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School of Mathematics, University of Leeds

May 15, 2020

Abstract

By considering the closure property of a Lagrangian multiform as a conservation law, we use Noether’s
theorem to show that every variational symmetry of a Lagrangian leads to a Lagrangian multiform. In
doing so, we provide a systematic method for constructing Lagrangian multiforms for which the closure
property and the multiform Euler-Lagrange (EL) both hold. We present three examples, including the
first known example of a Lagrangian 3-form: a multiform for the Kadomtsev-Petviashvili equation. We
also present a new proof of the multiform EL equations for a Lagrangian k-form for arbitrary k.

1 Introduction

When considering integrable systems, a key weakness of the conventional Lagrangian description is that
it does not capture multidimensional consistency - the fact that the equations of motion can be seen
as members of a hierarchy of compatible equations which can be simultaneously imposed on the same
dependent variables. A classical Lagrangian functional will only provide one single equation of the motion
per component of the system, with no clear connection to the other equations of the hierarchy. This
weakness was overcome in the paper [1] where it was proposed to extend the scalar Lagrangian

L (x, u(n))dx1 ∧ . . . ∧ dxk, (1.1)

a volume form on a k-dimensional base manifold, to a differential k-form

L =
∑

1≤i1<...<ik≤N

L(i1...ik)(x, u
(n)) dxi1 ∧ . . . ∧ dxik . (1.2)

on aN dimensional base manifold with k < N1. We use the notation u(n) to represent u and its derivatives
up to the nth order. This led to the introduction of a new notion of a Lagrangian multiform, where the
multidimensional consistency manifests itself by the action

S[u;σ] =

∫

σ

L(x, u(n)) (1.3)

having a critical point u, such that u is simultaneously a critical point for every choice of the surface of
integration σ, and also that the action S is invariant with respect to interior deformations of the surface
of integration. The first of these conditions is equivalent to the requirement that δdL = 0 and defines the
equations of motion known as the multiform Euler-Lagrange equations2. The second of these conditions
gives us the closure relation that, on the equations of motion, dL = 0 (this follows from Stokes’ theorem).
We shall call a differential form L of the type given in (1.2) a Lagrangian multiform if dL = 0 on the
equations defined by δdL = 0. If the solution u defined by δdL = 0 is the zero function, or dL = 0 for any
u we consider our multiform to be trivial.

The full form of the multiform Euler-Lagrange equations for a Lagrangian k-form is given in Appendix
A. These equations require that the usual EL equations hold for each coefficient L(i...j) of the multiform
as well as additional relations between the different coefficients.

1Note that in principle we are often working in an arbitrary number of dimensions, determined by the number of flows of a
given integrable hierarchy that we include in our multiform.

2See (A.11) for an explanation of this notation.
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Remark 1.1. We shall often use the notation L(i...j) to represent the coefficient of dxi ∧ . . . ∧ dxj in a
Lagrangian multiform L (e.g. L(123) would be the coefficient of dx1 ∧ dx2 ∧ dx3). We need only define
the L(i...j) in the case where i < . . . < j. We then define the L(i...j) for other permutations of indices by
the convention that they are anti-symmetric. There are examples of Lagrangian multiforms, such as those
given in [1], [2] and [3], where there is a natural covariance and anti-symmetry built into the structure
such that it is automatic that L(ij) = −L(ji). In the case where we are considering an N − 1 form
on an N dimensional base manifold, we shall also use the notation L(̄i) to represent the coefficient of
dxi+1 ∧ . . . ∧ dxN ∧ dx1 ∧ . . . ∧ dxi−1, i.e. where the dxj’s appear in cyclic order and dxi is removed.

A major difficulty in studying Lagrangian multiforms (particularly when working with Lagrangians that
are not naturally covariant) is the construction of the components L(i...j), even for known integrable
classical field theories. This problem has attracted attention previously, e.g. in [4]. In this paper, we
introduce a new method to answer this problem based on the use of variational symmetries and Noether’s
theorem [5]. We note that the connection between Noether’s theorem and Lagrangian multiforms was
first explored in [6], and extended in [7] where a systematic method of constructing Lagrangian 1-forms
from variational symmetries was given for systems in classical mechanics. In this paper, we deal with field
theories in 1+1 and, for the first time 2+1 dimensions. Because we require that dL = 0 on the equations
of motion, we are able to consider this as a conservation law and use Noether’s theorem [5] to relate this
to variational symmetries of the components L(i...j) of our multiform. This provides us with a systematic
means of constructing Lagrangian multiforms (of any order). In Section 2 we give a brief overview of
variational symmetries, and Noether’s theorem. In Section 3, we present our new results along with three
examples, including a multiform for the first two flows of the K-P hierarchy - the first ever example of
a continuous 2 + 1 dimensional Lagrangian multiform. In Appendix A, we provide a new proof of the
multiform Euler-Lagrange equations for a Lagrangian k-form, which were first derived in [8].

2 Variational symmetries and Noether’s theorem

In this section, we shall make use of a version of Noether’s (first) theorem as presented in [9], where
proofs of all statements in this section can be found. We consider systems with p independent variables
x = (x1, . . . , xp) and q dependent variables u = (u1, . . . , uq)T . In the rest of this paper, we will often use
u to denote the collection of fields u1, . . . , uq or the vector (u1, . . . , uq)T .

