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Abstract

We study the rate of convergence of an explicit and an implicit-explicit finite dif-

ference scheme for linear stochastic integro-differential equations of parabolic type

arising in non-linear filtering of jump-diffusion processes. We show that the rate is

of order one in space and order one-half in time.
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1 Introduction

Let (Ω,F ,F, P), F = (Ft)t≥0, be a complete filtered probability space such that the filtration is

right continuous and F0 contains all P-null sets of F . Let {w̺}∞
̺=1 be a sequence of indepen-

dent real-valued F-adapted Wiener processes. Let π1(dz) and π2(dz) be a Borel sigma-finite

measures on Rd satisfying

∫

Rd

|z|2 ∧ 1 πr(dz) < ∞, r ∈ {1, 2}.

Let q(dt, dz) = p(dt, dz) − π2(dz)dt be a compensated F-adapted Poisson random measure

on R+ × Rd. Let T > 0 be an arbitrary fixed constant. On [0, T ] × Rd, we consider finite
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difference approximations for the following stochastic integro-differential equation (SIDE)

dut = ((Lt + I)ut + ft) dt +

∞
∑

̺=1

(N̺
t ut + g

̺
t

)

dw
̺
t +

∫

Rd

(I(z)ut− + ot(z)) q(dt, dz), (1.1)

with initial condition

u0(x) = ϕ(x), x ∈ Rd,

where the operators are given by

Ltφ(x) :=

d
∑

i, j=0

a
i j
t (x)∂i jφ(x),

Iφ(x) :=

∫

Rd

















φ(x + z) − φ(x) − 1[−1,1](|z|)
d

∑

j=1

z j∂ jφ(x)

















π1(dz), (1.2)

N̺
t φ(x) :=

d
∑

i=0

σ
i̺
t (x)∂iφ(x), I(z)φ(x) = φ(x + z) − φ(x).

Here, we denote the identity operator by ∂0.

Equation (1.1) arises naturally in non-linear filtering of jump-diffusion processes. We re-

fer the reader to [4] and [5] for more information about non-linear filtering of jump-diffusions

and the derivation of the Zakai equation. Various methods have been proposed to solve

stochastic partial differential equations (SPDEs) numerically. For SPDEs driven by continu-

ous martingale noise see, for example, [3], [8], [9], [13] [21], [18] and [23] and for SPDEs

driven by discontinuous martingale noise, see [17], [16], [20], and [1]. Among the various

methods considered in the literature is the method of finite differences. For second order lin-

ear SPDEs driven by continuous martingale noise it is well-known that the Lp(Ω)-pointwise

error of approximation in space is proportional to the parameter h of the finite difference

(see, e.g., [24]). In [13], I. Gyöngy and A. Millet consider abstract discretization schemes

for stochastic evolution equations driven by continuous martingale noise in the variational

framework and, as a particular example, show that the L2(Ω)-pointwise rate of convergence

of an Euler-Maruyuma (explicit and implicit) finite difference scheme is of order one in space

and one-half in time. More recently, it was shown by I. Gyöngy and N.V. Krylov that under

certain regularity conditions, the rate of convergence in space of a semi-discretized finite

difference approximation of a linear second order SPDE driven by continuous martingale

noise can be accelerated to any order by Richardson’s extrapolation method. For the non-

degenerate case, we refer to [10] and [11], and for the degenerate case, we refer to [7]. In

[14] and [15], E. Hall proved that the same method of acceleration can be applied to implicit

time-discretized SPDEs driven by continuous martingale noise.

In the literature, finite element, spectral, and, more generally, Galerkin schemes have

been studied for SPDEs driven by discontinuous martingale noise. One of the earliest



Introduction 3

works in this direction is a paper [17] by E. Hausenblas and I. Marchis concerning Lp(Ω)-

convergence of Galerkin approximation schemes for abstract stochastic evolution equations

in Banach spaces driven by Poisson noise of impulsive-type. As an application of their result,

they study a spectral approximation of a linear SPDE in L2([0, 1]) with Neumann boundary

conditions driven by Poisson noise of impulsive-type and derive Lp(Ω)-error estimates in

the L2([0, 1])-norm. In [16], E. Hausenblas considers finite element approximations of linear

SPDEs in polyhedral domains D driven by Poisson noise of impulsive-type and derives Lp(Ω)

error estimates in the Lp(D)-norm. In a more recent work [20], A. Lang studied semi-discrete

Galerkin approximation schemes for SPDEs of advection diffusion type in bounded domains

D driven by cádlág square integrable martingales in a Hilbert space. A. Lang showed that the

rate of convergence in the Lp(Ω) and almost-sure sense in the L2(D)-norm is of order two for

a finite-element Galerkin scheme. In [1], A. Lang and A. Barth derive L2(Ω) and almost-sure

estimates in the L2(D)-norm for the error of a Milstein-Galerkin approximation scheme for

the same equation considered in [20] and obtain convergence of order two in space and order

one in time.

In the articles [20], [1], [17], and [16], the authors make use of the semigroup theory of

stochastic evolution equations (mild solution) and only consider stochastic evolution equa-

tions in which the principal part of the operator in the drift is non-random. In this paper,

since we use the variational framework (L2-theory) of SPDEs, we are easily able to treat the

case of random-coefficients.

The principal part of the operator in the drift of the Zakai equation is, in general, random,

and hence numerical schemes that approximate SPDEs or SIDEs with adapted principal part

are of importance. The coefficients of the Zakai equation are random if the coefficients of

the SDE governing the signal depend on the observation or some observation measurable

process–perhaps a control. In this case, the diffusion coefficient a
i j
t (x, ω) in (1.1) will be of

the form a
i j
t (x, ω) = (σ̄i(x, yt(ω))σ̄ j(x, yt(ω)), where yt(ω) is an adapted random process and

σ̄i(x, y) is a diffusion coefficient in an SDE. Due to the form of the random coefficient in

this case, to impose uniform boundedness of a
i j
t (x, ω) in t, x and ω, we need only impose

uniform boundedness of σ̄(x, y) in x and y, and to impose uniformly ellipticity of a
i j
t (x, ω)

in t, x and ω, we need only impose that standard uniform ellipticity of σ̄i(x, y)σ̄ j(x, y) in

x and y. These assumptions are not uncommon in the SDE literature. Furthermore, since

any numerical scheme for (1.1) will be implemented pathwise–note also that in filtering,

one only gets to see one path of the observation–the additional computational complexity

involved in implementing a numerical scheme for (1.1) with random coefficients of the form

a
i j
t (x, ω) = (σ̄i(x, yt(ω))σ̄ j(x, yt(ω)) compared with ai j(x) = σ̄i(x)σ̄ j(y) is simply the time

dependence of the coefficient. In the case of an implicit scheme, this does mean that one

has to invert an operator at each time step, but this is the case for deterministic PDEs with

time-dependent coefficients as well.

The articles [20], [1], [17], and [16] do not address the approximation of equations with

non-local operators in the drift and noise. There is, however, some work in the literature on

deterministic non-local differential equations. In dimension one, a finite difference scheme

for degenerate integro-differential equations (deterministic) has been studied by R. Cont and
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E. Voltchkova in [2]. The authors in [2] first approximate the integral operator near the

origin with a second derivative operator. The resulting PDE is then non-degenerate and has

an integral operator of order zero. The error of this approximation is studied by means of

the probabilistic representation of the solution of both the original equation and the non-

degenerate equation. In the second step of their approximation, R. Cont and E. Voltchkova

consider an implicit-explicit finite difference scheme and obtain pointwise error estimates of

order one in space. As a consequence of the two-step approximation scheme, there are two

separate errors for the approximation. We are able to avoid the two-step approximation in

our work, when restricted to the non-degenerate diffusion case.

In this paper, we consider the non-degenerate stochastic integro-differential equation

(1.1) with random coefficients and apply the method of finite differences in the time and

space variables. To the best of our knowledge, this article is the first to use the finite differ-

ence method to approximate stochastic integro-differential equations. The approximations

of the non-local integral operators in the drift and in the noise of (1.1) we choose are natu-

ral. In particular, we are able to treat the singularity of the integral operators near the origin

directly. We consider a fully-explicit time-discretization scheme and an implicit-explicit

time-discretization scheme, where we treat part of the approximation of the integral operator

in the drift explicitly. We also provide a numerical verification of our theoretical convergence

rates for an equation that has an “analytic” solution.

To obtain error estimates for our approximations, we use the approach in [24], where the

discretized equations are first solved as time-discretized SDEs in Sobolev spaces over Rd

and an error estimate is obtained in Sobolev norms. After obtaining L2(Ω) error estimates

in Sobolev norms, the Sobolev embedding theorem is used to obtain L2(Ω)-pointwise error

estimates. So, in sum, we obtain two types of error estimates: in Sobolev norms and on the

grid. Naturally, when using the Sobolev embedding to obtain the pointwise estimates, we do

not need the equation to be differentiable to obtain pointwise error estimates, only continu-

ous. Using the approach of first obtaining estimates in Sobolev spaces, we are also easily

able to deduce that the more regularity on the coefficients and data we have, the stronger the

error estimates we can obtain (see Corollaries 5.3 and 5.4).

The paper is organized as follows. In the next section (Section 2), we introduce the

notation that will be used throughout the paper and state the main results. In the third section,

we give a numerical verification of the convergence rates for a simple test problem. In the

fourth section, we prove auxiliary results that will be used in the proof of the main theorems.

In the fourth section, we prove the main theorems of the paper.

2 Notation and the main results

For x ∈ Rd, denote by |x| the Euclidean norm of x. Let N0 = {0, 1, 2, . . .}. For i ∈ {1, . . . , d},
let ∂−i = −∂i, and let ∂0 be the identity. For a multi-index γ = (γ1, . . . , γd) ∈ N0 of length

|γ| = γ1+ · · ·+γd, set ∂γ = ∂
γ1

1
. . . ∂

γd

d
. Let ℓ2 be the space of all square-summable real-valued

sequences b = (b̺)∞
̺=1. For an ℓ2-valued function f on Rd, the derivative of f with respect to



Notation and the main results 5

xi is denoted by ∂i f .

Let C∞c (Rd) be the space of all smooth real-valued functions on Rd with compact support.

We write (·, ·)0 for the inner product and ‖ · ‖0 for the norm in L2(Rd) =: H0. For m ∈ N,

denote by Hm the Sobolev space of all functions u ∈ L2(Rd) having distributional derivatives

up to order m in L2(Rd). We denote by

(·, ·)m :=
∑

|γ|≤m

(∂γ·, ∂γ·)0

the inner product in Hm and by ‖·‖m the corresponding norm. Define H−1 to be the completion

of C∞c (Rd) with respect to the norm ‖ · ‖−1 = ‖(1−∆)−1/2 · ‖0, where ∆ is the Laplace operator.

It is easy to see that for all u ∈ H1 and v ∈ H0, (u, v)0 ≤ ‖u‖1‖v‖−1. Since H1 is dense in H−1,

we may define the pairing [·, ·]0 : H1 × H−1 → R by [v, v′]0 = limn→∞(v, vn)0 for all v ∈ H1

and v′ ∈ H−1, where (vn)∞
n=1
⊂ H1 is such that ‖vn − v′‖−1 → 0 as n → ∞. The mapping

from H−1 to (H1)∗ given by v′ 7→ [·, v′]0 is an isometric isomorphism. For more details,

see [22]. For an integer m ≥ 0, we write Hm(ℓ2) for the space of all ℓ2−valued functions

g(x) = (g̺(x))∞
̺=1

on Rd such that for each ̺, g̺ ∈ Hm and

‖g‖2m,ℓ2
:=

∞
∑

̺=1

‖g̺‖2m < ∞.

On [0, T ] × Rd, we consider the stochastic integro-differential equation

dut = ((Lt + I)ut + ft) dt +

∞
∑

̺=1

(N̺
t ut + g

̺
t

)

dw
̺
t +

∫

Rd

(I(z)ut− + ot(z)) q(dt, dz) (2.3)

with initial condition

u0(x) = ϕ(x), x ∈ Rd.

