box
presented in |9].
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Reversibility of the memory update map As mentioned previously, the memory update
map u in the quantum case is quantum CNOT gate which is a unitary and hence reversible. In
box world however, this map cannot be reversible since it is known that all reversible maps in
box world map product states to product states [5] and hence no reversible u in box worldeould
satisfy Definition 7 of an information preserving memory update. The map we propose here
for box world is clearly irreversible as it leads to correlations between the initially uncorrelated
system and memory.

5.2 Physical measurements in box world

Since we lack a physical theory to explain how measurements and transformations are imstanti-
ated for generalised non-signalling boxes, and only have access to their inputjoutput behaviour,
all allowed transformations consist of pre- and post-processing. In the quantum case, we have in
addition to a description of possible input-output correlations, a mathematical framework for the
underlying states producing those correlations, the theory of von Neumannsmeasurements and
transformations as CPTP maps. In Appendix D we briefly show how.we one could in principle
model the quantum memory updates in the framework of GPTs.»wIn boxworld, introduction
of dynamical features (for example, a memory update algorithm) is'leéss intuitive and requires
additional constructions. In the following, we outline the main limitations we found.

Systems vs boxes. In quantum theory, a system correspondsto a physical substrate that
can be acted on more than once. For example, Alice_could,measure a spin first in the Z basis
and then in X basis (obviously with different results than ifyshe had measured first X and
then Z). The predictions for each subsequent measurement are represented by a different box
in the GPT formalism, such that each box encodes the current state of the system in terms
of the measurement statistics of a tomographically complete set of measurements. After each
measurement, the corresponding box disappears, but, quantum mechanics gives us a rule to
compute the post-measurement stateofithe underlying system, which in turn specifies the box
for future measurements. On the other hand, the'default theory for box world lacks the notion of
underlying physical systems and a definite rule.to compute the post-measurement vector state of
something that has been measuredonce. Indeed; Equations 9a-9¢ (Appendix B) tell us that post-
measurement states is only partially specified: for instance, if the measurement performed was
fiducial, we know that the block corresponding to that measurement in the post-measurement
state would have a “1” correspending to/the outcome obtained and “0” for all other outcomes
in the block. However, we/still have freedom in defining the entries in the remaining blocks.
Our model proposes a possible/physical mechanism for updating boxes (which could be read as
updating the state of‘thé underlying system), but so far only for the case where we compare the
perspectives of different agents, and we leave it open whether Alice has a subjective update rule
that would allow her to make subsequent measurements on the same physical system.

Verifying a measurement. In our simple model, the external observer Ursula has no way
to know which measurement Alice performed, or whether she measured anything at all — the
connection between Alice’s and Ursula’s views is postulated rather than derived from a physical
theory. Jndeed, "Alice could have simply wired the boxes as in Figure 9a without actually
performing the measurement, and Ursula will not know the difference: she obtains the same
joint statesof Alice’s memory and the system she measured. In contrast, consider the case of
quantum mechanics with standard von Neumann measurements. There, Alice’s memory gets
entangled with the system, and the post-measurement state depends on the basis in which Alice
measured her system. For example, if Alice’s qubit S starts off in the normalised pure state
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|Y) = «a|0)s + B|1)s and her memory M initialised to |0)ys, the initial state of her system
and memory from Ursula’s perspective is [¥)%, = [a|0)s + B|1)s] ® [0) = [(%)H)s +
(a—\bﬂ)\—)g)] ® |0)pr If Alice measures the system in the Z basis, the post-measurement state

from Ursula’s perspective is ]‘P}%%Z = a|0)5]0)pr + B|1)s|1)ps, which is an entangled state.

If instead, Alice measured in the Hadamard (X) basis, the post-measurement state svould, be
MIQ%%IX — (L\J/%ﬁ)|+)g|0>M + (%)]—>5|1)M. Clearly the measurement statistics of |¥)%,

|\Il>gqj\t}[’Z and |\If>glj\zx are different and Ursula can thus (in principle, with some probability) tell
whether or not Alice performed a measurement and which measurement was performed by her.
In the absence of a physical theory backing box world, we can still lift this degeneraneysbetween
the three situations (Alice didn’t measure, she measured X = 0, or she measured X = 1) by
adding another classical system to the circuitry of 9a: for example, asbrit thatistores what
Alice did, and which Ursula could consult independently of the glued box of systém and Alice’s
memory. However, we’d still have a postulated connection between«what’s stored in this trit
and what Alice actually did, and not one that is physically motivated. N

Supergluing of non-signalling boxes. For the memory update eircuit (from Ursula’s per-

spective) of Figure 9a, and the initial state of Equation 10sthe final state would be P]Sc% =

(p 00 1—pp 0 0 1—plg 0 0 1—g|g 0 0_.1—¢q)k,,./Note that while the re-
duced final state of S does not depend on the input X’ to M, the reduced final state on
Alice’s memory M, P%n clearly depends on the inputdX, of the system S if p #£ ¢q. If X =0,
P%n =(p 1-pp 1-p)Tandif X =1, P%n = (g7 —qlg. 1—¢)7, i.e., the systems S and
M are signalling. This is expected since there is clearly/a transfer of information from S to M
during the measurement as seen in Figure 6. However, this/means that the state P?% is not a
valid box world state of 2 systems S and M but a valid state of a single system SM i.e., after
Alice performs her wiring/measurement, it is‘not pessible to physically separate Alice’s system
S from her memory M from Ursula’s perspective. For if this were possible, there would be a
violation of the no-signalling principle and the.notion of relativistic causality. In quantum the-
ory, on the other hand it is always possible to perform separate measurements on Alice’s system
and her memory even after she measures. We ¢all this feature supergluing of post-measurement
boxes, where it is no longer possiblefor Ursula to separately measure S or M, but she can only
jointly measure SM as though it'were a'single system. Note that this is only the case for p # ¢
and in our example with the PR<box (Section 4), p = ¢ = 1/2 and P;?% remains a valid bipartite
non-signalling state in this partictlar; fine-tuned case of the PR box and there is no supergluing
in the particular example described in Section 4.