2.1 Generalized and evolutionary vector fields

We consider vector fields of the form

v =

p
∑

i=1

ξi
∂

∂xi

+

q
∑

α=1

φα

∂

∂uα
(2.1)

We say that v is a geometric vector field if the ξi and φα depend only on x and u. If the ξi and φα

depend also on derivatives of u, we say that v is a generalized vector field. If all of the ξi are zero, i.e.

vQ =

q
∑

α=1

Qα

∂

∂uα
≡ Q ·

∂

∂u
, (2.2)

we call vQ an evolutionary vector field with characteristicQ(x, u(n)) = (Q1(x, u
(n)), . . . , Qq(x, u

(n)))T ,
where Q(x, u(n)) is taken to mean that Q may depend on x, u and derivatives of u. The prolongation of
an evolutionary vector field vQ takes the form

prvQ =
∑

α,J

DJ Qα

∂

∂uα
J

(2.3)

where we have used the multi-index notation where J is the ordered set (j1, . . . , jp) and

DJ :=

p
∏

i=1

(Dxi
)ji , Dxi

=
∂

∂xi

+
∑

α,J

uα
Ji

∂

∂uα
J

. (2.4)

We shall write Jir to denote (j1, . . . , ji+r, . . . , jp), J\k
r to denote (j1, . . . , jk−r, . . . , jp) and |J | to denote

the sum j1 + . . .+ jp.

Every vector field v in the form of (2.1) has an associated evolutionary representative vQ where
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Qα = φα −

p
∑

i=1

ξiu
α
xi

(2.5)

2.2 Variational symmetries

The vector field v is a variational symmetry of a Lagrangian L (x, u(n))dxi ∧ . . . ∧ dxj if and only if

prv(L ) + L Div ξ = DivB (2.6)

for some B(x, u(n)) = (B1(x, u
(n)), . . . , Bp(x, u

(n)))T . For an evolutionary vector vQ, this simplifies to

prvQ(L ) = Div B̃ (2.7)

for some B̃(x, u(n)) = (B̃1(x, u
(n)), . . . , B̃p(x, u

(n)))T . A generalized vector field v is a variational sym-
metry of L if and only if its evolutionary representative vQ is.

Finding the variational symmetries of a given Lagrangian is a non-trivial exercise. Methods for doing so
are covered in [9], [10], [11] and [12]. In our approach, we assume that such a variational symmetry is
given (by applying one of those methods for instance) and we use it as our starting point to construct a
Lagrangian multiform.

2.3 Noether’s theorem

In order to introduce Noether’s theorem, we will require the Euler operater E. We define the Euler
operator E to be the q-component vector operator whose αth component is Eα given by

Eα =
∑

J

(−1)|J|DJ

∂

∂uα
J

(2.8)

The sum is over all multi-indices J = (j1, . . . , jp). For a Lagrangian L , E(L ) = 0 gives the standard
Euler Lagrange equations for L . For example, in the case where p = 2, q = 1 and L contains terms up
to the 2nd jet,

E(L ) =
∂L

∂u
−Dx1

∂L

∂ux1

−Dx2

∂L

∂ux2

+D2
x1

∂L

∂ux1x1

+Dx1
Dx2

∂L

∂ux1x2

+D2
x2

∂L

∂ux2x2

. (2.9)

We say that the equations of motion given by E(L ) = 0 are of maximal rank if the q × (p + q
(

p+n
n

)

)
Jacobian matrix

JE(L ) =

(

∂ Ei(L )

∂xj

,
∂ Ei(L )

∂uα
J

)

(2.10)

is of rank q (i.e. of maximal rank) on the equations of motion given by E(L ) = 0.

Theorem 2.1. [Noether] Let vQ be an evolutionary vector field with characteristic Q and L a La-
grangian density, such that E(L ) is of maximal rank. Then,

pr vQ(L ) = DivB(x, u(n)) for some B ⇐⇒ Q · E(L ) = Div P for some P (x, u(n)) . (2.11)

where Q · E =

q
∑

α=1

Qα Eα.

The right hand side of (2.11) is the characteristic form of a conservation law. Since setting E(L ) = 0
defines the equations of motion, this tells us that DivP = 0 on the equations of motion - the usual form
of a conservation law.

3 Variational symmetries as Lagrangian multiforms

In this section, we shall take the well known results of the previous section, and apply them in the context
of Lagrangian multiforms. We consider the Lagrangian density L on a manifold with p independent,
and q dependent variables from the previous section. In order to be able to apply Noether’s theorem,
we require that the corresponding EL equations E(L ) = 0 are of maximal rank. If we introduce a new

independent variable xp+1, independent of x1, . . . , xp, and the vector field w = uxp+1
·
∂

∂u
then
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prw(L ) = Dxp+1
L . (3.1)

Also, by reversing the integration by parts that was used to get from L to E(L ) it follows that

uxp+1
· E(L ) = Dxp+1

L +DivA (3.2)

for some A, where the xp+1 component of A is zero. If Q is the characteristic of a variational symmetry
of L then Noether’s theorem tells us that

Q · E(L ) = DivP (3.3)

for some P . Adding (3.2) and (3.3) gives us that

(uxp+1
+Q) · E(L ) = Div P̃ (3.4)

where P̃ = A+P so the xp+1 component of P̃ is L . We use this idea to construct Lagrangian multiforms
as follows.

Theorem 3.1. Let Q(x, u(n)) be the characteristic of a variational symmetry of the Lagrangian density
L (x, u(n)) such that L and Q have no dependence on xp+1 or derivatives of u with respect to xp+1. If

Q̃ = uxp+1
+Q then

Q̃ · E(L ) = DivP (3.5)

for some P = (P1, . . . Pp, Pp+1)
T , and the p-form L such that

L =

p+1
∑

i=1

L(̄i)dxi+1 ∧ . . . ∧ dxp+1 ∧ dx1 ∧ . . . ∧ dxi−1 with L(̄i) = (−1)ipPi (3.6)

is a Lagrangian multiform. The p+ 1 component of P is equivalent (i.e. equal modulo total derivatives)
to L .

Proof. The existence of a P that satisfies (3.5) and has L as its p+ 1 component follows from the
introduction to this section, equations (3.1) to (3.4). Since Q is a symmetry of E(L ) we know that the
equations Q̃ = 0 and E(L ) = 0 are compatible in the sense that there exists a general common solution.
Then

dL = (−1)p DivP dx1 ∧ . . . ∧ dxp+1, (3.7)

and it follows that δdL = 0 is equivalent to the requirement that

∂

∂uI

DivP = 0 ∀I. (3.8)

Using (3.5), this gives us that

∂

∂uI

Div P =

(

∂

∂uI

Q̃

)

· E(L ) + Q̃ ·

(

∂

∂uI

E(L )

)

, (3.9)

and since E(L ) is of maximal rank (a requirement for Noether’s theorem), the necessary and sufficient
condition for δdL = 0 is that both Q̃ = 0 and E(L ) = 0 hold simultaneously. From the form of (3.5), it
is clear that dL = 0 on solutions of either Q̃ = 0 or E(L ) = 0.

