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ENTROPY SOLUTIONS FOR STOCHASTIC POROUS MEDIA
EQUATIONS

K. DAREIOTIS, M. GERENCSER, AND B. GESS

ABSTRACT. We provide an entropy formulation for porous medium-type equa-
tions with a stochastic, non-linear, spatially inhomogeneous forcing. Well - posed-
ness and Li-contraction is obtained in the class of entropy solutions. Our scope
allows for porous medium operators A(|u|™ 'u) for all m € (1,00), and Holder
continuous diffusion nonlinearity with exponent 1/2.

1. INTRODUCTION

We consider degenerate quasilinear stochastic partial differential equations (SPDEs),

with the stochastic porous medium equation

Assuming sufficient regularity on o

du(t, z) = A(Ju(t, z)|™ tu(t, ) dt + Zak(x, u(t,z))ds*(t) on (0,T) x T,
k=1
u(0,z) = &(x) on T¢, (1.1)

for m € (1,00) as a model example. Here T > 0 denotes the time horizon, T? is
the d-dimensional torus, 8* are independent Wiener processes and ¢ € L™T1(T9).

k we prove the well-posedness of entropy solutions
to (L.1) (cf. Theorem 2.1 below). This is the first time that well-posedness for (L.1]

can be shown in the full range m € (1, 00).

with respect to the nonlinearity A, the diffusion terms o

Equation (1.1]) is viewed as a special case of a class of SPDE of the type

du(t,z) = AA(u(t,z)) dt + ia%x,u(tw)) dg*(t) on (0,T) x T4,
k=1 (1.2)
u(0,2) = &(x) on T¢.

In addition to well-posedness, we show the stability of the solution map of
kand the initial condition
¢ (cf. Theorem below). More precisely, assuming that A,, of, and &, satisfy
appropriate regularity assumptions and converge to A, o”, and &, respectively, we
show that the corresponding solutions to converge in L'(Q x (0,T) x T9).

Stochastic porous media equations ([1.1)) have attracted considerable interest in

recent years (cf. e.g. [RRWO7, BDPROS8, PR07, BDPR16, [GH18, DHV16, IGS17,
BVWI15| and the references therein) and different approaches, for example based
on monotonicity in H~ ', based on entropy solutions and based on kinetic solutions
have been developed. When applied to the case of Nemytskii type diffusion co-

efficients as in (|1.1)), the established results either lead to strong assumptions on
the diffusion coefficients o (cf. Section below for more details), or the porous
1
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medium equation could not be treated in its full regimeE], e.g. [BVW15, [GHIS)]
were restricted to m > 2. It is one of the main contributions of this work to dis-
pense of this restriction and to treat in the full range m € (1, 00) under mild
assumptions on the Nemytskii type diffusion coefficients o.

The approach to developed in this work relies on a notion of entropy solu-
tions similar to [CKO05] in the deterministic case. In the class of entropy solutions,
we prove an Li-contraction estimate, as well as a generalized L'-stability estimate.
The key point of the proof is the derivation of sharp bounds on the errors intro-
duced by variable doubling in the proof of uniqueness/stability. This relies on a
careful analysis of the degenerate behavior of the porous medium operator at small
values of u, by means of an interpolation argument. Due to the aforementioned
stability estimates, in the proof of existence of entropy solutions we are able to pass
to the limit in approximating equations without using any compactness argument.
In particular, unlike many previous works mentioned below, this argument does not
rely on probabilistically weak solutions, which may prove useful when dealing with
equations with random coefficients.

1.1. Literature. Equations of the type and stochastic porous media equation
in particular have attracted a lot of interest in the recent years. Given the vast
literature on the subject, we will only mention some of the most relevant works for
the present paper and refer to the monographs [PR07, [LR15, [DPZ14. BDPR16] for
a more complete account of the literature.

In [Par75, KR79, RRWO07, [PRO7] a monotone operator approach is employed
based on the pivot space H~'. When applied to the particular case of Nemytskii
type diffusion coefficients, the resulting general abstract conditions could be veri-
fied if o* are affine linear functions of u, since otherwise the maps u ~ o*(u) are
not known to be Lipschitz continuous in H~!, even if o is smooth. In order to
relax this assumption on o”, alternative approaches based on L!-techniques have
been introduced. In the deterministic setting, this has been realized via the theory
of accretive operators going back to Crandall-Ligget |[CL7I] (cf. e.g. [Barl0]), en-
tropy solutions due to Otto [Ott96], Kruzkov [Kru70] and kinetic solution by Lions,
Perthame, Tadmor [LPT94] and Chen, Perthame [CP03]. For continuation in this
direction we refer to [Car99], [CK05], [BR18b] and references therein.