A glass half full. Theabove-mentioned features of the memory update in box world are cer-
tainly not desirable,and,not what one would expect to find in a physical theory with meaningful
notions of subsystems. An optimistic way to look at these limitations is to see them as providing
us with further intuition for why PR boxes have not yet been found in nature. One of the main
contributions of this papet is the finding that despite these peculiar features of box world and
the fact that/ it has ne entangling bipartite joint measurements (a crucial step in the original
quantum paradex), a ¢onsistent outside perspective of the memory update exists such that with
our generalised assumptions, a multi-agent paradox can be recovered. This indicates that the
reversibility of dynamics akin to quantum unitarity is not crucial to derive this kind of paradox.

Other models for physical measurements. Ours is not the first attempt at coming up

with a_(partial) physical theory that reproduces the statistics of box world. Here we review
the approach of Skrzypczyk et al. in [18]. There the authors consider a variation of box world
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that has a reduced set of physical states (which the authors call genuine), which consists of the
PR box and all the deterministic local boxes. The wealth of box world state vectors (i.e. the
non-signalling polytope, or what we could call epistemic states) is recovered by allowing classical
processing of inputs and outputs via classical wirings, as well as convex combinations thereof. In
contrast, box world takes all convex combinations of maximally non-signalling boxes (of which
the PR box is an example) to be genuine physical states; this becomes relevant as we require
the allowed physical operations to map such states to each other. For the restrictedsstate space
of [15], the set of allowed operations is larger than in box world, particularly for multipartite
settings. For example, there we are allowed maps that implement the equivalent 6f entanglement
swapping: if Bob shares a PR box with Alice, and another with Charlie, there is an allowed map
that he can apply on his two halves which leaves Alice and Charlie sharing a PRybox, with some
probability. It would be interesting to try to model memory update in this modified theory, to
see if (1) there is a more natural implementation of measurements within the extended set of

operations, and (2) whether this theory allows for multi-agent paradoexes.
~

5.3 Characterization of general theories

While we have shown that a consistency paradox, similar to the one‘arising in the Frauchiger-
Renner setup, can also be adapted for the box world in terms of GP TS, it still remains unclear how
to characterize all possible theories where it is possible to find a,setuprleading to a contradiction.
Essentially, one has to restrict the class of such theories and identify the properties of these
theories that make such paradoxes possible. It seems that contextuality is a key property of
such theories, this is discussed in more detail in Section 5:4. énother central ingredient seems
to be information-preserving models for physical measurements such as our memory update of
Definition 7, which allow us to replace countér-factuals with actual measurements, performed in
sequence by different agents.

Beyond standard composition of systems. * Additionally, it is still an open problem to find
an operational way to state the outside view of measurements (and a memory update operation),
for theories without a prior notion of subsystems and a tensor rule for composing them. This will
allow us to search for multi-agent logical paradexes in field theories, for example. One possible
direction is to use notions of effective and subjective locality, as outlined for example in [14].

5.4 Relation to contextualitys <

Multi-agent logical paradoxes involvé chains (or possibly more general structures) of statements
that cannot be simultaneously true/in a consistent manner. Contextuality, on the other hand,
can often be expressed imiterms of the inability to consistently assign definite outcome values to
a set of measurements [£), 20)|.

Given the examples of Frauchiger-Renner in quantum theory and the the present one in
box world — two centextual theories — our hypothesis is that contextual physical theories,
when applied 40 systems that are themselves reasoning agents, may generally lead to logical
multi-agent paradoxest Thefact that such theories may allow a very different description of a
measurement, processArom the points of views of an agent performing the measurement vs an
outside agent (who analyses this agent and her system together) also has an important role to
play in these paradoxes. In the quantum case this is closely linked to the measurement problem,
the problembofreconciling unitary dynamics (outside view) and non-unitary “collapse" (inside
view). Thedexistence of a connection between multi-agent paradoxes and contextuality is hard
to miss, but it is the nature of this connection that is unknown i.e., are all proofs of multi-
agent logical paradoxes proofs of contextuality, or vice-versa? These questions will be formally
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addressed in future work. Nevertheless, in the following, we provide an overview of further
connections and some more specific open questions in this direction.