Denote the predictable sigma-algebra on Ω × [0, T ] relative to F by PT . Let m ≥ 0 be an

integer.

Assumption 2.1. For i, j ∈ {0, . . . , d}, a
i j
t = a

i j
t (x) are real-valued functions defined on

Ω× [0, T ]×Rd that are PT ⊗B(Rd)-measurable and σi
t = (σ

i̺
t (x))∞

̺=1
are ℓ2-valued functions

that are PT ⊗ B(Rd)-measurable. Moreover,

(i) for each (ω, t) ∈ Ω × [0, T ], the functions a
i j
t are max(m, 1)-times continuously differ-

entiable in x for all i, j ∈ {1, . . . , d}, ai0
t and a0i

t are m-times continuously differentiable

in x for all i ∈ {0, 1, . . . , d}, and σi
t are m-times continuously differentiable in x as ℓ2-

valued functions for all i ∈ {0, . . . , d}. Furthermore, there is a constant K > 0 such that

for all (ω, t, x) ∈ Ω × [0, T ] × Rd,

|∂γai j
t | ≤ K, ∀ i, j ∈ {1, . . . , d}, ∀ |γ| ≤ max(m, 1),

|∂γai0
t | + |∂γa0i

t | + |∂γσi
t|ℓ2
≤ K, ∀ i ∈ {0, . . . , d}, ∀|γ| ≤ m;
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(ii) there exists a positive constant κ > 0 such that for all (ω, t, x) ∈ Ω × [0, T ] × Rd and

η ∈ Rd

d
∑

i, j=1

















2a
i j
t −

∞
∑

̺=1

σ
i̺
t σ

j̺
t

















ηiη j ≥ κ|η|2.

We define the following spaces:

Hm := L2(Ω × [0, T ],PT ; Hm), Hm(ℓ2) := L2(Ω × [0, T ],PT ; Hm(ℓ2))

Hm(π2) := L2(Ω × [0, T ] × Rd,PT ⊗ B(Rd), dP × dt × π2(dz); Hm).

Assumption 2.2. The initial condition ϕ is F0-measurable with values in Hm such that

E|ϕ|2m < ∞. Moreover, f ∈ Hm−1, g ∈ Hm(ℓ2), and o ∈ Hm(π2). Set

κ2
m = E‖ϕ‖2m + E

∫

]0,T ]

(

‖ ft‖2m−1 + ‖gt‖2m,ℓ2
+

∫

Rd

‖ot(z)‖2mπ2(dz)

)

dt.

For a real-valued twice continuous differentiable function φ on Rd, it is easy to see that

for all x, z ∈ Rd,

φ(x + z) − φ(x) −
d

∑

j=1

z j∂ jφ(x) =

∫ 1

0

d
∑

i, j=1

ziz j∂i jφ(x + θz)(1 − θ)dθ. (2.4)

For each δ ∈ (0, 1], let

ς1(δ) =

∫

|z|≤δ
|z|2π1(dz), ς2(δ) =

∫

|z|≤δ
|z|2π2(dz), and ς(δ) = ς1(δ) + ς2(δ).

Fix δ ∈ (0, 1] such that

ς(δ) < κ, (2.5)

and notice that
2

∑

r=1

πr({|z| > δ}) < ∞. (2.6)

We write I = Iδ + Iδc , where

Iδφ(x) :=

∫

|z|≤δ

∫ 1

0

d
∑

i, j=1

ziz j∂i jφ(x + θz)(1 − θ)dθπ1(dz)

and Iδc is defined as in (1.2) with integration over {|z| > δ} instead of Rd.

Definition 2.1. An H0-valued càdlàg adapted process u is called a solution of (2.3) if

(i) ut ∈ H1 for dP × dt-almost-every (ω, t) ∈ Ω × [0, T ];
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(ii) E
∫

]0,T ]
‖ut‖21dt < ∞;

(iii) there exists a set Ω̃ ⊂ Ω of probability one such that for all (ω, t) ∈ [0, T ] × Ω̃ and

φ ∈ C∞c (Rd),

(ut, φ)0 = (ϕ, φ)0 +

∫

]0,t]

















d
∑

i, j=1

(

∂ jus, ∂−i(a
i j
s φ)

)

0
+ [φ, fs]0

















ds

+

∫

]0,t]

∫

|z|≤δ

∫ 1

0

d
∑

i, j=1

(

z j∂ jus(· + θz), zi∂−iφ
)

0
(1 − θ)dθπ1(dz)ds

+

∫

]0,t]

∫

|z|>δ

















us(· + z) − us − 1[−1,1](|z|)
d

∑

j=1

z j∂ jus, φ

















0

π1(dz)ds

+

∞
∑

̺=1

∫

]0,t]

d
∑

i=0

(

σi̺
s ∂ius + g̺s , φ

)

0
dw̺

s +

∫

]0,t]

∫

Rd

(us−(· + z) − us− + ot(z), φ)0 q(dz, ds).

Remark 2.1. In the above definition, instead of δ we may choose any other positive constant.

The following existence theorem is a consequence of Theorems 2.9, 2.10, and 4.1 in

[6] and will be verified in Section 4. The notation N = N(·, · · · , ·) is used to denote a

positive constant depending only on the quantities appearing in the parentheses. In a given

context, the same letter is repeatedly used to denote different constants depending on the

same parameter.

Theorem 2.1. If Assumptions 2.1 and 2.2 hold with m ≥ 0, then there exist a unique solution

u of (2.3). Furthermore, u is a cádlág Hm-valued process with probability one and there is a

constant N = N(d,m, κ,K, T ) such that

E sup
t≤T

‖ut‖2m + E

∫

]0,T ]

‖us‖2m+1ds ≤ Nκ2
m. (2.7)

Remark 2.2. We have used the standard definition of solution for the variational (or L2)

theory fo stochastic partial differential equations. In what follows below, we will always

assume m ≥ 2 (though for our schemes, we assume m ≥ 3), and so we have enough regularity

to formulate the solution in the weak sense in (H1,H0,H−1) without integrating by parts.

The following proposition is needed to establish the rate of convergence in time of our

approximation scheme and is proved in Section 4.

Proposition 2.2. Let Assumptions 2.1 and 2.2 hold with m ≥ 1 and u be the solution of (2.3).

Moreover, assume that

sup
t≤T

E‖gt‖2m−1,ℓ2
+ sup

t≤T

E

∫

Rd

‖ot(z)‖2m−1π2(dz) ≤ K.
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Then there is a constant λ = λ(d,m,K, T, κ, κ2
m) such that for all s, t ∈ [0, T ],

E‖ut − us‖2m−1 ≤ λ|t − s|.

Assumption 2.3. For m ≥ 3, in addition to Assumption 2.2, there exists a random variable ξ

with Eξ < K such that for all ω ∈ Ω, t, s ∈ [0, T ],

‖gt‖2m−1,ℓ2
+

∫

Rd

‖ot(z)‖2m−1π2(dz) ≤ ξ

‖ ft − fs‖2m−2 + ‖gt − gs‖2m−2,ℓ2
+

∫

Rd

‖ot(z) − os(z)‖2m−1π2(dz) ≤ ξ|t − s|.

Assumption 2.4. For m ≥ 3, in addition to Assumption 2.1 (i), there is a constant C > 0

such that for all (ω, x) ∈ Ω × Rd, s, t ∈ [0, T ], i, j ∈ {0, 1, . . . , d},

|∂γ
(

a
i j
t − ai j

s

)

|2 + |∂γ
(

σi
t − σi

s

)

|2ℓ2
≤ C|t − s|, ∀|γ| ≤ m − 2.

We turn our attention to the discretisation of equation (2.3). For each h ∈ R − {0} and

standard basis vector ei, i ∈ {1, . . . , d}, of Rd we define the first-order difference operator δh,i

by

δh,iφ(x) :=
φ(x + hei) − φ(x)

h
,

for all real-valued functions φ on Rd. We define δh,0 to be the identity operator. Notice that

for all ψ, φ ∈ H0, we have

(φ, δ−h,iψ)0 = −(δh,iφ, ψ)0. (2.8)

Set

δh
i :=

1

2
(δh,i + δ−h,i)

and observe that for all φ ∈ H0,

(φ, δh
i φ)0 = 0. (2.9)

For each h , 0, we introduce the grid Gh := {hzk : zk ∈ Zd, k ∈ N0, z0 = 0} with step size |h|.
Let ℓ2(Gh) be the Hilbert space of real-valued functions φ on Gh such that

‖φ‖2ℓ2(Gh) := |h|d
∑

x∈Gh

|φ(x)|2 < ∞.

We approximate the operators L and N̺ by

Lh
t φ(x) :=

d
∑

i, j=0

a
i j
t (x)δh,iδ−h, jφ(x) and N̺;h

t φ(x) :=

d
∑

i=0

σ
i̺
t (x)δh,iφ(x),

respectively. In order to approximate I, we approximate Iδ and Iδc separately. For each

k ∈ N ∪ {0} and h , 0, define the rectangles in Rd

Ah
k :=

(

z1
k |h| −

|h|
2
, z1

k |h| +
|h|
2

]

× · · · ×
(

zd
k |h| −

|h|
2
, zd

k |h| +
|h|
2

]

,
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where zi
k
, i ∈ {1, ..., d}, are the coordinates of zk ∈ Zd, and set

Bh
k := Ah

k ∩ {|z| ≤ δ}, B̄h
k := Ah

k ∩ {|z| > δ}.

We approximate Iδc by

Ih
δcφ(x) :=

∞
∑

k=0















(φ(x + hzk) − φ(x)) ζ̄h,k −
d

∑

i=1

ξ̄i
h,kδ

h
i φ(x)















,

where

ζ̄h,k := π1(B̄h
k) and ξ̄i

h,k :=

∫

B̄h
k
∩{|z|≤1}

ziπ1(dz).

We continue with the approximation of the operator Iδ. By (2.4), for all x ∈ Gh,

Iδφ(x) =

∞
∑

k=0

∫

Bh
k

∫ 1

0

d
∑

i, j=1

ziz j∂i jφ(x + θz)(1 − θ)dθπ1(dz),

where there are only a finite number of non-zero terms in the infinite sum over k. The closest

point in Gh to any point z ∈ Bh
k

is clearly hzk. This simple observation leads us to the

following (intermediate) approximation of Iδφ(x):

∞
∑

k=0

∫ 1

0

d
∑

i, j=1

∫

Bh
k

ziz jπ1(dz)∂i jφ(x + θhzk)(1 − θ)dθ.