Remark 3.2. Theorem 3.1 allows us to construct a p + 1 dimensional Lagrangian multiform from a
Lagrangian in p dimensions and a single variational symmetry. It is natural to consider whether, in the
case where we have a set of l commuting variational symmetries, we can iterate the process to find a p+ l

dimensional Lagrangian multiform, as was achieved for a class of 1-forms in [7]. In Section 3.3 we use
Theorem 3.1 to obtain a multiform that incorporates the first three flows of the AKNS hierarchy. We
also show why, in the case of a Lagrangian 2-form, it is always possible to obtain a 2 + l dimensional
Lagrangian 2-form from an autonomous polynomial Lagrangian L(12) and a set of l commuting variational
symmetries with autonomous polynomial characteristics. A similar argument can be used for autonomous
polynomial k-forms for arbitrary k. Whether or not non-autonomous, non-polynomial systems can be
extended through repeated application of Theorem 3.1 remains an open problem.
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We note that P is not unique. Indeed, any change to P that is equivalent to adding an exact form to L
will also satisfy (3.5). In addition, we can perform “integration by parts” on the left hand side of (3.5)
and the remaining terms will still be a divergence, e.g.

Q̃ · E(L ) → −Dx Q̃ ·D−1
x E(L ) and Div P → Div P̃ = Div P −Dx(Q ·D−1

x E(L )). (3.10)

Such a transformation amounts to adding a double zero to one of the components of P so the resultant
Lagrangian multiform will be essentially the same in that δdL = 0 will give the same equations of motion,
and dL = 0 will still hold on these equations of motion. This idea can be generalized further by noticing
that the “integration by parts” can be carried out on any constituent part of Q̃ · E(L ), e.g.

Q̃i Ei(L ) → −Dx Q̃i D
−1
x Ei(L ), (3.11)

whilst leaving the resultant multiform essentially unchanged. The Q̃ in (3.5) is in evolutionary form with
respect to xp+1 i.e. it is in the form uxp+1

+ Q(x, u(n)) = 0 where Q(x, u(n)) does not contain xp+1 or
derivatives of u with respect to xp+1. If, by using the above operations we are able to put E(L ) into
evolutionary form with respect to some xj , and neither xj nor derivatives of u with respect to xj appear

in Q̃ then we can reverse the roles of Q̃ and E(L ) whilst essentially leaving the resultant multiform
unchanged. This idea forms the basis of the following theorem.

Theorem 3.3. Consider the Lagrangian and variational symmetry as given in Theorem 3.1 and let
j ∈ {1, . . . , p} be fixed. If there exist constants ak and multi-indices Jk for k = 1, . . . , q where the p+ 1
and j components of each Jk are zero, such that

ak D
−1
Jk

Ek(L ) = 0 (3.12)

is in evolutionary form with respect to xj, then the q components of E(L(j̄)), up to re-ordering, are
precisely the q expressions

1

ak
DJk

Q̃k. (3.13)

Proof. If there exist multi-indices Jk and constants ak as described that put E(L ) into evolutionary form
with respect to xj , then applying ak D

−1
Jk

to Ek(L ) and 1
ak

DJk
to Q̃k in (3.5) amounts to performing

integration by parts on the products Q̃k Ek(L ), i.e.

1

ak
DJk

Q̃k.ak D
−1
Jk

Ek(L ) = Q̃k Ek(L ) + DivCk (3.14)

for some Ck. We note that the j and p+ 1 components of Ck are zero since the j and p+ 1 components
of each Jk are zero. It follows that

q
∑

k=1

1

ak
DJk

Q̃k.ak D
−1
Jk

Ek(L ) = Div P̂ (3.15)

where P̂ = P +
∑q

k=1 Ck. Now that each ak D
−1
Jk

Ek(L ) is in evolutionary form, it follows from Noether’s

theorem that the corresponding characteristics represent variational symmetries of 1
ak

DJk
Q̃k, and by

Theorem 3.1, L(j̄) is the Lagrangian for 1
ak

DJk
Q̃k, k = 1, . . . , q.

It follows that the multiforms described by P and P̂ in theorems 3.1 and 3.3 both have L(j̄) and L as
their j and p+ 1 components respectively, since the j and p+ 1 components of each Ck are zero.

3.1 The “zero” symmetry

Every Lagrangian multiform we know of that has been considered up to this point has related to inte-
grable system. However, it is not the case that Lagrangian multiforms only exist for integrable systems,
since Theorem 3.1 applies to any Lagrangian with a variational symmetry. In fact, it turns out that every
variational equation has at least one Lagrangian multiform description.

Using our construction, the requirements for a Lagrangian multiform are a Lagrangian density L (x, u(n))
and a variational symmetry v. It is trivially true that the zero vector (i.e. vQ where Q = 0) is a symmetry

of every Lagrangian since vQ(L ) = 0. Letting Q̃ = uxp+1
+Q = uxp+1

, it follows that
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Q̃ · E(L ) = DivP (3.16)

for some P , and it follows from Theorem 3.1 that P describes a Lagrangian multiform. Therefore every
Lagrangian, regardless of integrability, fits into at least one Lagrangian multiform description.

Remark 3.4. This particular multiform could reasonably be described as semi-trivial, in that one of the
equations of motion is simply uxp+1

= 0. However, it does have a practical application relating to the
inverse problem of finding a Lagrangian (if it exists) for a given equation of motion. Also, the relation

E(P ·Q) = D∗
P (Q) + D∗

Q(P ), (3.17)

as given in [9] (where DP (Q) is the Fréchet derivative of P acting on Q and D∗
P is the adjoint of DP )

can be applied to (3.16) in the case where Q̃ = uxp+1
to derive the condition (also given in [9]) that an

equation has a Lagrangian description if and only if its Fréchet derivative is self adjoint.