Liar cycles. In [9] relations between logical paradoxes and quantum contextuality are ex-
plored; in particular, the authors point out a direct connection between contextuality.and a
type of classic semantic paradoxes called Liar cycles [21]. A Liar cycle of length N isfa chaimof
statements of the form:

b1 = “¢pg is true”, o = “¢3 is true”, ..., dpn_1 = “Pn is true”, oy = “¢1 isfalse”. (7)

It can be shown that the patterns of reasoning which are used in finding a éontradiction in the
chain of statements above are similar to the reasoning we make use of indER-type arguments,
and can also be connected to the cases of PR box (which corresponds t6 a Liar gycle of length
4) and Hardy’s paradox. This further suggests that multi-agent paradexes.are closely linked to
the notion of contextuality. ~

Relation to logical pre-post selection paradoxes. In [22],ithhas beén shown that every
proof of a logical pre-post selection paradox is a proof of contextualitys, The exact connection
between FR-type paradoxes and logical pre-post selection paradoxes is not known and this
would be an interesting avenue to explore which would alsé provide insights into the relationship
between FR paradoxes and contextuality.
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A +Modalilegic
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the intuitive laws commonly used for reasoning.

A.1 Kripke structures

In modal logic, a set ¥ of possible states (or alternatives, or worlds) is introduced |23} for
example, in a world s; the key value is £k = 1 and Eve does not know it, and in a state sgnEve
could know that k = 0. The truth value of a proposition ¢ is then assigned depending on the
possible world in ¥, and can differ from one possible world to another. In order to formalize the
simple rules agents use for reasoning, we will first provide a structure which servesas a complete
picture of the setup the agents are in, and then discuss the elements of the structure:

Definition 9 (Kripke structure) A Kripke structure M for n agents over.a set of statements
O is a tuple (X, 7,K1,...,KCp) where ¥ is a non-empty set of states, or possible worlds, w is an
interpretation, and KC; is a binary relation on X.

The interpretation w is a map 7 : X X ® — {true, false}, which deﬁmﬁa truth value of a
statement ¢ € ® in a possible world s € 3.

K; is a binary equivalence relation on a set of states 3, wherel(s, t) € IC;4f agent i considers
world t possible given his information in the world s.

The truth assignment tells us if the proposition ¢ € ® is true or false in a possible world
s € X; for example, if ¢ = “Alice has a secret key,” and s is a world where there is an individual
named Alice who indeed possesses a secret key, thengm(s,$) = true. The truth value of a
statement in a given structure M might vary from onespessible world to another; we will denote
that ¢ is true in world s of a structure M by (M, §) = @, andgl= ¢ will mean that ¢ is true in
any world s of a structure M.

A.2  Axioms of knowledge (weak version)

In order to operate the statements agents produce, we have to establish certain rules which are
used to compress or judge the statements. Theserare the axioms of knowledge [24]. They might
seem trivial in the light of our everyday reasoning, yet given our awareness of the quantum case,
we will treat them carefully. Here we present the reader with a weaker version of the axioms
(which includes Trust axiom) that.wethave developed in previous work [6].

Distribution axiom allows agents combine statement which contain inferences:

Axiom 1 (Distribution axiom?) if.an agent is aware of a fact ¢ and that a fact ¥ follows
from ¢, then the agent can/concludehat v holds:

(M, s) BEKip A Ki(¢p = 1)) = (M, s) = K.
Knowledge generalization rule permits agents use commonly shared knowledge:

Axiom 2 (Knowledge generalization rule.) All agents know all the propositions that are
valid in a struecture:

if (M,s) = ¢ Vs then = K;¢ Vi.

Positive and@egative introspection axioms highlight the ability of an agent to reflect upon
her knowledge:

Axiom 3 (Positive and negative introspection axioms.) Agents can perform introspection
regarding their knowledge:
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(M,s) = Kip = (M, s) = K;K;¢ (Positive Introspection),
(M,s) E-K;p= (M,s) E K;—~K;¢ (Negative Introspection).

We also equip the logical skeleton of the setting with so-called trust structure, which{governs
the way the information is passed on between agents:

Definition 10 (Trust) We say that an agent i trusts an agent j (and denote it bylj ~ " Jvif
and only if
K Kj ¢ = K ¢,

for all ¢.

In the Frauchiger-Renner setup, as well as in the thought experiment presented.in this paper,
we consider the following trust structure between agents:

A~ B~ U~ W A (8)

~

Further discussion on axioms of modal logic and their application in quantum mechanics can
be found in our paper [6].

B  Generalized probabilistic theories

In quantum theory, systems are described by states that live in a Hilbert space, measurements
and transformations on these states are represented oy CPTP.maps and the Born rule specifies
how to obtain the probabilities of possible measurement outedmes give these states and mea-
surements. In more general theories, there ismo reason/to assume Hilbert spaces or CPTP maps.
In fact such a description of the state space andyoperations may not even be available, systems
may be described as black boxes taking in classical inputs (choice of measurements) and giving
classical outputs (measurement outcomes). What we ¢an demand is that the theory provides
a way for agents to predict the probabilitiestofsobtaining various outputs based on their input
choice and some operational description of the box.

Barrett derived the mathematical structure, of the state-space of composite systems and
allowed operations on systems from afew reasonable, physically motivated assumptions [3]. We
follow his formalism here. Later, Gross et al. found restrictions on the reversible dynamics of
maximally non-local GPTs [5] showing that all reversible operations on box-world are trivial i.e.,
they map product states toproduet states and cannot correlate initially uncorrelated systems.
In accordance with this, our memotry update procedure that maps the initial product state
PSM (Equation 10) to the final correlated state of the system and memory P}?Z]\g (Equation 11
or equivalently Equationyl?2) is an irreversible transformation in contrast to the quantum case
where the corresponding, transformation is a unitary and hence reversible.