However, in order to ensure that our approximation is well-defined for functions φ ∈ ℓ2(Gh),

we need to approximate the integral over θ ∈ [0, 1]. Fix k ∈ N0 and h , 0. Consider the

directed line segment {θhzk : θ ∈ [0, 1]} extending from the origin to the point hzk ∈ Rd. It

is clear that this line segment intersects a unique finite sequence of rectangles from the set

{Ah

k̄
}k̄∈N0

. Denote the number of rectangles by χ(h, k). Since the line’s start point is the origin,

the first rectangle it intersects is Ah
0
, and since the line’s endpoint is hzk, the last rectangle

it intersects is Ah
k
, the center of which is the point hzk. If χ(h, k) > 2, then in between

these two rectangles, the line segment intersects χ(h, k) − 2 additional rectangles from the

set {Ah

k̄
}k̄∈N0

− {Ah
0
, Ah

k
}. Denote the indices of these rectangles by rh,k

l
, l ∈ {2, . . . , χ(h, k) − 1},

and set rh,k

1
= 0 and rh,k

χ(h,k)
= k; that is, {θhzk; θ ∈ [0, 1]} ⊆ ∪χ(h,k)

l=1
Ah

r
h,k

l

. Corresponding to the

set of rectangles {Ah

r
h,k
l

}χ(h,k)

l=1
is a partition 0 = θh,k

0
≤ · · · ≤ θh,k

χ(h,k)
= 1 of the interval [0, 1]

such that for each l ∈ {1, . . . , χ(h, k)} and θ ∈ (θh,k

l−1
, θh,k

l
), θhzk ∈ Ah

r
h,k

l

. Since the diagonal of a

d-dimensional hypercube with side length |h| has length
√

dh, for each k ∈ N0, z ∈ Bh
k
, and

l ∈ {1, . . . , χ(h, k)},

|θz − hzr
h,k
l
| ≤ |θz − θhzk| + |θhzk − hzr

h,k
l
| ≤
√

d|h|, (2.10)
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for all θ ∈ (θh,k

l−1
, θ

h,k

l
). Set

ζ
i j

h,k
=

∫

Bh
k

ziz jπ1(dz), θ̄h,k

l
=

∫ θ
h,k

l

θ
h,k
l−1

(1 − θ)dθ

and define the operator

Ih
δφ(x) =:

∞
∑

k=0

χ(h,k)
∑

l=1

θ̄h,k

l

d
∑

i, j=1

ζ
i j

h,k
δh,iδ−h, jφ(x + hzr

h,k
l

),

where there are only a finite number of non-zero terms in the infinite sum over k. Set Ih =

Ih
δ
+ Ih

δc and introduce the martingales

p
h,k,i
t =

∫

]0,t]

∫

Bh
k

ziq(dt, dz), p̄
h,k
t = q(B̄h

k, ]0, t]).

Moreover, set

θ̃
h,k

l
:= θh,k

l+1
− θh,k

l
.

Let T ≥ 1 be an integer and set τ = T/T and tn = nτ for i ∈ {0, 1, . . . ,T }. For any

F-martingale (pt)t≤T , we use the notation ∆pn+1 := ptn+1
− ptn . Define recursively the ℓ2(Gh)-

valued random variables (ûh,τ
n )T

n=0
by

ûh,τ
n (x) =û

h,τ

n−1
(x) +

(

(Lh
tn−1
+ Ih)ûh,τ

n−1
(x) + ftn−1

(x)
)

τ +

∞
∑

̺=1

(N̺;h
tn−1

û
h,τ

n−1
(x) + g

̺
tn−1

(x))∆w̺
n

+

∞
∑

k=0

d
∑

i=1

















χ(h,k)
∑

l=1

θ̃
h,k

l
δh,iû

h,τ

n−1
(x + hzr

h,k

l
)

















∆ph,k,i
n +

∫

Rd

otn−1
(x, z)q(]tn−1, tn], dz)

+

∞
∑

k=0

(

û
h,τ

n−1
(x + hzk) − û

h,τ

n−1
(x)

)

∆p̄h,k
n , n ∈ {1, . . . ,T }, (2.11)

with initial condition

ûh,τ

0
(x) = ϕ(x), x ∈ Gh

It is clear that ûh,τ
n is Ftn-measurable for every n ∈ {0, 1, . . . ,T }. Define the operators

L̃h
t φ =

d
∑

i, j=0

a
i j
t δh,iδ−h, jφ − π1({|z| > δ})φ −

d
∑

i=1

∫

δ<|z|≤1

ziπ1(dz)δh
i φ

and

Ĩh
δcφ =

∞
∑

k=0

φ(x + hzk)ζh,k
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and note that L̃h + Ĩh
δc + Iδ = Lh + Ih. On Gh, we also consider the following implicit-explicit

discretization scheme of (2.3):

v̂h,τ
n (x) =v̂h,τ

n−1
(x) +

(

(L̃h
tn
+ Ih

δ )v̂h,τ
n (x) + Ĩh

δcv
h,τ

n−1
(x) + ftn(x)

)

τ

+ 1n>1

∞
∑

̺=1

(N̺;h
tn−1

v̂
h,τ

n−1
(x) + g

̺
tn−1

(x))∆w̺
n

+ 1n>1

∞
∑

k=0

d
∑

i=1

















χ(h,k)
∑

l=1

θ̃
h,k

l
δh,iv̂

h,τ

n−1
(x + hzr

h,k

l
)

















∆ph,k,i
n +

∫

Rd

otn−1
(x, z)q(]tn−1, tn], dz)

+ 1n>1

∞
∑

k=0

(

v̂
h,τ

n−1
(x + hzk) − v̂

h,τ

n−1
(x)

)

∆p̄h,k
n , n ∈ {1, . . . ,T }, (2.12)

with initial condition

v̂
h,τ

0
(x) = ϕ(x), x ∈ Gh,

where 1n>1 = 0 if n = 1 and 1n>1 = 1 if n ≥ 2. A solution (v̂h,τ
n )M

n=0
of (2.12) is understood

as a sequence of ℓ2(Gh)-valued random variables such that v̂h,τ
n is Ftn-measurable for every

n ∈ {0, 1, . . . , M} and satisfies (2.3).

Remark 2.3. Under Assumptions 2.2 and 2.3, for m > 2 + d/2, by virtue of the embedding

Hm−2 ֒→ ℓ2(Gh), the free-terms f , g, and o(z) are continuous ℓ2(Gh) valued processes, and

consequently the above schemes make sense. Moreover, for 0 < |h| < 1, there is a constant

N independent of h such that -

‖φ‖ℓ2(Gh) ≤ N‖φ‖m−2. (2.13)

Assumption 2.5. The parameters h , 0 and T are such that

d
τ

h2
<
κ − ς(δ)

(2Γ + ς1(δ))2
, (2.14)

where Γ :=
(

supt,x,ω

∑d
i, j=1 |ai j(x)|2

)1/2
.

The following are our main theorems.

Theorem 2.3. Let Assumptions 2.1 through 2.4 hold with m > 2 + d
2

and let Assumption 2.5

hold. Let u be the solution of (2.3) and let (ûh,τ
n )T

n=0
be defined by (2.11). Then there is a

constant N = N(d,m, κ,K, T,C, λ, κ2
m, δ) such that for any real number h with 0 < |h| < 1,

E max
0≤n≤T

sup
x∈Gh

|utn(x) − ûh,τ
n (x)|2 + E max

0≤n≤T
‖utn − ûh,τ

n ‖2ℓ2(Gh) ≤ N
(

|h|2 + τ
)

.

Theorem 2.4. Let Assumptions 2.1 through 2.4 hold with m > 2 + d
2

and let u be a solution

of (2.3). There exists a constant R = R(d,m, κ,K, δ) such that if T > R, then there exists a

unique solution (v̂h,τ
n )T

n=0
of (2.12) and a constant N = N(d,m, κ,K, T,C, λ, κ2

m, δ) such that

for any real number h with 0 < |h| < 1,

E max
0≤n≤T

sup
x∈Gh

|utn(x) − v̂h,τ
n (x)|2 + E max

0≤n≤T
‖utn − v̂h,τ

n ‖2ℓ2(Gh) ≤ N
(

|h|2 + τ
)

.
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3 Numerical Simulation

Let us consider finite difference approximations of the following SIDE on [0, T ] × R:

dut(x) =

((

σ̄2
1

2
+
σ̄2

2

2

)

∂2
1ut(x) +

∫

R

(ut(x + z) − ut(x) − ∂1ut(x)z)π(dz)

)

dt

+ σ̄2∂1ut(x)dwt +

∫

R

(u(x + z) − u(x)) q(dt, dz),

u0(x) =
1

√
2πσ̄0

exp

(

− x2

σ̄2
1
σ̄2

0

)

, (3.15)

where π(dz) = c− exp (−β−z) dz

|z|1+α− 1(−∞,0)(z) + c+ exp (−β+z) dz

|z|1+α+ 1(0,∞)(z). It is easily verified

that for (t, x) ∈ [0, T ] × R,

vt(x) =
1

√

π(2σ̄2
0
+ 4t)

exp

(

x2

σ̄2
1
(σ̄2

0
+ 2t)

)

solves

dvt(x) =
σ̄2

1

2
∂2

1vt(x)dt, v0(x) =
1

√
2πσ̄0

exp

(

− x2

σ̄2
1
σ̄2

0

)

.

Moreover, applying Itô’s formula, we find that

ut(x) = vt

(

x + σ̄2wt +

∫

R

zq(dt, dz)

)

(3.16)

solves (3.15). Thus, we can compare our finite difference approximations with (3.16).

In our numerical simulations, we used MATLAB 2013a and made the following param-

eter specification:

σ̄1 =
1

2
, σ̄2 =

1

4
, σ̄0 =

1

2
, c− = c+ = 1, β− = β+ = 1, α− = α+ = 1.1, T = 1.

We also made a few practical simplifications. Both the explicit and implicit-explicit approx-

imations were assumed to take the value zero on (−∞, 8] ∪ [8,∞). We also restricted the

support of π(dz) to [−3, 3]. We would like to investigate the associated error with these re-

ductions in the future. We also mention that a good heuristic is to choose the size of domain

and terminal time T according to the exit time of the diffusion associated with the drift of the

SIDE. In fact, it is more than a heuristic and we aim to address this in a future work.

In our simulation, we took δ = 1
100

. It follows that κ = σ̄2
1
= 1

2
and

ς(δ) = c−

∫ δ

0

exp(−β−z)z1−α−dz + c+

∫ δ

0

exp(−β+z)z1−α+dz + z

= c−β
α−−2
− γ(2 − α−, β−δ) + c+β

α+−2
+ γ(2 − α+, β+δ) ≈ 0.0082,
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where γ(η, z) denotes the lower incomplete gamma function. Thus, the right-hand-side of

(2.14) is approximately 1.0559, and hence we can always set τ = h2. The quantities ζ11
h,k
, ζ̄h,k,

and ξ1
h,k

can all be calculated using MATLAB’s built-in upper and lower incomplete gamma

functions, or by implementing an appropriate numerical integration procedure. The calcula-

tion of θh,k

l
, θ̄h,k

l
, and θ̃h,k

l
are all straightforward in one-dimension. Some more thought would

need to spent on how to calculate these quantities in higher dimensions. Of course as an

alternative, one could set δ = h
2
, but then the schemes are not guaranteed to converge as h

tends to zero. This is the drawback of taking δ = h
2

and not including the additional terms

in Iδ (see the paragraph at the bottom of page 1620 in [2]). It does seem that the method

we propose to discretise Iδ is novel in this respect. In our error analysis, we have considered

h ∈ {2−2, 2−3, 2−4, 2−5, 2−6, 2−7} and τ = h2.

The term
∫

|z|>δ
(ut(x + z) − ut(x)) π(dz)

in the drift of (3.15) can be cancelled with the compensator of the compensated Poisson

random measure term. We get a similar cancellation in the corresponding finite difference

equations, and thus we can replace p̄h,k
t = q(B̄h

k
, ]tn, tn+1]) with p̂h,k

t = p(B̄h
k
, ]tn, tn+1]) in the

explicit (2.11) and implicit-explicit (2.12) scheme.

In order to simulate

∆ph,k
n =

∫

]tn ,tn+1]

∫

Bh
k

zq(dt, dz), p̂
h,k
t = p(B̄h

k , ]tn, tn+1]),

for the finest time step size τ = 2−14, we used the algorithm discussed in Section 4 of [19].

In this algorithm, a parameter ǫ is chosen for which the process ∆ph,0
n =

∫

]0,t]

∫

|z|<ǫ zq(dt, dz)

is approximated by a Wiener process with infinitesimal variance
∫

|z|<ǫ z2π(dz). We chose the

parameter ǫ = 2−8,which is one-half times the smallest step size h under consideration in our

error analysis. The process
∫

]0,t]

∫

|z|>ǫ zq(dt, dz) =
∫

]0,t]

∫

|z|>ǫ zp(dt, dz) (we have used symmetry

of the measure π(dz))) is a compound Poisson process with jump intensity

λ := 2

∫ 3

ǫ

π(dz) ≈ 68.9676

and jump-size density

f̄ (z) =
1

λ

(

c− exp (−β−z)
dz

|z|1+α− 1(−3,2−8)(z) + c+ exp (−β+z)
dz

|z|1+α+ 1(2−8,3)(z)

)

.