Since we can apply Theorem 3.1 with any variational symmetry, many Lagrangians can fit into more
that one Lagrangian multiform description. For example, if a given Lagrangian possesses time/space shift
symmetries and rotational symmetries then we can obtain a Lagrangian multiform for each. However,
unless the symmetries themselves describe mutually commuting flows, we cannot expect it to be possible
to connect these multiforms descriptions to each other in any coherent way (i.e. as we are able to do
in the case of the AKNS multiform in section 3.3). The latter point emphasises the distinction between
multiforms as just described, and multiforms carrying information about the integrability of the equations
of motion, which was the original intent of the notion of Lagrangian multiforms.

Next, we shall give three examples of constructing Lagrangian multiforms from variational symmetries. All
three systems considered come from well known integrable hierarchies - this simplifies the task of finding
variational symmetries, since the required symmetries are other equations taken from the respective
hierarchies.

3.2 The sine-Gordon equation

The sine-Gordon equation, ux1x2
= sinu with Lagrangian density

L(12) =
1

2
ux1

ux2
− cosu (3.18)

and variational symmetry Q = u3x1
+ 1

2u
3
x1

is given as an example in [9]. We can confirm that Q is a
variational symmetry of L by checking that prvQL = DivP for some P . Indeed, we find that

prvQL =
1

2
(u4x1

+
3

2
u2
x1
ux1x1

)ux2
+

1

2
(u3x1x2

+
3

2
u2
x1
ux1x2

)ux1
+ (u3x1

+
1

2
u3
x1
) sinu

=Dx1
(
1

2
ux1

ux1x1x2
−

1

2
ux1x1

ux1x2
+

1

2
ux1x1x1

ux2
+

1

4
u3
x1
ux2

+ ux1x1
sinu−

1

2
u2
x1

cosu)

+ Dx2
(
1

8
u4
x1
).

(3.19)

We now let Q̃ = ux3
−Q. In this case, Q̃ = 0 is precisely the modified KdV equation which is known to

be compatible with the sine-Gordon equation. By Theorem 3.1, the product

Q̃ · E(L ) = (ux3
− u3x1

−
1

2
u3
x1
)(sinu− ux1x2

) = DivP, (3.20)

i.e. it is a divergence. If we write this product in terms of the components of P we find that

P =





− 1
2ux2

ux3
+ ux1x1

ux1x2
− ux1x1

sinu+ 1
2u

2
x1

cosu
− 1

2ux1
ux3

− 1
2u

2
x1x1

+ 1
8u

4
x1

1
2ux1

ux2
− cosu



 =





L(23)

L(31)

L(12)



 (3.21)

satisfies (3.20), and is precicely the Lagrangian multiform for the sine-Gordon equation that was given in
[6].
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3.3 The AKNS multiform

The first two flows of the AKNS hierarchy [13] were shown to possess a Lagrangian multiform structure
in [3]. The L(x1x2) and L(x3x1) AKNS Lagrangians, (see e.g. [14]) are as follows:

L(12) =
1

2
(rqx2

− qrx2
) +

i

2
qx1

rx1
+

i

2
q2r2 , (3.22)

and

L(31) =
1

2
(qrx3

− rqx3
) +

1

8
(rx1

qx1x1
− qx1

rx1x1
) +

3

8
qr(rqx1

− qrx1
) , (3.23)

giving equations of motion

rx2
= −

i

2
rx1x1

+ ir2q , (3.24)

qx2
=

i

2
qx1x1

− iq2r (3.25)

corresponding to the two components of E(L(12)) = 0, and

rx3
=

3

2
rqrx1

−
1

4
rx1x1x1

, (3.26)

qx3
=

3

2
qrqx1

−
1

4
qx1x1x1

, (3.27)

corresponding to the two components of E(L(31)) = 0. It is straightforward (but time consuming) to
check that

vQ = (
3

2
qrqx1

−
1

4
qx1x1x1

)
∂

∂q
+ (

3

2
rqrx1

−
1

4
rx1x1x1

)
∂

∂r
(3.28)

is a variational symmetry of L(12). In order to apply Theorem 3.1 we define

Q̃ =

(

qx3

rx3

)

−Q (3.29)

and it follows that

Q̃ · E(L(12)) =





qx3
− 3

2qrqx1
+ 1

4qx1x1x1

rx3
− 3

2rqrx1
+ 1

4rx1x1x1



 ·





−rx2
− i

2rx1x1
+ ir2q

qx2
− i

2qx1x1
+ iq2r



 = Div P (3.30)

for some P. We find that

P =





L(23)

L(31)

L(12)



 (3.31)

with

L(23) =
1

4
(qx2

rx1x1
− rx2

qx1x1
)−

i

2
(qx3

rx1
+ rx3

qx1
) +

1

8
(qx1

rx1x2
− rx1

qx1x2
) +

3

8
qr(qrx2

− rqx2
)

−
i

8
qx1x1

rx1x1
+

i

4
qr(qrx1x1

+ rqx1x1
)−

i

8
(q2r2x1

+ r2q2x1
) +

i

4
qrqx1

rx1
−

i

2
q3r3.

(3.32)

and L(12) and L(31) as given in (3.22) and (3.23) will satisfy (3.30). This gives us the Lagrangian
multiform

L = L(12) dx1 ∧ dx2 + L(23) dx2 ∧ dx3 + L(31) dx3 ∧ dx1, (3.33)

for which dL = 0 and δdL = 0 as expected. This 3-component multiform was first derived in [3]. We
now follow a similar procedure to find the L(14), L(24) and L(34) Lagrangians of the AKNS multiform,
illustrating how our construction can be used to go beyond the first few terms in a Lagrangian multiform
to include the higher flows of an integrable hierarchy. For the AKNS case, this means that we want to
include the flow corresponding to the independent variable x4 to produce the Lagrangian multiform

L1234 = L(12) dx1∧ dx2+L(13) dx1∧ dx3+L(14) dx1∧ dx4+L(23) dx2∧ dx3+L(24) dx2∧ dx4+L(34) dx3∧ dx4

(3.34)
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In order to find the L(14), L(24) and L(34) we require our Q̃ to represent the x4 flow of the hierarchy, i.e.