B.1 Observing outcomes

In Section 3,/we briefly reviewed states and transformations in GPTs, in particular box world;
here we go intedurther detail. Consider a GPT, T. Denoting the set of all allowed states of
a systemdin T by'Sy any valid transformation on a normalised GPT state P € & maps it to
another normalised GPT state in S. Consequently, is linear and can be represented by a matrix
M sueh, that P~ M.P under this transformation and M.P € S [3|. Further, operations that
result in different possible outcomes can be associated with a set of transformations, one for each
outeome. These also give an operational meaning to unnormalised states where |P| =Y, P(a =
i/ X =jp=c Vj,cel0,1] (ie., the norm is independent of the value of j). Such an operation
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M on a normalised initial state P can be associated with a set of matrices {M;} such that the
unnormalised state corresponding to the it outcome is M;.P. Then the probability of obtaining
this outcome is simply the norm of this unnormalised state, |M;.P| and the corresponding
normalized final state is M;.P/|M;.P|. A set {M,} represents a valid operation if the following
hold [3].

0<|M;P|<1 Vi,PeS (9a)
Y |IM;P|=1 VPeS (9b)
M;PeS ViPeS (9¢)

This is the analogue of quantum Born rule for GPTs. Box world is a. GPT where the
state space S consists of all normalized states P whose entries are valid probabilities (i.e.,
€ [0, 1]) and satisfy the no-signalling constraints i.e., for a N-partite state P, the‘marginal term
>4, Pla, ., a;,..,an| X1, .., X;, .., Xn) is independent of the setting Xiforall i e/{1, oy N}

When the GPT T is box world, the conditions of Equations 9a-9¢ resultin the characteriza-
tion of measurements and transformations in the theory in terms,of classical circuits or wirings
as shown in [3]. It suffices for the purpose of this paper to take that ¢haracterisation as the
common knowledge of agents in the theory. In the original quantum paradox [1], the Born rule
is taken as common knowledge and here, the common knowledge. consists of characterisations
that follow from the box world analogue of the born rule/(Equations 9a-9c). We summarise the
results of [3] characterising allowed transformations amd measurements in box world and will
only consider normalization-preserving transformations:

. 4
e Transformations:

— Single system: All transformations on single box world systems are relabellings of
fiducial measurements or outcomes or a ¢oenvex combination thereof.

— Bipartite system: Let X and.Y be fiducial measurements performed on the trans-
formed bipartite system withycorresponding outcomes a and b, then all transfor-
mations of 2-gbit systems can bedecomposed into convex combinations of classical
circuits of the following, form: A fiducial measurement X’ = f1(X,Y) is performed
on the initial state of the first gbit resulting in the outcome a’ followed by a fiducial
measurement Y/ = f4(X,Y, X’)on the initial state of the second gbit resulting in the
outcome b'. The final outcomes are given as (a,b) = f3(X,Y,d’, V'), where f1, fo and
f3 are arbitrary functions.

e Meaurements:

— Single system:All measurements on single box world systems are either fiducial
measurements with outcomes relabelled or convex combinations of such.

— Bipartite system: All bipartite measurements on 2-gbit systems can be decomposed
intofeonvex combinations of classical circuits of the following form (Figure 6): A
fiduciall measurement X is performed on the initial state of the first gbit resulting
in thé outcome a” followed by a fiducial measurement Y = f(a’) on the second gbit
resulting in the outcome . The final outcome is a = f/(a’,b'), where f and f’ are
arbitrary functions.

1IThis is in the spirit of relativistic causality since one would certainly expect that the input of one party does
not affect the output of others when the are all space-like separated from each other.
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Remark: Note that an agent Alice who measures a box world system only sees a classical
final state, which corresponds the classical measurement outcome, since the box is a single-
shot input/output function. Alice could use Equations 9a-9¢ to calculate the probabilities of
obtaining different outcomes given the measurement she performs and prepare a new box (a
new input/output function) depending on the measurement and outcome she just obtained
(and has stored in her memory), as in Figure 7. An outside agent who does not know Alice’s
measurement outcome would see correlations between Alice’s system and memorysand would
describe the measurement by an irreversible transformation, more specificallya classicabhwiring
between Alice’s system and memory as shown in the following section.

C  Memory update in box world (proofs)
C.1 Single lab

In this section, we describe how a box world agent would measure a/system and store the result
in a memory. From the perspective of an outside observer (who doesmot know the outcome of
the agent’s measurement), we describe the initial and final states'of thesystem and memory
before and after the measurement as well as the transformation that implements this memory
update in box world. In the quantum case, any initial state of the system S is mapped to an
isomorphic joint state of the system S and memory M (sée Equation'l) and hence the memory
update map that maps the former to the latter (an isometry in thigicase’?) satisfies Definition 7
of an information-preserving memory update. We will.-now:characterise the analogous memory
update map in box world and show that it also satisfies Definigjon 7.

Theorem 11 In box world, there exists afvalid transformation w that maps every arbitrary,
normalized state P;gn of the system S to an wsemorphic final state PJ*?% of the system S and
memory M and hence constitutes an information-preserving memory update (Definition 7).

Proof: To simplify the argument, we will describe the proof for the case where S and M are
gbits. For higher dimensional systems, a similar argument holds, this will be explained at the
end of the proof.