The underlying Poisson process was simulated using MATLAB’s built-in Poisson random

variable generator; of course there are other simple methods that one can use as an alternative

(e.g. exponential times or uniform times for fixed number of jumps). We sampled random

variables from the density f̄ by sampling the positive and negative parts separately and using

an acceptance-rejection algorithm with a Pareto random variable. We refer to [19] for more

details. Once we simulated the point process on [0, T ]× [−3,−ǫ]∪ [ǫ, 3], we then computed
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∫

]0,t]

∫

|z|>ǫ zp(dt, dz). In order to compute p̂
h,k
t = p(B̄h

k
, ]tn, tn+1]), we ran a histogram with the

intervals B̄h
k
.

The quantity ∆ph,k
n =

∫

]tn ,tn+1]

∫

Bh
k

zq(dt, dz) is zero for k , 0 when h < δ
2

(for h ∈
{2−2, 2−3, 2−4, 2−5}) since Bh

k
= ∅ for k , 0 when h < δ

2
. For h ∈ {2−6, 2−7}, ∆p

h,k
n is

non-zero for k ∈ {−1, 0, 1}. A similar analysis holds for the quantity ζ11
h,k

. As mentioned

above, we set p̂h,0
t equal to the Wiener process approximating the small jumps. To compute

∫

]tn,tn+1]

∫

Bh
k

zq(dt, dz) for k ∈ {−1, 1} in the case h ∈ {2−6, 2−7}, we summed the jump sizes in

their respective bins and compensated. To obtain the above quantities for coarser time step

sizes, we cumulatively summed the finer increments and took the union of jump sizes.

Lastly, we made use of the Fast Fourier Transform to compute terms of the form

∞
∑

k=0

φ(x + hzk)∆p̂h,k
n ,

which would be quite computationally expensive otherwise. In our error analysis, we ran

3000 simulations of the explicit and implicit-explicit schemes on 30 CPUs and computed the

following errors:

√

√

1

3000

3000
∑

m=1

max
0≤n≤T

sup
x∈Gh

|utn(x) − ûh,τ
n (x)|2,

√

√

1

3000

3000
∑

m=1

max
0≤n≤T

‖utn − ûh,τ
n ‖2ℓ2(Gh)

√

√

1

3000

3000
∑

m=1

max
0≤n≤T

sup
x∈Gh

|utn(x) − v̂
h,τ
n (x)|2,

√

√

1

3000

3000
∑

m=1

max
0≤n≤T

‖utn − v̂
h,τ
n ‖2ℓ2(Gh)

.

By our main theorems and the relation τ = h2, these errors should proportional to h (i.e.

O(h)). This is precisely what we observe in Figure 1. The slight bump down at the finest two

spatial step-sizes h ∈ {2−6, 2−7} is most likely due to the increase in the number of terms in

the approximation of Ih
δ

(three to be precise) and the analogous small jump term in the noise.

4 Auxiliary results

In this section, we present some results that will be needed for the proof of Theorems 2.3

and 2.4. Introduce the operators

Iδ;h(z)φ(x) :=

∞
∑

k=0

1Bh
k
(z)

χ(h,k)
∑

l=1

d
∑

i=1

θ̃
h,k

l
ziδh,iφ(x + hzr

h,k

l
),

Iδc;h(z)φ(x) :=

∞
∑

k=0

1B̄h
k
(z)(φ(x + hzk) − φ(x)),

Ih(z)φ(x) := Iδ;h(z)φ(x) + Iδc;h(z)φ(x).
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Rate of convergence (3000 simulations)

√

1
3000

∑3000
m=1 max0≤n≤T supx∈Gh

|utn (x) − û
h,τ
n (x)|2

√

1
3000

∑3000
m=1 max0≤n≤T ‖utn − û

h,τ
n ‖2ℓ2(Gh)

√

1
3000

∑3000
m=1 max0≤n≤T supx∈Gh

|utn (x) − v̂
h,τ
n (x)|2

√

1
3000

∑3000
m=1 max0≤n≤T ‖utn − v̂

h,τ
n ‖2ℓ2(Gh)

Line of slope 1

Figure 1: Simulated errors with respect to the space discretization and a line as reference

slope on a log2 scale.

Consider the following explicit and implicit-explicit schemes in H0:

uh,τ
n =uh,τ

n−1
+

(

(Lh
tn−1
+ Ih)uh,τ

n−1
+ ftn−1

)

τ +

∞
∑

̺=1

(N̺;h
tn−1

uh,τ

n−1
+ g

̺
tn−1

)∆w̺
n

+

∫

Rd

(

Ih(z)uh,τ

n−1
+ otn−1

(z)
)

q(dz, ]tn−1, tn]), n ∈ {1, . . . ,T }, (4.17)

and

vh,τ
n =v

h,τ

n−1
+

(

(L̃h
tn
+ Ih

δ )vh,τ
n + Ĩh

δcv
h,τ

n−1
+ ftn

)

τ + 1n>1

∞
∑

̺=1

(N̺;h
tn−1

v
h,τ

n−1
+ g

̺
tn−1

)∆w̺
n

+ 1n>1

∫

Rd

(

Ih(z)vh,τ

n−1
+ otn−1

(z)
)

q(dz, ]tn−1, tn]), n ∈ {1, . . . ,T }, (4.18)

with initial condition

u
h,τ

0
(x) = v

h,τ

0
(x) = ϕ(x), x ∈ Rd.

We now prove some lemmas that will help us to establish the consistency of our approxima-

tions. The following lemma is well-known and we omit the proof (see, e.g., [10]).

Lemma 4.1. For each integer m ≥ 0, there is a constant N = N(d,m) such that for all

u ∈ Hm+2 and v ∈ Hm+3,

‖δh,iu − ∂iu‖m ≤
1

2
|h|‖u‖m+2,
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‖δh,iδ−h, jv − ∂i jv‖m ≤ N|h|‖v‖m+3.

Lemma 4.2. For each integer m ≥ 0, there is a constant

N = N(d,m, δ) such that for all u ∈ Hm+3, we have

‖Iu − Ihu‖m ≤ N|h|‖u‖m+3. (4.19)

Proof. It suffices to show (4.19) for u ∈ C∞c (Rd). We begin with m = 0. A simple calculation

shows that

Iδcu(x) − Ih
δcu(x) =

∞
∑

k=0

∫

B̄h
k

∫ 1

0

d
∑

i=1

(zi − hzi
k)∂iu(x + hzk + θ(z − hzk))dθπ1(dz)

−
∞
∑

k=0

∫

B̄h
k
∩{|z|≤1}

d
∑

i=1

zi(∂iu(x) − δh
i u(x))π1(dz).

By Minkowski’s inequality, we get

‖Iδcu − Ih
δcu‖0 ≤

∞
∑

k=0

∫

B̄h
k

d
∑

i=1

|zi − hzi
k|‖∂iu‖0π1(dz)

+

∞
∑

k=0

∫

B̄h
k
∩{|z|≤1}

d
∑

i=1

|zi|‖∂iu(x) − δh
i u(x)‖0π1(dz) ≤ N|h|‖u‖3 + N

d
∑

i=1

‖∂iu(x) − δh
i u(x)‖0,

since |z − hzk| ≤ |h|
√

d/2 and (2.6) holds. Thus, by Lemma 4.1, we have

‖Iδcu − Ih
δcu‖0 ≤ N|h|‖u‖3. (4.20)

We also have

Iδu(x) − Ih
δu(x) =

∞
∑

k=0

∫

Bh
k

χ(h,k)
∑

l=1

∫ θ
h,k
l

θ
h,k

l−1

d
∑

i, j=1

ziz j
(

∂i ju(x + θz) − δh,iδ−h, ju(x + hzr
h,k

l
)
)

(1 − θ)dθπ1(dz). (4.21)

Note that

∂i ju(x + θz) − δh,iδ−h, ju(x + hzr
h,k

l
)

= ∂i ju(x + θz) − ∂i ju(x + hzr
h,k

l
) + ∂i ju(x + hzr

h,k

l
) − δh,iδ−h, ju(x + hzr

h,k

l
)

=

∫ 1

0

d
∑

q=1

(

θzq − hz
q

r
h,k
l

)

∂q∂i ju
(

x + hzr
h,k

l
+ ρ(θz − hzr

h,k

l
)
)

dρ

+∂i ju(x + hzr
h,k

l
) − δh,iδ−h, ju(x + hzr

h,k

l
).
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By (2.10), we have |θzq−hz
q

r
h,k
l

| ≤ N|h|. Hence, substituting the above relation in (4.21), using

Minkowski’s inequality, (2.5), and Lemma 4.1, we obtain

‖Iδu − Ih
δu‖0 ≤ |h|N‖u‖3. (4.22)

Combining (4.20) and (4.22), we have (4.19) for m = 0. The case m > 0 follows from the

case m = 0, since for a multi-index γ, we have

∂γ(Iu − Ihu) = I∂γu − Ih∂γu.

�

Lemma 4.3. For each integer m ≥ 0, there is a constant N = N(d,m, δ), such that for all

u ∈ Hm+2, we have
∫

Rd

‖Ih(z)u − I(z)u‖2mπ2(dz) ≤ N|h|2‖u‖2m+2. (4.23)

Proof. It suffices to prove the lemma for u ∈ C∞c (Rd) and m = 0. We have

Iδ(z)u(x) − Iδ;h(z)u(x) =

∞
∑

k=0

1Bh
k
(z)

χ(h,k)
∑

l=1

∫ θ
h,k

l

θ
h,k
l−1

d
∑

i=1

zi(∂iu(x + θz) − δh,iu(x + hzr
h,k
l

))dθ.

Notice that

∂iu(x + θz) − δh,iu(x + hzr
h,k

l
) =

∫ 1

0

d
∑

i, j=1

∂i ju(x + ρ(θz − hzr
h,k

l
))(θz j − hz

j

r
h,k

l

)dρ

+∂iu(x + hzr
h,k

l
) − δh,iu(x + hzr

h,k

l
).

Thus, by Remark 2.10 and Lemma 4.1, we get

‖Iδ;h(z)u − Iδ(z)u‖20 ≤ 1|z|≤δ|z|2N|h|2‖u‖22,

and hence by (2.5), we obtain

∫

Rd

‖Iδ;h(z)u − Iδ(z)u‖20π2(dz) ≤ N|h|2‖u‖22. (4.24)

We also have

|Iδc

(z)u(x) − Iδc;h(z)u(x)| =
∞
∑

k=0

1B̄h
k
(z)|u(x + z) − u(x + hzk)|

≤
∞
∑

k=0

1B̄h
k
(z)

∫ 1

0

d
∑

i=1

|∂iu(x + hzk + ρ(z − hzk))‖zi − hzi
k|dρ.
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Consequently,

‖Iδc;h(z)u − Iδc

(z)u‖20 ≤ 1|z|>δN|h|2‖u‖21,
which implies by (2.6) that

∫

Rd

‖Iδc;h(z)u − Iδc

(z)u‖20π2(dz) ≤ N|h|2‖u‖21. (4.25)

Combining (4.25) and (4.24), we have (4.23) for m = 0. The case m > 0 follows from the

case m = 0, since for a multi-index γ, we have

∂γ(Iu − Ihu) = I∂γu − Ih∂γu.