Q̃4 =





qx4
+ i(34q

3r2 − 1
4q

2rx1x1
− 1

2qqx1
rx1

− qrqx1x1
− 3

4rq
2
x1

+ 1
8q4x1

)

rx4
− i(34q

2r3 − 1
4r

2qx1x1
− 1

2rqx1
rx1

− qrrx1x1
− 3

4qr
2
x1

+ 1
8r4x1

)



 . (3.35)

The components of Q̃4 are obtained by using the recursive procedure given in [15]. Theorem 3.1 tells us
that

Q̃4 · E(L(12)) = Div P 124 (3.36)

where the components of P 124 (with respect to x1, x2 and x4) are found to be

P 124
4 =

1

2
(rqx2

− qrx2
) +

i

2
qx1

rx1
+

i

2
q2r2, (3.37a)

P 124
2 =

1

2
(qrx4

− rqx4
) +

3i

16
(q2r2x1

+ r2q2x1
) +

i

4
qrqx1

rx1
+

5i

16
qr(qrx1x1

+ rqx1x1
)

−
i

8
qx1x1

rx1x1
−

i

4
q3r3

(3.37b)

and

P 124
1 =

3

8
q2r2(rqx1

− qrx1
)−

i

16
(q2rx1

rx2
+ r2qx1

qx2
)−

5i

16
qr(qrx1x2

+ rqx1x2
)

−
1

8
qr(rq3x1

− qr3x1
)−

1

8
(q2rx1

rx1x1
− r2qx1

qx1x1
)−

1

8
qx1

rx1
(rqx1

− qrx1
)

1

4
qr(rx1

qx1x1
− qx1

rx1x1
) +

3i

8
qr(qx1

rx2
+ rx1

qx2
)−

i

8
(q3x1

rx2
+ r3x1

qx2
)

+
1

16
(q3x1

rx1x1
− r3x1

qx1x1
) +

i

8
(qx1x1

rx1x2
+ rx1x1

qx1x2
)−

i

2
(qx1

rx4
+ rx1

qx4
).

(3.37c)

We can now recognize P 124
4 = L(12) and we set P 124

2 = L(41) and P 124
1 = L(24), consistently with

Theorem 3.1. From the construction of the coefficients, it follows immediately that for the multiform

L124 = L(12) dx1 ∧ dx2 + L(24) dx2 ∧ dx4 + L(41) dx4 ∧ dx1, (3.38)

the multiform EL equations are satisfied when both E(L(12)) = 0 and E(L(41)) = 0, and that dL124 = 0
on these equations of motion.

To produce the rest of the coefficients needed for L1234, we now use the same Q̃4 together with L(13) to
define P 134 such that

Q̃4 · E(L(13)) = DivP 134 . (3.39)

Then we find that the components of P 134 (with respect to x1, x3 and x4) are such that P 134
4 = L(13) =

−L(31) given in (3.23), as expected from Theorem 3.1,

P 134
1 ≡ L(34) =

i

8
(qx1x1

rx1x3
+ rx1x1

qx1x3
)−

i

8
(q3x1

rx3
+ r3x1

qx3
)−

i

32
q3x1

r3x1

+
i

32
(q2r2x1x1

+ r2q2x1x1
) +

i

32
q2x1

r2x1
+

3

8
qr(rqx4

− qrx4
) +

9i

32
q4r4

−
3i

16
q2r2(qrx1x1

+ rqx1x1
)−

i

16
(q2rx1

rx3
+ r2qx1

qx3
)−

5i

16
qr(qrx1x3

+ rqx1x3
)

+
1

4
(qx1x1

rx4
− rx1x1

qx4
) +

3i

16
qr(qx1

r3x1
+ rx1

q3x1
) +

i

16
qrqx1x1

rx1x1

−
i

16
qx1

rx1
(qrx1x1

+ rqx1x1
)−

15i

16
q2r2qx1

rx1
+

3i

8
qr(qx1

rx3
+ rx1

qx3
)

−
1

8
(qx1

rx1x4
− rx1

qx1x4
) ,

(3.40)

and P 134
3 = L(41) - identical to the L(41) previously identified as P 124

2 , given in (3.37b). Again, from the
construction of the coefficients, it follows immediately that for the multiform

L134 = L(13) dx1 ∧ dx3 + L(34) dx3 ∧ dx4 + L(41) dx4 ∧ dx1, (3.41)

the multiform EL equations are satisfied when both E(L(13)) = 0 and E(L(41)) = 0, and also that
dL134 = 0 on these equations of motion. We are now able to form the 6 component Lagrangian multi-
form L1234 given in (3.34) and, as we would hope, the multiform EL equations are all consequences of
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E(L(1i)) = 0 for i ∈ {2, 3, 4}, and dL1234 = 0 on these equations. Therefore, in this case, we were able
to incorporate two commuting variational symmetries to extend our multiform, but will this always be
possible? Inspired by the AKNS example we have just carried out, we now examine this problem in the
case where the L(12) Lagrangian and variational symmetry characteristics are autonomous polynomials
in the field variables and their derivatives.