We start with the system in anrarbitrary, normalized gbit state P3, = (p 1—plg 1—¢)7
(where the subscript T denotes| transpose and p,q € [0, 1]) and the memory initialised to one
of the 4 pure states’’, say PM-=P; = (1 0|1 0)”. Then the joint initial state, P3M =
(p 1-plg 1-9fe@ o 0‘)?4 of the system and memory can be written as follows, where
Pin(a =1i,d = j|X = k, X! =) denotes the probability of obtaining the outcomes a = i and
a’ = j when performingthe fiducialimeasurements X = k and X’ = [ on the system and memory

2 An isometry since it introducesan initial pure state on M, followed by a joint unitary on SM.

51t does not matter which pure state the memory is initialized in, a similar argument applies in all cases.
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respectively, in the initial state anM .

Pip(a=0,a =0/X =0,X'=0) P
Pip(a=0,a' =11X =0,X'=0) 0
Pip(a=1,/ =0/X =0,X'=0) 1-p
Ppa=1,d =11X =0,X'=0) 0
Pip(a=0,a/ =0/X =0,X'=1) P
P(a=0,d =1|X =0,X' = 1) 0
Pm(azla—()|X—0X’:) 1-p
pSM _ Ppla=1,d =1|X =0,X'=1) _ 0 (10)

Pip(a=0,d =0/ X =1,X"=0) q
Pala=0,a' =1|X =1, X' = 0) 0
Ppla=1,d =0/ X =1,X'=0) 1—¢q
Punla=1,d =1|X =1, X' =0) o™
Pp(a=0,d =0/X =1,X"=1) q
Pp(a=0,d =1|X =1,X"=1) 0
Pola=1,d =0[X =1,X'=1) 1Y,
Ppla=1d =1|X =1, X"= 1)/ o 0 S0

The rest of the proof proceeds as follows: we first describe a final state P}?% of the system
and memory and a corresponding memory update map u that satisfy Definition 7 of a generalized
information-preserving memory update. Then, we show that i’ﬁs map can be seen an allowed
box world transformation which completes the proof.

If an agent performs a measurement on the system, the state of the memory must be updated
depending on the outcome and the final state of\the System and memory after the measurement
must hence be a correlated (i.e., a nonsproduct) state. Although the full state space of the 2 gbit
system SM is characterised by the 4 fidugial measarements (X, X’) € {(0,0), (0,1), (1,0), (1,1)},
Definition 7 allows us to restrict possible finahstates to a useful subspace of this state space that
contain correlated states of a certain form. The definition requires that for every map £g on
the system before measurement, there exists a corresponding map Egps on the system and
memory after the measurement fthat is operationally identical. Thus it suffices if the joint final
state P;?% belongs to a subspacerof the 2 ghit state space for which only 2 of the 4 fiducial
measurements are relevant for characterising the state, namely any 2 fiducial measurements on
Pfsiﬁ/l that are isomorphic to the 2 fiducial measurements on Pisn. Note that by definition of
fiducial measurement§; the outcomeé probabilities of any measurement can be found given the
outcome probabilitiesof all the fiducial measurements and without loss of generality, we will
only consider the caSe where the agents perform fiducial measurements on their systems.

A natural isomorphism between fiducial measurements on P, and those on P to consider
here (in analogy with the guantum case) is: X =i < (X, X') = (4,i) ,Vi € {0,1} i.e., only
consider the cases where the fiducial measurements performed on S and M are the same. Now,
in order for the states to beisomorphic or operationally equivalent, one requires that performing
the fiducialvmeasurements (X, X’) = (4,7) on P?% should give the same outcome statistics
as measuring X¢/= 0 on P;gn. This can be satisfied through an identical isomorphism on the
outcomesia = i & (a,a’) = (i,i) ,Vi € {0,1}. Then the final state of the system and memory,
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pPsM Fin will be of the form

Ppin(a=0,a =0|X =0,X"=0) p
Piin(a=0,a =1|X =0,X"=0) 0
Piin(a=1,d' =0|X =0,X'=0) 0
Ptin(a=1,d =11 X =0,X"=0) 1-p
Piin(a=0,a/ =0|X =0,X"=1) *
Ppin(a=0,a' =1|X = 0, X’ = 1) x
Ptin(a=1,d =0/ X =0,X"=1) *

P]‘?% _ | _Prinla=1, ad=1X=0, X: =1) _ * ’ (11)
Ptin(a=0,d =0/X =1,X"=0) *
Ptin(a=0,d/ =11 X =1,X"=0) %
Ppin(a=1,a' = 0|X =1, X' = 0) Wy
Piin(a=1,d =11 X =1,X"=0) *
Ptin(a=0,d/ =0/ X =1,X"=1) q
Ptin(a=0,d/ =11 X =1,X"=1) 0
Piin(a=1,d =0/ X =1,X"=1) 0
Prn(a=1,d =1|X =1, X" = 1)/ 4 T—q /gy,

where * are arbitrary, normalised entries and where Prip(a = i,d' = j|X =k, X' = 1)
denotes the probability of obtaining the outcomes a/& i and.a’ = j when performing the fiducial
measurements X = k and X’ = [ on the system land{memory respectively, in the final state
P3M Fin - Lhis final state can be compressed sinice the only relevant and non-zero probabilities in

P?% occur when X = X’ and a = . We ¢an then define new variables X and a such that

X=X =ieX=ianda=d =j & a=gforiy € {0,1} andem can equivalently be
written as in Equation 12 which is cléarlyiof,the same form as PS