�

Lemma 4.4. If Assumption 2.1 holds for some m ≥ 0, then for any ǫ ∈ (0, 1) there exists

constants N1 = N1(d,m, κ,K, δ, ǫ) and N2 = N2(d,m, κ,K, δ, ǫ) such that for any u ∈ Hm,

G
(m)
t (u) := 2(u,Lh

t u)m + ‖Nh
t u‖2m,ℓ2

+ 2(u, Ihu)m +

∫

Rd

‖Ih(z)u‖2mπ2(dz)

≤ −(κ − ς(δ) − ǫ)
d

∑

i=1

‖δh,iu‖2m + N1‖u‖2m, (4.26)

and

(u, L̃h
t u)m + (u, Ih

δu)m ≤ −(κ − ς1(δ) − ǫ)
d

∑

i=1

‖δh,iu‖2m + N2‖u‖mn . (4.27)

Proof. By virtue of Lemma 3.1 and Theorem 3.2 in [10], under Assumption 2.1, there is a

constant N = N(d,m, κ) such that for any u ∈ Hm and ǫ > 0,

2(u,Lh
t u)m + ‖Nh

t u‖2m,ℓ2
≤ −(κ − ǫ)

d
∑

i=1

‖δh,iu‖2m + N‖u‖2m.

Therefore, it suffices to show that there is a constant N = N(δ) such that for all u ∈ C∞c (Rd),

2(u, Ihu)m +

∫

Rd

‖Ih(z)u‖2mπ2(dz) ≤ ς(δ)

d
∑

i=1

‖δh,iu‖2m + N‖u‖2m. (4.28)

We start with m = 0. Since

(u, Ih
δu)0 =

∞
∑

k=0

∫

Bh
k

χ(h,k)
∑

l=1

d
∑

i, j=1

θ̄
k,h

l
ziz j

∫

Rd

δh,iδ−h, ju(x + hzr
h,k

l
)u(x)dxπ1(dz)

and
∫

Rd

δh,iδ−h, ju(x + hzr
h,k
l

)u(x)dx = −
∫

Rd

δh,iu(x + hzr
h,k
l

)δh, ju(x)dx,
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by Hölder’s inequality, we get

2(u, Ih
δu)0 ≤

∫

|z|≤δ
|z|2π1(dz)

d
∑

i=1

‖δh,iu‖20 = ς1(δ)

d
∑

i=1

‖δh,iu‖20.

In addition, owing to Holder’s inequality and (2.9), we have

2(u, Ih
δcu)0 =

∞
∑

k=0

∫

B̄h
k

∫

Rd















u(x + hzk) − u(x) − 1[−1,1](|z|)
d

∑

i=1

ziδh
i u(x)















u(x)dxπ1(dz) ≤ 0.

By Minkowski’s inequality, we have

‖Iδ;h(z)u‖2 ≤
∞
∑

k=0

1Bh
k
(z)|z|2

d
∑

i=1

‖δh,iu‖20 and ‖Iδc;h(z)u‖20 ≤ 4

∞
∑

k=0

1B̄h
k
(z)‖u‖20

and hence
∫

Rd

‖Ih(z)u‖20π2(dz) ≤ ς2(δ)

d
∑

i=1

‖δh,iu‖20 + 4π1({|z| > δ})‖u‖20,

which proves (4.28) for m = 0. The case m > 0 follows by replacing u with ∂γu for |γ| ≤ m.

This proves (4.26), which implies (4.27). �

Remark 4.1. It follows that for m ≥ 0, there is a constant N5 = N5(d,m,K, δ) such that for

any u ∈ Hm,

‖Nh
t u‖2m,ℓ2

+

∫

Rd

‖Ih(z)u‖2mπ2(dz) ≤ N5

d
∑

i=0

‖δh,iu‖2m (4.29)

≤ N5

(

1 +
4d

h2

)

‖u‖2m. (4.30)

Lemma 4.5. For any m ≥ 0 and u ∈ Hm,

‖Ĩh
δcu‖2m ≤ π1({|z| > δ})2‖u‖2m. (4.31)

Moreover, if Assumption 2.1 holds for some m ≥ 0, then for any ǫ > 0 and u ∈ Hm,

‖(Lh
t + Ih)u‖2m ≤ (1 + ε)

N3d

h2

d
∑

i=1

‖δh,iu‖2m + N4

(

1 +
1

h2

)

‖u‖2m (4.32)

where

N3 :=



















2

















sup
t,x,ω

d
∑

i, j=1

|ai j(x)|2
















1/2

+ ς1(δ)



















2

and N4 is a constant depending only on d,m,K, δ, and ǫ.



Auxiliary results 20

Proof. It suffices to prove the lemma for u ∈ C∞c (Rd). It follows that

(Lh
t + Ih

δ )u(x) =

∞
∑

k=0

χ(h,k)
∑

l=1

θ̄h,k

l

d
∑

i, j=1

ζ̂
i j

t,h,k
(x)δh,iδ−h, ju(x + hzr

h,k
l

) +

d
∑

i, j=0

i or j=0

a
i j
t δh,iδ−h, ju(x)

where ζ̂
i j

t,h,k
(x) := ζ

i j

h,k
for k , 0 and ζ̂

i j

t,h,0
(x) := ζ

i j

h,0
+ 2a

i j
t (x) (recall that θ̄h,0

1
= 1

2
and χ(h, 0) =

1). Moreover, for each multi-index γ with 1 ≤ |γ| ≤ m,

∂γ(Lh
t + Ih

δ )u(x) =

∞
∑

k=0

χ(h,k)
∑

l=1

θ̄h,k

l

d
∑

i, j=1

ζ̂
i j

h,k
(x)δh,iδ−h, j∂

γu(x + hzr
h,k
l

)

+
∑

{β : β<γ}
N(β, γ)

d
∑

i, j=1

(

∂γ−βa
i j
t (x)

)

δh,iδ−h, j∂
βu(x)

+
∑

{β : β≤γ}
N(β, γ)

d
∑

i, j=0

i or j=0

((

∂γ−βa
i j
t (x)

)

δh,iδ−h, j∂
βu(x)

)

=: (A1(γ) + A2(γ) + A3(γ))u(x),

where N(β, γ) are constants depending only on β and γ. By Young’s inequality and Jensen’s

inequality, for any ǫ ∈ (0, 1), we have

‖(Lh
t + Ih)u‖2m ≤ (1 + ǫ)

∑

|γ|≤m

‖A1(γ)u‖20

+3

(

1 +
1

ǫ

)

















∑

|γ|≤m

(

‖A2(γ)u‖20 + ‖A3(γ)u‖20
)

+ ‖Ih
δcu‖2m

















.

Applying Minkowski’s inequality and the Cauchy-Bunyakovsky-Schwarz inequality and

noting that
∑χ(h,k)

l=1
θ̄h,k

l
= 1

2
and

||δh,i∂
βu||0 ≤

2

h
||∂βu||0; ∀i ∈ {0, 1 . . . , d}, ∀|β| = m,

we obtain

‖A1(γ)u‖0 ≤
∞
∑

k=0

χ(h,k)
∑

l=1

θ̄
h,k

l

















sup
t,x,ω

d
∑

i, j=1

∣

∣

∣ζ̂
i j

h,k
(x)

∣

∣

∣

2

















1/2 















d
∑

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

δh,iδ−h, ju(· + hzr
h,k

l
)
∣

∣

∣

∣

∣

∣

∣

∣

2

m

















1/2

≤
√

d

h

∞
∑

k=0

















sup
t,x,ω

d
∑

i, j=1

|ζ̂ i j

h,k
(x)|2

















1/2 













d
∑

i=1

‖δh,i∂
γu‖20















1/2
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and

∞
∑

k=0

















sup
t,x,ω

d
∑

i, j=1

|ζ̂ i j

h,k
(x)|2

















1/2

=

















sup
t,x,ω

d
∑

i, j=1

∣

∣

∣

∣

∣

∣

∫

Bh
0

ziz jπ1(dz) + 2a
i j
t (x)

∣

∣

∣

∣

∣

∣

2
















1/2

+

∞
∑

k=1

















d
∑

i, j=1

∣

∣

∣

∣

∣

∣

∫

Bh
k

ziz jπ1(dz)

∣

∣

∣

∣

∣

∣

2
















1/2

≤ 2

















sup
t,x,ω

d
∑

i, j=1

|ai j
t (x)|2

















1/2

+ ς(δ).

Thus,
∑

|γ|≤m

||A1(γ)u||20 ≤
N3d

h2

d
∑

i=1

‖∂h,iu‖2m.

Another application of the Cauchy-Bunyakovsky-Schwarz inequality and

Minkowski’s inequality, combined with the inequalities

||δh,i∂
βu||0 ≤ ||∂i∂

βu||0 ∀i ∈ {0, 1 . . . , d}, ∀|β| ≤ m − 1,

||δh,iδ−h, j∂
βu||0 ≤ ||∂i j∂

βu||0, ∀; i, j ∈ {1, . . . , d}, ∀|β| ≤ m − 2,

and

||δh,iδ−h, j∂
βu||0 ≤

2

h
‖δh,iu‖m, ∀; i, j ∈ {1, . . . , d}, ∀|β| = m − 1,

yields
∑

|γ|≤m

(

‖A2(γ)u‖20 + ‖A3(γ)‖20
)

≤ N

(

1 +
1

h2

)

||u||2m .

By Minkowski’s integral inequality, we have

‖Ih
δcu‖m ≤

∫

Rd

∞
∑

k=0

1
B

h

k

‖u(· + hzk) − u − 1[−1,1](z)

d
∑

i=1

ziδh,iu‖mπ1(dz)

≤ 3

















π1({|z| > δ}) +
2d

∫

δ<|z|≤1
|z|π1(dz)

h

















‖∂γu‖0.

It is also easy to see that (4.31) holds. Combining above inequalities, we obtain (4.32). �

The following theorem establishes the stability of the explicit approximate scheme (4.17).

Theorem 4.6. Let Assumption 2.1 hold with m ≥ 0 and Assumption 2.5 hold. Let F i ∈ Hm

for i ∈ {0, ..., d}, G ∈ Hm(ℓ2), and R ∈ Hm(π2). Consider the following scheme in Hm:

uh,τ
n = u

h,τ

n−1
+

∫

]tn−1,tn]















(Lh
tn−1
+ Ih)uh,τ

n−1
+

d
∑

i=0

δh,iF
i
t















dt +

∫

]tn−1,tn]

(

N̺;h
tn−1

u
h,τ

n−1
+G

̺
t

)

dw
̺
t

+

∫

]tn−1 ,tn]

∫

Rd

(

Ih(z)uh,τ

n−1
+ Rt(z)

)

q(dt, dz), n ∈ {1, . . . ,T },
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for any Hm−valued F0−measurable initial condition ϕ. If E‖ϕ‖2m < ∞, then there is a

constant N = N(d,m, κ,K, T, δ) such that

E max
0≤n≤T

‖uh,τ
n ‖2m + E

T
∑

n=0

τ

d
∑

i=0

‖δh,iu
h,τ
n ‖2m ≤ NE‖ϕ‖2m

+NE

∫ T

0

(

d
∑

i=0

‖F i
t‖2m + ‖Gt‖2m +

∫

Rd

‖Rt(z)‖2mπ2(dz)
)

dt. (4.33)

Proof. If E‖ϕ‖2m < ∞, then proceeding by induction on n and using Young’s and Jensen’s

inequality, Itô’s isometry, (4.32), and (4.30), we get that for all n ∈ {0, 1, . . . ,T }, E‖uh,τ
n ‖2m <

∞. Applying the identity ‖y‖2m − ‖x‖2m = 2(x, y − x)m + ‖y − x‖2m, x, y ∈ Hm, for each n ∈
{1, . . . ,T }, we obtain

‖uh,τ
n ‖2m = ‖uh,τ

n−1
‖2m +

6
∑

i=1

Ii(tn), (4.34)

where

I1(tn) := 2τ(uh,τ

n−1
,
(

Lh
tn−1
+ Ih

)

u
h,τ

n−1
)m + ‖η(tn)‖2m,

I2(tn) := 2

∫

]tn−1,tn]

d
∑

i=0

(uh,τ

n−1
, δh,iF

i
t)mdt,

I3(tn) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ
(

Lh
tn−1
+ Ih

)

u
h,τ

n−1
+

∫

]tn−1,tn]

d
∑

i=0

δh,iF
i
tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m

,

I4(tn) := 2

∫

]tn−1,tn]

(

u
h,τ

n−1
,N̺;h

tn−1
u

h,τ

n−1
+G

̺
t

)

m
dw

̺
t ,

I5(tn) := 2

∫

]tn−1,tn]

∫

Rd

(

u
h,τ

n−1
,Ih(z)uh,τ

n−1
+ Rt(z)

)

m
q(dt, dz),

I6(tn) := 2
(

τ(Lh
tn−1
+ Ih)uh,τ

n−1
, η(tn)

)

m
+ 2















∫

]tn−1,tn]

d
∑

i=0

δh,iF
i
tdt, η(tn)















m

,

and where

η(tn) :=

∫

]tn−1,tn]

(

N̺;h
tn−1

u
h,τ

n−1
+G

̺
t

)

dw
̺
t +

∫

]tn−1,tn]

∫

Rd

(

Ih(z)uh,τ

n−1
+ Rt(z)

)

q(dt, dz).