Given that each L1ij is determined from dL1ij , we have the freedom to add any exact 2-form to L1ij

without affecting the multiform structure. As a result, the L(1i),L(ij) and L(j1) we obtain are not
uniquely defined; this fact holds added significance when extending our multiform to include more
than one commuting symmetry. When forming L123, any choice of L(12),L(23) and L(31) such that

dL123 = Q̃ · E(L(12))dx1 ∧ dx2 ∧ dx3 will give us a valid multiform. When we then form L124, we now
require that the L(12) is exactly the same as the one in L123. This is not a problem, since we will always
be able to make it so by adding an appropriate exact 2-form to L124. Similarly, when we come to form
L134, it will always be possible to get the same L(13) that was obtained in L123 by adding an appropriate
exact 2-form. However, it is not entirely obvious that the L(14) obtained at this stage will be exactly the
same as the one in L124. If the two L(14) components were to differ by a total x4 derivative then it would
not be possible to correct this by adding an exact 2-form without also changing L(13), which we don’t
want to do because it is already in the form we require.

In the case of a 2-form where L(12) contains only x1 and x2 derivatives of u, it follows from the form
of dL12i, as given by Theorem 3.1, that the resulting L(i1) Lagrangian need only contain first order
derivatives of u with respect to xi and no products of xi derivatives of u. This is because, when applying
Theorem 3.1 to obtain dL12i, the only xi derivatives of u that appear come from

uxi
· E(L(12)). (3.42)

When reversing the integration by parts that was used to obtain E(L(12)) from L(12), this becomes

Dxi
L(12) +Dx1

A1 +Dx2
A2 (3.43)

for some A1 and A2, and since all integration by parts was with respect to x1 and x2, A1 and A2 do not
contain 2nd or higher order derivatives with respect to xi, or products of xi derivatives of u. This, in
conjunction with the multiform EL equations, in particular those of the form

δL(12)

δux2

=
δL(1i)

δuxi

(3.44)

for i > 1, where
δL(ij)

δuI

=

∞
∑

q,r=0

(−1)q+r Dq
xi
Dr

xj

∂L(ij)

∂uIiqjr
(3.45)

tells us that, modulo total x1 derivatives, all L(1i) for i > 2 are of the form

δL(12)

δux2

uxi
+ Fi (3.46)

where Fi is some function that has no direct dependence on xi derivatives of u. This guarantees that,
for example, the L(14) coming from L134 can be made to coincide with the one coming from L124.

There is also the question of whether the multiform EL equations and closure relation that relate to dL234

will be satisfied on the equations of motion relating to L(12),L(13) and L(14). To show that this is the
case, we follow a similar argument to the one given in [16]. Once all of the L(1i)’s are consistently defined,
we can form L1234 and it follows from

d
2(L1234) = 0 (3.47)

and the form of dL123, dL124 and dL134 in terms of the L(ij) that

Dx1
(Dx2

L(34) −Dx3
L(24) +Dx4

L(23)) (3.48)

has a double zero on the equations of motion. Then, since each L(ij) is an autonomous polynomial, it
follows that dL234 also has a double zero on the equations of motion, so all of the required relations will
be satisfied. This argument can then be used iteratively to further extend the multiform to include higher
flows relating to additional commuting variational symmetries. It is also possible to extend this argument
to the case of autonomous polynomial systems in higher dimensions, but it remains an open problem to
extend this argument to non-autonomous, non-polynomial systems.
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3.4 The KP multiform

In this section, we shall construct a Lagrangian multiform for the Kadomtsev-Petviashvili (KP) equation
[17]. This is the first example of a Lagrangian multiform for an integrable PDE in 2 + 1 dimensions. It
is therefore a 3-form. A Lagrangian multiform for the discretised KP equation is given in [18]. Attempts
to perform a continuum limit (see [4] for examples of such a procedure) in order to obtain a continuous
Lagrangian multiform for the KP equation have, so far, been unsuccessful. In order to proceed, we take
as our starting point the Lagrangians

L(123) =
1

2
vx1x1

vx1x3
−

1

2
v23x1

−
1

2
v2x1x2

+ v3x1x1
(3.49a)

L(412) =
1

2
vx1x1

vx1x4
− 2v3x1

vx1x1x2
−

2

3
vx1x2

vx2x2
+ 4v2x1x1

vx1x2
(3.49b)

where v3x1
= vx1x1x1

. These are based on the KP Hamiltonians given in [19], which are based on the
formulation of [20]. In order to avoid non-local terms, these Lagrangians are given in terms of v such that
vx1x1

= q, where q is the usual KP field variable. These Lagrangians give equations of motion

v3x1x3
− vx1x1x2x2

+ v6x1
+ 6v23x1

+ 6vx1x1
v4x1

= 0, (3.50a)

the first KP equation, and

v3x1x4
+ 4v5x1x2

−
4

3
vx13x2

+ 8v4x1
vx1x2

+ 24v3x1
vx1x1x2

+ 16vx1x1
v3x1x2

= 0 (3.50b)

the second KP equation respectively. It is straightforward (although time consuming) to check that setting
Q equal to

D−3
x1

(−vx1x1x2x2
+ v6x1

+ 6v23x1
+ 6v2x1

v4x1
) = −D−1

x1
(vx2x2

+ 3v2x1x1
) + v3x1

(3.51)

gives a variational symmetry vQ of the second KP equation (3.50b). This implies that

(vx1x1x1x4
+ 4v5x1x2

−
4

3
vx13x2

+ 8v4x1
vx1x2

+ 24v3x1
vx1x1x2

+ 16vx1x1
v3x1x2

)(vx3
−D−1

x1
(vx2x2

+ 3v2x1x1
) + v3x1

)

= Div P

(3.52)

We use integration by parts (i.e. integrate the first bracket and differentiate the second bracket, both
with respect to x1) to remove non-local terms and get

(vx1x1x4
+ 4v4x1x2

−
4

3
v3x2

+ 8v3x1
vx1x2

+ 16vx1x1
vx1x1x2

)(vx1x3
− vx2x2

+ 3v2x1x1
+ v4x1

) = Div P̃

(3.53)

As expected, P̃ describes a Lagrangian 3-form

L = L(123)dx1∧dx2∧dx3+L(234)dx2∧dx3∧dx4+L(341)dx3∧dx4∧dx1+L(412)dx4∧dx1∧dx2 (3.54)

with the 1, 2, 3 and 4 components of P̃ corresponding to −L(234),L(341),−L(412) and L(123). The L(123)

and L(412) Lagrangians are precisely those given in (3.49a) and (3.49b). We find that the L(234) La-
grangian is given by