P(a=0|X'=0) p
poy — | Pla=1X=0) B (12)
P(a=0lX =1) q
Pa=1X =1) 1—gq
~ SM SM

Hence the initial state of the system, PJ = (p 1 —p|lg 1 — ¢)7 (which is an arbitrary
gbit state) is isomorphic to the final state of the system and memory, P;?% (as evident from
Equation 12) with the same outéome probabilities for X = 0,1 and X =0,1. This implies that
for every transformation Egren the former, there exists a transformation £gps on the latter such
that for all outside’agents»A; and for all p,q € [0,1] (i.e., all possible input gbit states on the
system), K;¢[€s(P5,)] = K;¢[Esnm o P?%] where Péﬂ = u(P%). Thus any map u that

maps P5M = Pig PM to Pf '\ satisfies Definition 7.
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S
P2l

a = aj

a' =ar Pay

a a’
L

Figure 10: Classical circuit decomposition of the memory update map u as a box
world transformation: The blue box represents the final state of the system S and memory
M after the memory update characterised by the fiducial measurements X and X’ and the
outcomes a, a’. Let u be the memory update map that maps the initial state anM to a final
state P;?% . Noting that we only need'tosconsider the case of X = X’ since the for X # X',
the entries of P]‘?% can be arbitrary, the action of T is eqivalent to the circuit shown here i.e.,
1) Choose X; = X(= X') and,perform thisiiducial measurement on the initial state of the
system P2 to obtain the outcomeéna;. 2) Fix X3 = 0 (or Xo = 1) and perform this fiducial
measurement on the initial state of theimemory PM = (1 0|1 0)%, to obtain the outcome as.
3) Set a = ay. 4) If a1 = 1, setia’ = ag, otherwise set @’ = as & 1, where & denotes modulo 2
addition. ~

We now find a valid box werld transformation that maps the initial state P3M (Equation 10)
to any final state of the ferm PJ‘?% (Equation 11) which would correspond to the memory update
map u.

Noting that all bipartite transformations in box world can be decomposed to a classical
circuit of a certaitiform (see Appendix B.1 or the original paper [3] for details), In Figure 10, we
construct an explicit circuit of this form that converts anM to P?% . By construction, we only
need to consider the case of X = X’ since for X # X', the entries of Pf% can be arbitrary and
are irrelevant tothe argument. For X # X', one can consider any such circuit description and
it is easy to see that P5M = (p 1—plg 1—-¢L® (1 01 0)%, is indeed transformed into
P?% = 0 0 1-p[* * * *[x x x xlg 0 0 1-—q)k,, through the map u defined
by these sequence of steps. For example, if the circuit description for the X # X' case is same
as that for the X = X’ case, then the resultant memory update map is equivalent to the circuit
of Figure 9a which corresponds to performing a fixed measurement X’ = 0 on the initial state
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of M and a classical CNOT on the output wire of M controlled by the output wire of S’4. The
final state in that caseis (p 0 0 1—plp 0 0 1—plg 0 0 1—gqlg 0 0 1-q)%,,.

For higher dimensional systems S with n > 2 fiducial measurements, X € {0,...,n — 1} and
k > 2 outcomes taking values a € {0, ...,k — 1}, let b, and by be the number of bits required to
represent n and k in binary respectively. Then the memory M would be initialized to b copies
of the pure state P%’n = (1 0]..Jt 0)%; which contains n identical blocks (one for gach of the
n fiducial measurements). One can then perform the procedure of Figure 10 “bitwise!,combining
each output bit with one pure state of M and apply the same argument tolobtain theiresult.
For the specific case of the memory update transformation of Figure 9a, this would correspond

to a bitwise CNOT on the output wires of S and M. O

C.2  Two labs sharing initial correlations

So far, we have considered a single agent measuring a system in her lab. "We can also consider
situations where multiple agents jointly share a state and measure their local parts of the state,
updating their corresponding memories. One might wonder whether the initial correlations in
the shared state are preserved once the agents measure it to update their memories (clearly
the local measurement probabilities remain unaltered as we saw in thigisection). The answer is
affirmative and this is what allows us to formulate the Frauchiger-Renner paradox in box world
as done in the Section 4, even though a coherent copy analogous torthe quantum case does not
exist here.

Theorem 12 Suppose that Alice and Bob share an arbitrary bipartite state PZ]-;R (which may be
correlated), locally perform a fiducial measurement on théir half of the state and store the outcome
in their local memories A and B. Then theffinal joint state P‘;‘ﬁ of the systems A := PA and

B := RB as described by outside agents is isomorphic to PZ];LR with the systems A and B taking
the role of the systems P and R 1i.e., local memoryupdates by Alice and Bob preserve any
correlations initially shared between thems