By virtue of Assumption 2.5, we fix q̃ > 0 and ǫ > 0 small enough such that

q := κ − ς(δ) − ǫ − (1 + ǫ)(1 + q̃)N3d
τ

h2
− q̃ > 0,
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where N3 is the constant in (4.5). Since the two stochastic integrals that define η are orthog-

onal square-integrable martingales, by Young’s inequality and (4.29), for all q > 0,

E‖η(tn)‖2m ≤ Eτ‖Nh
tn−1

u
h,τ

n−1
‖2m,ℓ2
+ Eτ

∫

Rd

‖Ih(z)uh,τ

n−1
‖2mπ2(dz) + qEτ

d
∑

i=0

‖δh,iu
h,τ

n−1
‖2m

+

(

1 +
N5

q

)

E

∫

]tn−1,tn]

(

‖Gt‖2m,ℓ2
+

∫

Rd

‖Rt(z)‖2mπ2(dz)

)

dt. (4.35)

Thus, taking q =
q̃

3
in (4.35), we have

EI1(tn) ≤ EτG
(m)
tl−1

(uh,τ

l−1
) +

q̃

3
Eτ

d
∑

i=0

‖δh,iu
h,τ

n−1
‖2m

+

(

1 +
3N5

q̃

)

E

∫

]tn−1,tn]

(

‖Gt‖2m,ℓ2
+

∫

Rd

‖Rt(z)‖2mπ2(dz)

)

dt.

Using (2.8) and Young’s inequality, we obtain

EI2(tn) ≤ q̃

3
Eτ

d
∑

i=0

‖δh,iu
h,τ

n−1
‖2m +

3

q̃
E

∫

]tn−1 ,tn]

d
∑

i=0

‖F i
t‖2mdt.

An application of Young’s inequality and (4.32) yields

EI3(tn) ≤ (1 + ǫ)(1 + q̃)N3d
τ

h2
Eτ

d
∑

i=1

‖δh,iu
h,,τ

n−1
‖2m + (1 + q̃)N4

(

τ +
τ

h2

)

Eτ‖uh,τ

n−1
‖2m

+(d + 1)

(

1 +
1

q̃

)

E

∫

]tn−1,tn]















τ‖F0
t ‖2m +

4dτ

h2

d
∑

i=1

‖F i
t‖2m















dt.

Making use of the estimate (4.30) and noting that E‖uh,τ
n ‖2m < ∞, G ∈ Hm(ℓ2), and R ∈

Hm(π2), we obtain EI4(tn) = EI5(tn) = 0. Moreover, as (Lh
tn−1
+ Ih)uh,τ

n−1
is Ftn−1

-measurable

and E(η(tn)|Ftn−1
) = 0, the expectation of first term in I6(tn) is zero, and hence by Young’s

inequality, for any q1 > 0,

EI6(tn) ≤ q1E‖η(tn)‖2m +
1

q1

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]tn−1,tn]

d
∑

i=0

δh,iF
i
tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m

.

Moreover, by Jensen’s inequality, (4.35), and (4.29), for any q1 > 0 and q > 0,

EI6(tn) ≤ (q1q + q1N5)Eτ

d
∑

i=0

‖δh,iu
h,τ

n−1
‖2m

+E

∫

]tn−1 ,tn]















(d + 1)τ

q1

‖F0
t ‖2m +

4d(d + 1)τ

q1h2

d
∑

i=1

‖F i
t‖2m















dt

+q1

(

1 +
N5

q

)

E

∫

]tn−1 ,tn]

(

‖Gt‖2m,ℓ2
+

∫

Rd

‖Rt(z)‖2mπ2(dz)

)

dt.
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We choose q and q1 such that q1q + q1N5 ≤ q̃/3. Thus, owing to (4.26), we have

EG
(m)
tn−1

(uh,τ

n−1
) +

(

q̃ + (1 + ǫ)(1 + q̃)N3d
τ

h2

)

Eτ

d
∑

i=1

‖δh,iu
h,τ

n−1
‖2m

≤ −qEτ

d
∑

i=1

‖δh,iu
h,τ

n−1
‖2m + N1Eτ||uh,τ

n−1
||2m.

Taking the expectation of both sides of (4.34), summing-up, and combining the above in-

equalities and identities, we find that there is a constant N = N(d,m, κ,K, δ) such that for all

n ∈ {0, 1, . . . ,T },

E‖uh,τ
n ‖2m ≤ E‖ϕ‖2m − qE

n
∑

l=1

τ

d
∑

i=1

‖δh,iu
h,τ

l−1
‖2m +

(

N1 + q̃ + (1 + q̃)N4

(

τ +
τ

h2

))

E

n
∑

l=1

τ‖uh,τ

l−1
‖2m

+N

(

τ +
τ

h2

)

E

∫

]0,tn]

d
∑

i=0

‖F i
t‖2mdt + NE

∫

]0,tn]

(

‖Gt‖2m,ℓ2
+

∫

Rd

‖Rt(z)‖2mπ2(dz)

)

dt.

Therefore, by discrete Gronwall’s inequality, there is a constant N = N(d,m, κ,K, T, δ) such

that

E‖uh,τ
n ‖2m + E

n
∑

l=0

τ

d
∑

i=0

‖δh,iu
h,τ

l
‖2m ≤ NE‖ϕ‖2m

+NE

∫

]0,T ]















d
∑

i=0

‖F i
t‖2m + ‖Gt‖2m,ℓ2

+

∫

Rd

‖Rt(z)‖2mπ2(dz)















dt. (4.36)

Now that we have proved (4.36), we will show (4.33). Estimating as we did above, we get

that there is a constant N such that

E max
0≤n≤T

n
∑

l=1

(I1(tl) + I2(tl) + I3(tl) + I6(tl)) ≤ NE

T−1
∑

l=0

τ

d
∑

i=0

‖δh,iu
h,τ

l
‖2m

+NE

∫

]0,T ]















d
∑

i=0

‖F i
t‖2m + ‖Gt‖2m,ℓ2

+

∫

Rd

‖Rt(z)‖2mπ2(dz)















dt.

Applying the Burkholder-Davis-Gundy inequality and Young’s inequality, we obtain

E max
0≤n≤T

n
∑

l=1

I5(tl) ≤ 6E

∣

∣

∣

∣

∣

∣

∣

n
∑

l=1

∫

]tn−1,tn]

∫

Rd

(

uh,τ

n−1
,Ih(z)uh,τ

n−1
+ Rt(z)

)2

m
π2(dz)dt

∣

∣

∣

∣

∣

∣

∣

1/2

≤ 1

4
E max

0≤n≤T
‖uh,τ

n ‖2m + N















E

T−1
∑

l=0

τE‖δh,iu
h,τ

l
‖2m + E

T−1
∑

l=0

τE‖uh,τ

l
‖2m















+NE

∫

]0,T ]

∫

Rd

‖Rt(z)‖2mπ2(dz)dt.
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We can estimate E max0≤n≤T
∑n

l=1 I4(tl) in similar way. Combining the above E max0≤n≤T -

estimates and (4.36), we obtain (4.33). �

The following theorem establishes the existence and uniqueness of a solution to (4.18) and

the stability of the implicit-explicit approximation scheme.

Theorem 4.7. Let Assumption 2.1 hold with m ≥ 0. Let F i ∈ Hm for i ∈ {0, ..., d}, G ∈ Hm(ℓ2)

and R ∈ Hm(π2). Then there exists a constant R = R(d,m, κ,K, δ) such that if T > R, then

for any h , 0, there exists a unique Hm-valued solution (vh,τ
n )T

n=0
of

vh,τ
n = vh,τ

n−1
+

∫

]tn−1 ,tn]















(L̃h
tn
+ Ih

δ )vh,τ
n + Ĩh

δcv
h,τ

n−1
+

d
∑

i=0

δh,iF
i
t















dt

+

∫

]tn−1 ,tn]

(

1n>1N̺;h
tn−1

v
h,τ

n−1
+G

̺
t

)

dw
̺
t

+

∫

]tn−1 ,tn]

∫

Rd

(

1n>1Ih(z)vh,τ

n−1
+ Rt(z)

)

q(dt, dz), (4.37)

for n ∈ {1, . . . ,T }, for any Hm−valued F0−measurable initial condition ϕ. Moreover, if

E‖ϕ‖|2m < ∞, then there is a constant N = N(d,m, κ,K, T, δ) such that

E max
0≤n≤T

‖vh,τ
n ‖2m + E

T
∑

n=0

τ

d
∑

i=0

‖δh,iv
h,τ
n ‖2m ≤ NE‖ϕ‖2m

+NE

∫ T

0















d
∑

i=0

‖F i
t‖2m + ‖Gt‖2m +

∫

Rd

‖Rt(z)‖2mπ2(dz)















dt. (4.38)

Proof. For each n ∈ {1, . . . ,T }, we write (4.37) as

Dnvh,τ
n = yn−1,

where Dn is the operator defined by

Dnφ := φ − τ
(

L̃h
tn
+ Ih

δ

)

φ

and

yn−1 := v
h,τ

n−1
+

∫

]tn−1 ,tn]















Ĩh
δcv

h,τ

n−1
+

d
∑

i=0

δh,iF
i
t















dt +

∫

]tn−1,tn]

(

1n>1N̺;h
tn−1

v
h,τ

n−1
+G

̺
t

)

dw
̺
t

+

∫

]tn−1 ,tn]

∫

Rd

(

(1n>1Ih(z)vh,τ

n−1
+ Rt(z)

)

q(dt, dz).

Fix ǫ1 and ǫ2 in (0, 1) such that

q1 := κ − ς1(δ) − ǫ1 > 0.



Auxiliary results 26

and

q2 := κ − ς(δ) − ǫ2 > 0.