L(234) =−
1

2
vx1x3

vx1x4
− 4vx1x3

v3x1x2
+ 2vx1x1x3

vx1x1x2
−

2

3
vx2x2

vx2x3
+ vx2x2

vx1x4

+ 4vx2x2
v3x1x2

−
8

3
vx1x2x2

vx1x1x2
− v3x1

vx1x1x4
+

4

3
v3x1

v3x2
− 4v23x1

vx1x2

+ 8vx1x1
v3x1

vx1x1x2
+ 8vx1x1

vx1x2
vx2x2

+
4

3
v3x1x2

− 8vx1x1
vx1x2

vx1x3
− 8v3x1x1

vx1x2

(3.55)

and the L(341) Lagrangian is given by
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L(341) =
2

3
v2x2x2

+ 2v24x1
− 2v3x1

vx1x1x3
−

4

3
vx2x2

vx1x3
−

2

3
vx1x2

vx2x3
+ vx1x2

vx1x4

−
4

3
v2x1x1x2

+
4

3
v3x1

vx1x2x2
+ 12v2x1x1

v4x1
+ 4v23x1

vx1x1
− 4v2x1x1

vx2x2

+ 4vx1x1
v2x1x2

+ 4v2x1x1
vx1x3

+ 10v4x1x1

(3.56)

It is clear from (3.53) that dL = 0 when either the first (3.50a) or second (3.50b) KP equation holds.
When both the first and second KP equations hold, the left hand side of (3.53) gives a double zero, so we
also have that δdL = 0. As a consequence, all of the multiform EL equations hold. This is the first ever
example of a Lagrangian 3-form.

In theory it should be possible to produce an infinite Lagrangian multiform for the entire KP hierarchy.
However, it is expected that the increasing prevalence of non-local terms as one progresses up the hierarchy
would result in non-local terms appearing in the multiform. We were able to avoid such terms in this
example by expressing our equations in terms of a “double potential” v where vx1x1

= q, but it is
expected that, even in terms of this v, non-local terms would appear in the Lagrangians for the equations
of the higher flows of the hierarchy. For any finite KP multiform, one can introduce a higher potential
dependent variable (e.g. w such that wx1x1x1

= q) in order to avoid non-local terms. However, it is fairly
straightforward to extend the multiform EL equations to allow linear non-local terms, and this may be
the best approach when considering the full KP hierarchy.

4 Conclusion

Given any Lagrangian and an associated variational symmetry, the method outlined in this paper al-
lows us to construct a Lagrangian multiform. As a consequence, we have shown that the existence of
a Lagrangian multiform structure is not a sufficient condition for integrability. However, by linking La-
grangian multiforms to variational symmetries, existing results relating symmetries to integrability can
now be applied to Lagrangian multiforms of the type described in this paper. Whilst we have shown that
every variational symmetry leads to a Lagrangian multiform, the question of when the converse holds
remains an open problem. In this paper, we have only considered continuous systems; we anticipate
that the Noether-type theorems that are known for discrete systems, such as those given in [21], may
yield analogous results in for discrete Lagrangian multiforms. Whilst finalising this paper, the paper [22]
has appeared, which uses the ideas of Noether’s theorem to give an algorithm for finding the extended
Lagrangian 2-form structure (i.e. incorporating arbitrarily many flows) from an appropriate set of L(1j)

Lagrangians.

A Lagrangian k-form EL equations

The multiform EL equations for a Lagrangian k-form were first published in [8]. Here we present a new
proof of those equations. We let

L =
∑

1≤l1<...<lk≤N

L(l1...lk) dxl1 ∧ . . . ∧ dxlk . (A.1)

be a k-form on a manifold of N independent coordinates x1, . . . , xN and dependent variable u. Therefore

dL =
∑

1≤i1<...<ik+1≤N

Ai1...ik+1dxi1 ∧ . . . ∧ dxik+1
(A.2)

where the Ai1...ik+1 depend on the L(l1...lk) in the usual way, i.e.

Ai1...ik+1 =

k+1
∑

α=1

(−1)k(α+1) Dxiα
L(iα+1...ik+1i1...iα−1). (A.3)

For a fixed i1, . . . , ik+1, we shall write L(ᾱ) to denote L(iα+1...ik+1i1...iα−1). We define the variational
derivative with respect to uI acting on L(ᾱ)

δL(ᾱ)

δuI

=
∑

J
jiα=0

(−D)J
∂L(ᾱ)

∂uIJ

, (A.4)
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where I is the usual N component multi-index representing derivatives with respect to x1, . . . , xN , and the
multi-indices J are such that components ji = 0 whenever i 6= i1, . . . , ik+1, i.e. J represents derivatives

with respect to xi1 , . . . , xik+1
. We define that

δL(̄i)

δuI

= 0 in the case where any component of the multi-

index I is negative. Note that by this definition, the variational derivative of L(iα+1...ik+1i1...iα−1) with
respect to uI only sees derivatives of uI with respect to the variables xiα+1

, . . . xik+1
, xi1 . . . , xiα−1

, even
though derivatives with respect to other variables may appear in L(iα+1...ik+1i1...iα−1).

Theorem A.1. The dependent variable u is a critical point of the k-form L as defined in (A.1) if and
only if for all i1, . . . ik+1 such that 1 ≤ i1 < . . . < ik+1 ≤ N , and for all I,

k+1
∑

α=1

(−1)αk
δL(ᾱ)

δuI\iα

= 0 (A.5)

In order to prove that these are the multiform EL equations, we will require the following lemma:

Lemma A.2. Let 1 ≤ i1 < . . . < ik+1 ≤ N be fixed. For all multi-indices I,

∂L(ᾱ)

∂uI

=
∑

J
ji≤1
jiα=0

DJ

δL(ᾱ)

δuIJ

(A.6)

where the summation is over all multi-indices J as defined for (A.4), such that the ithα component of J is
zero and the non-zero ji are equal to 1.