Proof: In the following, we describe the proef for the case where the bipartite system shared
by Alice and Bob consists of 2 ghits, however, the result easily generalises to arbitrary higher
dimensional systems by the argument presented in the last paragraph of the proof of Theorem 11.
Let PPR be an arbitrary 2 ghit state with entries Py, (ab = ij|XY = kl) (i,7,k,1 € {0,1}),
which correspond to the joint pr&Qabilities of Alice and Bob obtaining the outcomes a = i and
b = j when measuring X =k and Y =1 on the P and R subsystems when sharing that initial
state. Let X', a’ € {0,1} and ¥',b' € {0,1} be the fiducial measurements and outcomes for the
memory systems A and(B (alsongbits) respectively. We describe the measurement and memory
update process for each agent separately and characterise the final state of Alice’s and Bob’s
systems and memoties after the process as would appear to outside agents who do not have
access to Alice and Bob’s measurement outcomes. This analysis does not depend on the order
in which Alice and Beb perform the measurement as the correlations are symmetric between
them, so withiout loss of generality, we can consider Bob’s measurement first and then Alice’s.
Suppose that/Bob’s memory B is initialised to the state P2 = PP = (1 0|1 0)%. Then
the joint nitial state of the Alice’s and Bob’s system and Bob’s memory as described by an
agent Wigner oudtside Bob’s lab is Pf-;RB = PﬁlR ® PP. This can be expanded as follows
where Pp(abl’ = ijk| XYY’ = Imn) represents the probability of obtaining the binary outcomes
a =1,b = 7,b/'=k when performing the binary fiducial measurements X = [.Y = m,Y’ = n on

4The. output wires of boxes carry classical information after the measurement.
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the initial state PLFB.

; ! — r_
JZZEZZI;’ _ gg?lﬁg; _ 888; Pin(ab = Ong Y = 00)
; /= r_
i:ézzz’ _ 81(1):§§; _ 888; Pin(ab = 03 |XY = 00)
; /= I
o 101Xy — 000 Palah = 1007 =40
' / — r_
iZEZZb)Z _ ﬂ?gi; _ 888; Pin(ab = 1(1) XY = 00)

o ' = ' (13)
e 000‘|XYY/ — P, (ab = 00}XY :\11)
e || N
i:EZZZ’ ; 011| XYY’ ; 111) Pinfab = OE'XY =11)

; /= r_
e oo Aty -
Py, (abl =110/ XYY’ = 111
PmEbe’ = 111:XYY’ = 111; o Pafab = 111XY =11) / 1y

PP1B has 8 blocks G xyy, one for each value of (X,Y,Y”)/and is a product state with 4 equal
pairs of blocks, Gy = Go51,Go10 = Goi1, Glog =.G161, G119 = G, since both measurements
on the initial state of B give the same outcome:

Now, the outside observer Wigner will describe the transformation on RB through the mem-

ory update map u of Figure 10. Let P?ﬁB be the final state that results by applying this map

to the systems RB in the initial state PfZRB »Any transformation on a system characterised by
n fiducial measurements with K outcomes each'can be represented by a nk x nk block matrix
where each block is a k x k matrix (see [3]| for further details), for the system RB, n =k = 4
and the memory update map ugp would be a 16 x 16 block matrix of the following form where

each wu;; is a 4 X 4 matrix. N

Uy |- - | U4

URB =

ugr | | U4/ pp

Here, the first rows decide the entries in the first block of the transformed matrix, the next 4,
the second block and so on.»Noting that the memory update transformation (Figure 10) merely
permutes _elements within the relevant blocks (and does not mix elements between different
blocks),/the only non-zero blocks of ugrp are the diagonal ones w;. Further, by the same
argument, as in Theorem 11, the only relevant entries in the transformed state are when the
same fiducialymeasurement is performed on Bob’s system R and memory B i.e., only cases
where Y =&’. The remaining measurement choices maybe arbitrary for the final state (just as
they are for X # X’ in Equation 11). This means that among the 4 diagonal blocks, only 2
of them are relevant. The 4 fiducial measurements on RB are Y'Y’ = 00,01, 10,11 and in that
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order, only the first and fourth are relevant since they correspond to Y = Y’. Within these
relevant blocks (in this case w11 and wuy4), the operation is a CNOT on the output &’ controlled
by the output b and we have the following matrix representation of the memory update map u
of Figure 107,

CN|0[O]| O 10 00
0 |«|/0] O 0100
URB = , CN = 14
e 0 |o]=] o0 0001 S 4
0 |0]0|CN /g 0 010
where 0 represents the 4 x 4 null matrix and blocks labelled * can be arbitrary. The final state
P]IfﬁB as seen by Wigner is then
1
0
PP = (Ip ® urp)P},/ " = (Ip ® ugs) [Pf;R & S T (15)
0 7%
where Zp is the identity transformation on the P system. Singe the /C'N blocks are the only
relevant blocks in uppg and each block of Pf;RB has the same pattern of non-zero and zero entries

(Equation 13), it is enough to look at the action of Zp@&@ CN on the first block Gi, of PLEB.
Noting that Zp is a 2 x 2 identity matrix, we have

. 4
1000 0 040 0 [ Punlab=00/XY = 00)
01000 000 0
000100 00 [ Pab=01XY = 00)
. 00 1 040m0..0 0 0 in
Tr@CN)GG0 = | 5 o o o 1% 00 Pin(ab = 10|XY = 00) = G
00440 00 1 0po 0
00 00.0 00 1 || Puab=11XY = 00)
000 000 10 0
Pifab =00/ XY = 00) Ppin(abb’ = 000| XYY" = 000)
0 Ppin(abb! = 001| XYY" = 000)
0 Ppin(abb’ = 010 XYY" = 000)
P (@=011XY =00) | | Ppin(abl! = 011| XYY" = 000)
<ob Piatal=10|XY = 00) | | Ppin(abll =100|XYY’ =000) |’
0 Pjin(abl! = 101|XYY" = 000)
0 Ppin(abl! = 110[ XYY" = 000)
Pin(ab = 11|XY = 00) Ppin(abl = 111| XYY" = 000)

where Py, (abt’ =1jk| XYY" = Imn) represents the probability of obtaining the outcomes
a = i,bf= j,b' =k when performing the fiducial measurements X = .Y = m,Y’ = n on
the final state PJ};};B and G(J;ég is the first block of this final state. Clearly the only non-zero
outgome probabilities are when b = o’ and this allows us to compress the final state by defining

1The memory update map corresponding to the circuit of Figure 9a is a specific case of this map where the
arbitrary blocks * are also equal to CN
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b=ie b= =iforic {0,1} and we have the following.