Owing to Lemma 4.5, there is a constant N = N(d,m,K, δ) such that for all φ ∈ Hm,

‖Dnφ‖2m ≤ N

(

1 + τ2

(

1

h2
+

1

h4

))

‖φ‖2m. (4.39)

Assume T > T N2. By (4.27), for all φ ∈ Hm, we have

(φ,Dnφ)m ≥ (1 − τN2)‖φ‖2m + q1τ

d
∑

i=1

‖δh,iφ‖2m ≥ (1 − τN2)‖φ‖2m. (4.40)

Using Jensen’s inequality and (4.31), we get

‖y0‖2m ≤ 5
(

1 + π1({|z| > δ})2τ2
)

‖φ‖2m +
20τ

h2

∫

]0,t1]

d
∑

i=0

‖F i
t‖2mdt + 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]0,t1]

G
̺
t dw

̺
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m

+ 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]0,t1]

∫

Rd

Rt(z)q(dt, dz)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m

. (4.41)

Since ϕ ∈ Hm, F i ∈ Hm, i ∈ {0, 1, . . . , d}, G ∈ Hm(ℓ2), and R ∈ Hm(π2), it follows that

y0 ∈ Hm. By (4.39), and (4.40), owing to Proposition 3.4 in [12] (p = 2), there exists a

unique v
h,τ

1
in Hm such that D1v

h,τ

1
= y0, and moreover

‖vh,τ

1
‖2m ≤ 1 +

‖y0‖2m
(1 − τN2)2

< ∞. (4.42)

Proceeding by induction on n ∈ {1, . . . ,T }, one can show that there exists a unique v
h,τ
n in

Hm such that Dnvh,τ
n = yn−1, and moreover

‖vh,τ
n ‖2m ≤ 1 +

‖yn−1‖2m
(1 − τN2)2

< ∞. (4.43)

Assume that E‖ϕ‖2m < ∞. By (4.41) and (4.42) and the fact that f i ∈ Hm, i ∈ {0, 1, . . . , d},
g ∈ Hm(ℓ2), and r ∈ Hm(ν), it follows that E‖vh,τ

1
‖2m < ∞. By Jensen’s inequality, (4.31), and

(4.30), we have

E‖yn−1‖2m ≤ 7N

(

1 + π1({|z| > δ})2τ2 + 1n>1τ

(

1 +
1

h2

))

E‖vh,τ

n−1
‖2m

+
28τ

h2
E

∫

]0,t1]

d
∑

i=0

‖F i
t‖2mdt + 7E

∫

]0,t1]

‖Gt‖2m,ℓ2
dt + 7E

∫

]0,t1]

∫

Rd

‖Rt(z)‖2mπ2(dz)dt. (4.44)

Proceeding by induction on n and combining (4.43) and (4.44), we obtain

E‖vh,τ
n ‖2m < ∞, ∀n ∈ {0, 1, . . . ,T }. (4.45)
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Applying the identity ‖y‖2m −‖x‖2m = 2(x, y− x)m + ‖y− x‖2m, x, y ∈ Hm, for any n ∈ {1, . . . ,T },
we have

‖vh,τ
n ‖2m = ‖vh,τ

n−1
‖2m +

6
∑

i=1

Ii(tn),

where

I1(tn) := 2τ(vh,τ
n ,

(

L̃h
tn
+ Ih

δ

)

vh,τ
n )m + 2τ(vh,τ

n−1
, Ĩh
δcv

h,τ

n−1
)m + ‖η(tn)‖2m,

I2(tn) := 2

∫

]tn−1,tn]

d
∑

i=0

(uh,τ
n , δh,iF

i
t)mdt,

I3(tn) := −
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ
(

L̃h
tn
+ Ih

δ

)

vh,τ
n +

d
∑

i=0

∫

[tn−1,tn]

δh,iF
i
tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m

+
∣

∣

∣

∣

∣

∣Ĩh
δcv

h,τ

n−1

∣

∣

∣

∣

∣

∣

2

m
τ2,

I4(tn) := 2

∫

]tn−1,tn]

(

vh,τ

n−1
, 1n>1N̺;h

tn−1
vh,τ

n−1
+G

̺
t

)

m
dw

̺
t ,

I5(tn) := 2

∫

]tn−1 ,tn]

∫

Rd

(

vh,τ

n−1
, 1n>1Ih(z)vh,τ

n−1
+ Rt(z)

)

m
q(dt, dz),

I6(tn) :=
(

τĨh
δcv

h,τ

n−1
, η(tn)

)

m
,

and where

η(tn) :=

∫

]tn−1,tn]

(

1n>1N̺;h
tn−1

vh,τ

n−1
+G

̺
t

)

dw
̺
t +

∫

]tn−1,tn]

∫

Rd

(

1n>1Ih(z)vh,τ

n−1
+ Rt(z)

)

q(dt, dz).

As in the proof Theorem 4.6, by Young’s inequality, (4.26), and (4.31), we have

E‖vh,τ
n ‖2m ≤ (1 + 2π1({|z| > δ})) E‖ϕ‖2m − q2E

n
∑

l=1

τ

d
∑

i=1

‖δh,iv
h,τ

l
‖2m

+ E

n
∑

l=1

τ
(

N2 + 2π1({|z| > δ}) + τπ1({|z| > δ})2
)

‖vh,τ

l
‖2m

+ NE

∫

]0,tn]















d
∑

i=0

‖F i
t‖2mdt + ‖Gt‖2m,ℓ2

+

∫

Rd

‖Rt(z)‖2mπ2(dz)















dt.

Set

Z := N2 + 2π1({|z| > δ}),

R := max















2π1({|z| > δ})2

√

Z2 + 4π1({|z| > δ}2 − Z
,N2















T.

Assume T > R. Making use of (4.45) and applying discrete Gronwall’s lemma, we get that

there exist a constant N(d,m,K, κ, T, δ) such that

E‖vh,τ
n ‖2m + E

n
∑

l=1

τ

d
∑

i=0

‖δh,iv
h,τ

l
‖2m ≤ NE‖ϕ‖2m



Proof of the main results 28

+NE

∫

]0,T ]















d
∑

i=0

‖F i
t‖2m + ‖Gt‖2m,ℓ2

+

∫

Rd

‖Rt(z)‖2mπ2(dz)















dt. (4.46)

Using (4.31) instead of (4.32), we obtain (4.38) from (4.46) in the same manner as Theorem

4.6. Note that no bound on τ/h2 is needed in this case. �

5 Proof of the main results

Proof of Theorem 2.1. By virtue of Theorems 2.9, 2.10, and 4.1 in [6], in order to obtain the

existence, uniqueness, regularity, and the estimate (2.7), we only need to show that (2.3) may

be realized as an abstract stochastic evolution equation in a Gelfand triple and that the growth

condition and coercivity condition are satisfied. Indeed, since (2.3) is a linear equation, the

hemicontinuity condition is immediate and monotonicity follows directly from the coercivity

condition. By Holder’s inequality and Assumption 2.1(i), for u, v ∈ H1, we have

d
∑

i, j=0

(

∂ ju, (v∂−ia
i j
t + ai j∂−iv)

)

0
+

∫

|z|>δ

















u(· + z) − u − 1[−1,1](|z|)
d

∑

j=1

z j∂ ju, v

















0

π1(dz)

+

∫

|z|≤δ

∫ 1

0

d
∑

i, j=1

(

z j∂ ju(· + θz), zi∂−iv
)

0
(1 − θ)dθπ1(dz) ≤ N‖u‖1‖v‖1.

Therefore, since the pairing [·, ·]0 brings (H1)∗ and H−1 into isomorphism, for each (ω, t) ∈
[0, T ] × Ω, there exists a linear operator Ãt : H1 → H−1 such that [v, Ãtu]0 agrees with the

left-hand-side of the above inequality and for u, v ∈ H1, ‖Ãtu‖−1 ≤ N‖u‖1. By Assumption

2.2, the operator A defined by A(u) = Ãu + f , maps H1 to H−1 and for u ∈ H1, ‖At(u)‖−1 ≤
N(‖u‖1 + ‖ f ‖−1).

For an integer m ≥ 1, with abuse of notation, we write

(·, ·)m = ((1 − ∆)m/2·, (1 − ∆)m/2·)0.

and ‖ · ‖m for the corresponding norm in Hm. It is well known that the above inner product

and norm are equivalent to the ones introduced in Section 1. For each m ≥ 1 and for all

u ∈ Hm+1 and v ∈ Hm, we have (u, v)m ≤ ‖u‖m+1‖v‖m−1. Since Hm+1 is dense in Hm−1, we may

define the pairing [·, ·]m : Hm+1×Hm−1 → R by [v, v′]m = limn→∞(v, vn)m for all v ∈ Hm+1 and

v′ ∈ Hm−1, where (vn)∞
n=1
⊂ Hm+1 is such that ‖vn − v′‖m−1 → 0 as n → ∞. It can be shown

that the mapping from Hm−1 to (Hm+1)∗ given by v′ 7→ [·, v′]m is an isometric isomorphism.

For more details, see [22]. Therefore, for all m ≥ 0, (Hm+1,Hm,Hm−1) forms a Gelfand triple

with the pairing [·, ·]m.

For m ≥ 1 and all u ∈ Hm+1 and v ∈ Hm, using integration by parts, we get [v, At(u)]0 =

((Lt + It)u + f , v)0 = [v, (Lt+It)u+ f ]0. Since this is true for all v ∈ Hm, which is dense in H1,

the restriction of A to Hm+1 coincides with L+ I + f . Moreover, it can easily be shown under

Assumptions 2.1(i) and 2.2 that for all m ≥ 1 and u, v ∈ Hm+1, ‖At(u)‖m−1 ≤ N‖u‖m+1+‖ f ‖m−1,
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where N is a constant depending only on m, d,K, and ν, which shows that A satisfies the

growth condition. For u ∈ Hm, m ≥ 1, define B
̺
t (u) = b

i̺
t ∂iu + g

̺
t , Bt = (B

̺
t )∞
̺=1

, and

Cz(u) = u(·+ z)−u+ot(z), z ∈ Rd. Owing to Assumption 2.1 (i), Bt is an operator from Hm+1

to Hm(ℓ2). Furthermore, C is an operator from Hm+1 to L2(Rd, π2(dz); Hm) (see (5.48)). It is

also clear that A, B, and C are appropriately measurable. Thus, (2.3) may be realized as the

following stochastic evolution equation in the Gelfand triple (Hm+1,Hm,Hm−1):

ut = u0 +

∫

]0,t]

As(us)ds +

∫

]0,t]

B̺
s(us)dw̺

s +

∫

]0,t]

Cz(us−)q(dz, ds), (5.47)

for t ∈ [0, T ]. Let u ∈ C∞c (Rd). A simple calculation shows that there is a constant N = N(δ)

such that
∫

Rd

‖u(· + z) − u‖2mπ2(dz) ≤ ς2(δ)‖u‖2m+1 + N‖u‖2m. (5.48)

Applying Holder’s inequality and the identity (u, ∂ ju) = 0, we obtain

∫

|z|>δ′

















u(· + z) − u − 1[−1,1](|z|)
d

∑

j=1

z j∂ ju, u

















m

π1(dz) ≤ 0.

By the Holder’s inequality and the Cauchy-Bunyakovsky-Schwarz inequality, we have

2

∫

|z|≤δ′

∫ 1

0

d
∑

i, j=1

(

z j∂ ju(· + θz), zi∂−iu
)

m
(1 − θ)dθπ1(dz) ≤ ς1(δ)‖u‖2m+1.

There exists a constant ǫ = ǫ(κ, δ) such that

q := κ − ς(δ) − ǫ > 0.

As in Theorem 4.1.2 in [22] and Lemma 4.4, using Holder’s and Young’s inequalities, the

above estimates, and Assumption 2.1, we find that for each ǫ > 0, there is a constant N =

N(d,m, κ,K, T, δ) such that for all (ω, t) ∈ Ω × [0, T ],

2[u, At(u)]m + ‖Bt(u)‖2
m,l2
+

∫

Rd

‖Cz(u)‖2mπ2(dz) + q‖u‖2m+1

≤ N

(

‖u‖2m + ‖ ft‖m−1 + ‖gt‖m,ℓ2
+

∫

Rd

‖ot(z)‖2mπ2(dz)

)

.