Proof. We first notice that the partial derivative on the left hand side of (A.6) appears only once in the
sum on the right hand side. We now need to show that all other terms that appear on the right hand

side of (A.6), which are all of the form DA

∂L(ᾱ)

∂uIA

for some multi-index A, sum to zero. To show this, we

consider the term DA

∂L(ᾱ)

∂uIA

, and let r be the number of non-zero entries in A. We notice that this term

appears exactly once when |J | = 0 with a factor of (−1)|A|, exactly
(

r
1

)

times with a factor of (−1)|A|+1

when |J | = 1, exactly
(

r
2

)

times with a factor of (−1)|A|+2 when |J | = 2 etc... In total, this term appears

with a factor of ±
∑r

i=0(−1)i
(

r
i

)

. It can easily be seen that this sum is zero by considering the binomial
expansion of (1− 1)r.

Proof. (of Theorem A.1) For the first part of this proof, we will show that δdL = 0 by following the
argument given in [16]. We assume that L contains terms up to nth order derivatives of u, (i.e. L depends
on uI with |I| ≤ n). Let B be an arbitrary k + 1 dimensional ball with surface ∂B. We consider the
action functional S over the closed surface ∂B such that

S[u] =

∮

∂B

L (A.7)

We then apply Stokes’ theorem to write S in terms of an integral over B:

S[u] =

∫

B

dL (A.8)

and we look for solutions of

δS =

∫

B

δdL = 0 (A.9)

Since this must hold for arbitrary variations (i.e. with no boundary constraints) for every ball B, it follows
that u is a critical point of L if and only if the integrand δdL = 0, where

δdL =
∑

1≤i1<...<ik+1≤N

∑

I

∂Ai1...ik+1

∂uI

δuI ∧ dxi1 ∧ . . . ∧ dxik+1
. (A.10)

This is equivalent to the statement that for all 1 ≤ i1 < . . . < ik+1 ≤ N , for all I,

∂Ai1...ik+1

∂uI

= 0 (A.11)
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We could stop here, and use (A.11) as our multiform EL equations. Indeed, there are occasions where
this is the most convenient formulation to use. However, it is more illuminating to express this in terms
of variational derivatives; by doing so we see more clearly the interplay between the constituent L(l1...lk)

and see that a consequence of δdL = 0 is that E(L(l1...lk)) = 0 for each L(l1...lk).

For the second part of this proof, we show that, for any choice of 1 ≤ i1 < . . . < ik+1 ≤ N , (A.11) holds
if and only if ∀I,

k+1
∑

α=1

(−1)αk
δL(ᾱ)

δuI\iα

= 0. (A.12)

To do this, we first show that (A.12) holds for |I| > n. We then use an inductive argument to show that
if (A.12) holds for |I| > m then it also holds for |I| = m. The converse (that (A.12) =⇒ (A.11)) is then
easily seen from the intermediary steps of the proof.

We begin by (arbitrarily) fixing 1 ≤ i1 < . . . < ik+1 ≤ N and noticing that for |I| ≥ n+ 2, (A.12) holds.
In fact all terms are zero since, by definition, there are no n+1th order derivatives in our multiform. We

now consider the relation
∂Ai1...ik+1

∂uI

= 0 in the case where |I| = n+ 1. In this case we find that

∂Ai1...ik+1

∂uI

=
k+1
∑

α=1

(−1)αk+1 ∂L(ᾱ)

∂uI\iα

(A.13)

since there are no n+ 1th order derivatives in the L(ᾱ). By setting this equal to zero, we see that (A.12)
holds in the case where |I| = n+ 1.

Our inductive hypothesis is that (A.12) holds for |I| > m. We now consider the relation
∂Ai1...ik+1

∂uI

= 0

in the case where |I| = m.

We now notice that

∂Ai1...ik+1

∂uI

=

k+1
∑

α=1

(−1)αk+1 ∂

∂uI

Dxiα
L(ᾱ)

=

k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

+Dxiα

∂L(ᾱ)

∂uI

}

=

k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

+
∑

J
ji≤1
jiα=0

DJiα

δL(ᾱ)

δuIJ

}

=

k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

+
∑

J
ji≤1
jiα=1

DJ

δL(ᾱ)

δuIJ\iα

}

=
k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

}

+
∑

J
ji≤1
|J|>0

∑

α
jiα>0

(−1)αk+1DJ

δL(ᾱ)

δuIJ\iα

(A.14)

where we have made use of (A.6) in the third line, re-labeled J in the fourth line and changed the order
of the summation in the last. We now apply the inductive hypothesis to get

∂Ai1...ik+1

∂uI

=
k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

}

+
∑

J
ji≤1
|J|>0

∑

α
jiα=0

(−1)αk DJ

δL(ᾱ)

δuIJ\iα

=

k+1
∑

α=1

(−1)αk+1

{

∂L(ᾱ)

∂uI\iα

−
∑

J
ji≤1
jiα=0
|J|>0

DJ

δL(ᾱ)

δuIJ\iα

}

= 0.

(A.15)
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Finally, we use (A.6) to express this as

∂Ai1...ik+1

∂uI

=

k+1
∑

α=1

(−1)αk+1 δL(ᾱ)

δuI\iα

= 0 (A.16)

and we have shown that (A.12) holds for |I| = m. By induction, it follows that (A.12) holds for all I. The
converse can easily be seen to hold by following the steps taken in (A.14), (A.15) and (A.16) in reverse
order.

We have shown that the multiform EL equations (A.5) for a given 1 ≤ i1 < . . . < ik+1 ≤ N are equivalent
to δAi1...ik+1 = 0 for the same 1 ≤ i1 < . . . < ik+1 ≤ N . It follows that the multiform EL equations
holding for all 1 ≤ i1 < . . . < ik+1 ≤ N is equivalent to δdL = 0.
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