Pin(ab = 00|XY = 00 Pfin(ab = 00| XYY’ = 000)
Pin(ab=01|XY = 00 Pyin(ab=01|XYY’ = 000

(Zp ® CN)Gpo = in(@ . | . fm(a~ | ; ) GOO
Pin(ab=10|XY = 00 Pfin(ab = 10| XYY’ = 000)
Pin(ab = 11|XY =00 Pfi(ab = 11| XYY’ = 000)

Here

06 1s the first block of the initial state Pf;R and we have that the first block of the. final

state of PRB is equivalent (up to zero entries) to the first block of the initial state over PR alone

or GJi" — Gin. Among the 8 blocks of PLRP only the 4 blocks Glin glin glitand G are the
relevant ones (since Y = Y for these) and we can similarly show that G ='@Gin Glin = Gin
and G{ﬁl = G for the remaining 3 relevant blocks. Defining Y =i < Y/= Y’ = ifori € {0,1},
we obtain

~

Pjin(ab = 00| XY = 00) Py (ab = 00/ XY = 00)

Pjin(ab = 01| XY = 00) Py (ab = 01| XY £00)

Pjin(ab = 10| XY = 00) Py (ab=10| X Y. = 00)

Pjin(ab = 11| XY = 00) Piq(ab= 11pXY = 00)

Pjin(ab = 00| XY = 01) Py (ab =00/XY = 01)

Pjin(ab = 01| XY = 01) Pinlab = 01| XY = 01)

Pjin(ab = 10| XY = 01) Pin(ab 10/ XY = 01)
prRE _ prE — Prin(ab = 11|XY = 01) Pin(ab = 11|XY = 01) _pPR (16)

Pjin(ab = 00| XY = 10) Byi(ab = 00| XY = 10)

Pjin(ab = 01| XY = 10) Pin(ab = 01|XY = 10)

Pjin(ab = 10| XY = 10) Pin(ab = 10| XY = 10)

Pjin(ab = 11| XY= 10) Piu(ab = 11|XY = 10)

Pjin(ab = 00| XY =11 Pin(ab = 00| XY = 11)

Ppin(ab =01 XY = 11) Piu(ab = 01|XY = 11)

Pjin(ab = 40| XY = 11) Piu(ab = 10|XY = 11)

Ppin(ab = 11| XY =11) Py (ab=11|XY = 11)

N

PPB

Equation 16 shows that final state . of Alice’s system P, Bob’s system R and Bob’s memory

B after Bob’s local memory update/is isomorphic to the initial state PfZR shared by Alice and
Bob, having the same outcome Pprobabilities as the latter for all the relevant measurements.
Thus the initial correlations present in PZR are preserved after Bob locally updates his memory
according to the update procedure of Figure 10. One can now repeat the same argument for
Alice’s local memory: update taking P fm®(1 0]1 0)7 to be the initial state and by analogously
defining § = i &8 = §\.=4 for s € {a, X },i € {0,1}, we have the required result that the final
state after both parties perform their local memory updates (as described by outside agents
Ursula and Wigner) is/isomorphic and operationally equivalent to the initial state shared by the
parties béfore the memory update.

P]]‘DiszB szn = PPR (17)

O
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D Quantum measurements in GPT language

In the PR box analysis, we encounter a peculiarity which is specific to measurement procedures
in GPTs: the box “disappears” after it is measured. This can become a problem when, during the
course of the experiment, the observer measuring the box has to be measured together with the
box. This is the case in the original Frauchiger-Renner thought experiment. However ¢this issue
can in principle be avoided, if one adapts the description of the experiment to the mentioned
peculiarity: as soon as the agent measures the box, and it subsequently disappears, she prepares
a new box for the observer on the outside to measure. For example, when Alicenmeasures the
box P, she can not only prepare a box R, for Bob to measure (Figure 11a)§ but alse one for
Wigner, meant to contain correlations of the Bob’s lab (Figure 11c¢). Similarlyy from Bob’s point
of view, he prepares a box PAj; for Ursula to measure (Figure 11b); andgfinally,;as seen from
the outside, Ursula and Wigner measure boxes PA;, and RB,, prepared for them by Bob and
Alice (Figure 11d).

f I

P j R T
R, PA4,

a i ’b i
b

(b) Bob’s viewpoint: Bob measures the box R

(a) Alice’s viewpoint: Alice measures the box and prepares a box PA, for Ursula to

P and prepares a box R, for Bob to measure.

measure.
z
l X X
P ’j | |
BB PAERB
a l l i
u w
w

(d) Ursula’s and Wigner’s viewpoints: they

(c) Alice’s viewpoint: after measuring the box measure boxes PA and RB respectively.

P, she also prepares a box, RB, for Wigner to
measure.

Figure 11: Viewpoints of different agents for quantum measurements in GPTs.
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