Using the self-adjointness of (1 − ∆)1/2, the properties of the CBF [·, ·]m, and Assumption

2.2, for all v ∈ C∞c (Rd) and u ∈ Hm+1, m ≥ 1, we have

[v, A(u)]m = ((L + I)u, (1 − ∆)mv)0 + ( f , (1 − ∆)mv)0. (5.49)

Owing to (5.49) and the denseness of (1 −∆)−mC∞c (Rd) in H1, from Theorems 2.9, 2.10, and

4.1 in [6], we obtain the existence and uniqueness of a solution u of (2.3), such that u is a

càdlàg Hm-valued process satisfying (2.7). �
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Proof of Proposition 2.2. Let A, B, and C be as in (5.47). Owing to Assumption 2.1, the

boundedness of the m − 1-norm of g in expectation, and estimate (2.7), using Jensen’s in-

equality and Itô’s isometry, for s, t ∈ [0, T ], we get

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]s,t]

Ar(ur)ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m−1

≤ |t − s|
(

NE

∫

]0,T ]

‖ut‖2m+1dt + E

∫

]0,T ]

‖ fr‖2m−1dr

)

≤ N|t − s|,

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]s,t]

B̺
r (ur)dwρ

r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m−1

= E

∫

]s,t]

‖Br(ur)‖2m−1,ℓ2
dr

≤ N|t − s|
(

sup
t≤T

E‖ut‖2m + sup
t≤T

E‖gt‖m−1,ℓ2

)

≤ N|t − s|,

and

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

]s,t]

∫

Rd

Cz(ur−)q(dr, dz)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

m−1

= E

∫

]s,t]

∫

Rd

‖Cz(ur)‖2m−1π2(dz)ds

≤ N|t − s|
(

sup
t≤T

E‖ut‖2m + sup
t≤T

E

∫

Rd

‖ot(z)‖2m−1π2(dz)

)

≤ N|t − s|,

which completes the proof of the proposition. �

Theorem 5.1. Let Assumptions 2.1 through 2.5 hold for some m ≥ 2. Let u be the solution

of (2.3) and (uh,τ
n )T

n=0
be defined by (4.17). Then there is a constant N = N(d,m, κ,K, T,C,

λ, κ2
m, δ) such that

E max
0≤n≤T

‖utn − uh,τ
n ‖2m−2 + E

T
∑

n=0

τ

d
∑

i=0

‖δh,iutn − δh,iu
h,τ
n ‖2m−2ds ≤ N(|h|2 + τ). (5.50)

Proof. For t ∈ [0, T ], let κ1(t) := tn−1 for t ∈]tn−1, tn], and set e
h,τ
n := u

h,τ
n − utn . One can easily

verify that eh,τ
n satisfies in Hm−2,

eh,τ
n = e

h,τ

n−1
+

∫

]tn−1,tn]















(Lh
tn−1 + Ih)eh,τ

n−1
+

d
∑

i=0

δh,iF
i
t















dt +

∫

]tn−1,tn]

(

N̺;h
tn−1

e
h,τ

n−1
+G

̺
t

)

dw
̺
t

+

∫

]tn−1,tn]

∫

Rd

(

Ih(z)eh,τ

n−1
+ Rt(z)

)

q(dt, dz),

where

F0
t := (Lh

κ1(t) − Lκ1(t))ut + (Lκ1(t) − Lt)ut + (Ih − I)ut + ( fκ1(t) − ft) + Ih
δc(uκ1(t) − ut)

+

d
∑

j=1

a
0 j

κ1(t)
δ−h, j(uκ1(t) − ut) +

d
∑

i=0

ai0
κ1(t)δh,i(uκ1(t) − ut) −

d
∑

i, j=1

δ−h, j(uκ1(t) − ut)(· + h)δh,ia
i j

κ1(t)
,

F i
t :=

d
∑

j=1

a
i j

κ1(t)
δ−h, j(uκ1(t) − ut) +

∞
∑

k=0

χ(h,k)
∑

l=1

θ̄
k,h

l
ζ

i j

k,h
δ−h, j(uκ1(t) − ut)(· + hzr

h,k

l
)
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G
̺
t : = (N̺

κ1(t)
−N̺

t )ut + (N̺;h

κ1(t)
− N̺

κ1(t)
)ut +N̺

κ1(t)
(uκ1(t) − ut) + (g

̺

κ1(t)
− g

̺
t )

Rh
t (z) : =

(

Ih(z) − I(z)
)

ut− + Ih(z)(uκ1(t) − ut−) +
(

oκ1(t)(z) − ot(z)
)

.

By Theorem 4.6, we have

E max
0≤n≤T

‖eh,τ
n ‖2m−2 + E

T
∑

n=0

τ

d
∑

i=0

‖δh,ie
h,τ
n ‖2m−2

≤ NE

∫

]0,T ]

(

d
∑

i=0

‖F i
t‖2m−2 + ‖Gt‖2m−2,ℓ2

+

∫

Rd

‖Rt(z)‖2m−2π2(dz)
)

dt.

Using Lemmas 4.1, 4.2, and 4.3 and Assumptions 2.1(i) and 2.4, the right-hand-side of the

above relation can be estimated by

NE

∫

]0,T ]

(

|h|2‖ut‖2m+1 + |κ1(t) − t|‖ut‖2m + ‖uκ1(t) − ut‖2m−1

)

dt

+NE

∫

]0,T ]

(

‖ fκ1(t) − ft‖2m−2 + ‖gκ1(t) − gt‖m−2,ℓ2
+

∫

Rd

‖oκ1(t)(z) − ot(z)‖m−2π2(dz)

)

dt

where N depends only on d,m, κ,K,C, λ, T, δ and ν. By virtue of (2.7), Proposition 2.2, and

Assumption 2.3, we obtain (5.50), which completes the proof. �

Theorem 5.2. Let Assumptions 2.1 through 2.4 hold with m ≥ 2 and let u be the so-

lution of (2.3). There exists a constant R = R(d,m, κ,K, δ) such that if T > R, then

there exists a unique solution (vh,τ)T
n=0

of (4.18) in Hm−2. Moreover, there is a constant

N = N(d,m, κ,K, T,C, λ, κ2
m, δ) such that

E max
0≤n≤T

‖utn − vh,τ
n ‖2m−2 + E

T
∑

n=0

τ

d
∑

i=0

‖δh,iutn − δh,iv
h,τ
n ‖2m−2ds ≤ N(|h|2 + τ). (5.51)

Proof. The existence and uniqueness follows directly from Theorem 4.7. Let κ1(t) be as in

the previous proof and set κ2(t) = tn for t ∈]tn−1, tn]. Let G and R be defined as in Theorem

5.1 and define F̄ i to be F i with κ1(t) replaced with κ2(t). Set e
h,τ
n = v

h,τ
n − utn . As in the proof

of Theorem 5.1, we have

eh,τ
n = e

h,τ

n−1
+

∫

]tn−1,tn]















(L̃h
tn
+ Ih

δ )eh,τ
n + Ĩh

δce
h,τ

n−1
+

d
∑

i=0

δh,iF̃
i
t















dt

+

∫

]tn−1,tn]

(

1n>1N̺;h
tn−1

eh,τ

n−1
+ G̃

̺
t

)

dw
̺
t +

∫

]tn−1,tn]

∫

Rd

(

1n>1Ih(z)eh,τ

n−1
+ R̃t(z)

)

q(dt, dz),
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where

F̃ i = F̄ i, for i , 0, F̃0 = F̄0 + Ĩh
δc(uκ1(t) − uκ2(t)),

G̃
̺
t = 1t≤t1(N

̺
t ut + g

̺
t ) + 1t>t1G

̺
t , R̃t(z) = 1t≤t1I(z)ut− + 1t>t1 Rt(z).

By Theorem 4.7, we have

E max
0≤n≤T

‖eh,τ
n ‖2m−2 + E

T
∑

n=0

τ

d
∑

i=0

‖δh,ie
h,τ
n ‖2m−2 ≤ N(A1 + A2 + A3),

where

A1 := E

∫

]0,T ]

d
∑

i=0

‖F̄ i
t‖2m−2dt +

∫

]t1 ,T ]

(

‖Gt‖2m−2,ℓ2
+

∫

Rd

‖Rt(z)‖2m−2π2(dz)

)

dt,

A2 := E

∫

]0,T ]

‖Ĩh
δc(uκ1(t) − uκ2(t))‖2m−2dt

A3 := E

∫

]0,t1]

(

‖Mtut + gt‖2m−2,ℓ2
+

∫

Rd

‖I(z)ut + ot(z)‖2m−2π2(dz)

)

dt.

As in the proof of Theorem 5.1, we have A1 ≤ N(|h|2 + τ). By Proposition 2.2, we get

A2 ≤ NE

∫ T

0

‖uκ1(t) − uκ2(t)‖2m−1dt ≤ Nτ.

Owing to (2.3), we have

A3 ≤ NE

∫ t1

0

(

‖ut‖2m−1 + ‖gt‖2m−2,ℓ2
+

∫

Rd

‖ot(z)‖2m−2π2(dz)

)

dt

≤ NτE

∫ t1

0

(

sup
t≤T

‖ut‖2m−1 + ξ

)

dt ≤ Nτ.

Combining the above estimates yields (5.51). �

By virtue of Sobolev’s embedding theorem and (2.13), as in [10], we obtain the following

corollaries of Theorem 5.1 and Theorem 5.2.

Corollary 5.3. Let l ≥ 0 be an integer. Suppose the assumptions of Theorem 5.1 hold with

m > l + 2 + d/2. Then for all λ = (λ1, . . . , λl) ∈ {1 . . . , d}l and δh,λ = δh,λ1 · · · δh,λl , there is a

constant N = N(d,m, l, κ,K, T,C, λ, κ2
m, δ) such that

E max
0≤n≤T

sup
x∈Rd

|δh,λutn(x) − δh,λu
h,τ
n (x)|2 + E max

0≤n≤T
‖δh,λutn − δh,λu

h,τ
n ‖2ℓ2(Gh) ≤ N(|h|2 + τ).



Proof of the main results 33

Corollary 5.4. Let l ≥ 0 be an integer. Suppose the assumptions of Theorem 5.2 hold with

m > l + 2 + d/2. Then for all λ = (λ1, . . . , λl) ∈ {1 . . . , d}l and δh,λ = δh,λ1 · · · δh,λl , there is a

constant N = N(d,m, l, κ,K, T,C, λ, κ2
m, δ) such that

E max
0≤n≤T

sup
x∈Rd

|δh,λutn(x) − δh,λv
h,τ
n (x)|2 + E max

0≤n≤T
‖δh,λutn − δh,λv

h,τ
n ‖2ℓ2(Gh) ≤ N(|h|2 + τ).

Proof of Theorems 2.3 and 2.4. Let (ûh,τ
n )M

n=0 be defined by (2.11). Denote by (·, ·)ℓ2(Gh) the

inner product of ℓ2(Gh). There exists a constant ǫ = ǫ(κ, δ) such that

q := κ − ς1(δ) − ǫ > 0.

As in (4.27), there is a constant N6 = N6(d, κ,K, δ) such that for all φ ∈ ℓ2(Gh),

(φ, L̃h
t φ)ℓ2(Gh) + (φ, Ih

δφ)ℓ2(Gh) ≤ −q

d
∑

i=1

‖δh,iφ‖2ℓ2(Gh) + N6‖φ‖2ℓ2(Gh).

Following the arguments in the beginning of the proof of Theorem 4.7, we conclude that if

T > N6T , then there exists a unique solution (v̂h,τ
n )M

n=0 in ℓ2(Gh) of (2.12). It is easy to see

that N6 < N2 (for the same choice of ǫ) for all m > 0, where N2 is the constant appearing on

the right-hand-side of (4.27), and hence N6 < R, where R is as in Theorem 4.7. Let (uh,τ
n )M

n=1

be defined by (4.17). By Theorem 5.2, there exists a unique solution (vh,τ
n )M

n=1
of (4.18). It

suffices to show that almost surely,

uh,τ
n (x) = ûh,τ

n (x) (5.52)

and

vh,τ
n (x) = v̂h,τ

n (x), (5.53)

for all n ∈ {0, ..., M} and x ∈ Gh. Let S : Hm−2 → ℓ2(Gh) denote the embedding from

Remark 2.3. Applying S to both sides of (4.17), one can see that S uh,τ and ûh,τ satisfy the

same recursive relation in ℓ2(Gh) with common initial condition ϕ, and hence (5.52) follows.

Similarly, S vh,τ and v̂h,τ satisfy the same equation in ℓ2(Gh) and (5.53) follows from the

uniqueness of the ℓ2(Gh) solution of (2.12). �

Remark 5.1. It follows from Corollaries 5.3, 5.4, and relations (5.52) and (5.53) that if more

regularity is assumed of the coefficients and the data of the equation (2.3), then better esti-

mates can be obtained than the ones presented in Theorems 2.3 and 2.4.
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