In the stochastic setting, an entropy formulation was first introduced in [Kim03]
for stochastic conservation laws. Works that followed in this direction include
[BVW12| [FN08, BM14) [KS17]. A kinetic solution theory was developed in [DV10,
DHV16, (GHI8|, IGS17, [FG18, [FG17]. For existing work concerning kinetic/entropy
solutions to stochastic degenerate parabolic equations we refer to [Hof13, [DHV16],
and to the more recent works [BVW15, (GHIS8]. In [BVWI5], A is assumed to be
globally Lipschitz-continuous. Moreover, when o is Lipschitz continuous in (z,u),
a behaviour A(u) ~ |u[™ lu near the origin is allowed only for m > 2. In [GHIS],
the condition on the boundedness of A’ is dropped, and by using a kinetic formu-
lation, well-posedness is proved under the condition that o is Lipschitz in (x,u)
and \/A’(u) is y-Holder continuous with v > 1/2. In particular, in the case of the
porous medium operator, this forces the condition m > 2.

1t should be noted that in other regards, e.g. boundary data, lower order terms etc., some of
the mentioned works address more difficult situations than considered here. We focus only on their

applicability to (1.1).
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A different approach to stochastic porous media equations based on L'-techniques
and also allowing for a first order divergence part has recently been developed in
[BR18a].

At last, the interested reader may find various and far reaching treatments of
stochastic porous media equations in different settings (various types of boundary
conditions, general nonlinearities, nonlocal diffusions, different driving processes,
regularity) in the works [BDPRI16, RRWO07, Barl5, BRR15, BRI5, [GT14l [Ges12]
BR12 Barl0, BM09] and the references therein.

1.2. Notation. We fix a filtered probability space (€2, (Ft);c(o,7], P), carrying an
infinite sequence of independent Wiener processes (3%(t)) keN, tejo,7]- Introduce the
shorthand notations Q7 = Qx [0, T], Qr = [0, T]x T¢. Lebesgue and Sobolev spaces
are denoted in the usual way by L, and Wf, respectively. When a function space
is given on 2 or Qr, we understand it to be defined with respect to F := Fr and
the predictable o-algebra, respectively. In all other cases the usual Borel o-algebra
will be used.

We fix a non-negative smooth function p : R +— R which is bounded by 2,
supported in (0, 1), and integrates to 1. We use the notation pg(r) = 0~ 1p(6~1r),
which will most often be our mollifier sequence. When smoothing in time, the
property that p is supported on positive times will be very convenient. For spatial
regularisation this will be irrelevant, but for the sake of simplicity, we often use pg@d
for smoothing in space as well.

We will encounter many multiple integrals on a regular basis. To shorten nota-
tion, we often write [, in place of f(;[ dt (and similarly for [)), as well as [ in place
of [pa dz (and similarly for [ ), and [, in place of [; da. Whenever the integral
is taken on a different domain, with respect to a different variable, or is a stochas-
tic integral, we use the usual notation to avoid confusion. In the proofs we will
often use the notation a < b for a,b € R, which means a < Nb for some constant
N > 0, the dependence of which on certain parameters is specified in the corre-
sponding statement. Summation with respect to repeated indices (most commonly
over k € N) is often used.

2. FORMULATION AND MAIN RESULTS

We denote by £(A, 0,&) the Cauchy problem (|1.2)) and set

a(r) = VA, () = /Ora@)dc.

Following [CP03| we formulate conditions on the nonlinearity A via assumptions
on ¥, with some constants m > 1, K > 1, which we consider fixed throughout the
article. We also fix x € (0,1/2], and % € ((m A 2)~1, 1], standing for the regularity
exponents for o.

Assumption 2.1. The following hold:

(a) The function A : R — R is differentiable, strictly increasing and odd. The
function a is differentiable away from the origin, and satisfies the bounds

a(0)| < K, |d(r)| < KJr|™ ifr>0, (2.1)
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as well as
roql ViG>,
Ka) > fppsr, K00 =901 > {0 (22)

(b) The initial condition ¢ is an Fy-measurable Ly, 1(T¢)-valued random variable
such that I[:?J||§Hm+1 (Tay < 00

Assumption 2.2. One of the following holds:

(a) The function o : T¢ x R + [y satisfies the bounds, for all 7 € R, ¢ € [r—1,7+1],
z,y €T

|U(ZC,7“)‘12 < K(l + ‘T|)>
(2, 7) — oy, Oliy < Klr — ¢Y*™ + K1+ |r])]|z — yl~.
(b) The function o : R +— /o satisfies the bounds, for all r e R, ( € [r — 1,7 + 1],
lo(r), < K@ +]r]), |o(r) —a(Qly < |r —¢V2

Let us now introduce the definition of entropy solutions. Set, for f € C(R),
= [ 10a e,

Definition 2.1. An entropy solution of £(A4, o, £) is a predictable stochastic process
w: Qp — Ly 1(TY) such that

(i) u € Lin41(Q7; Lip41(T))
(ii) For all f € Cy(R) we have U¢(u) € Lo(Qp; HY(T?)) and

OV p(u) = f(w)0;¥(u).

(iii) For all convex n € C%(R) with n” compactly supported and all ¢ > 0 of the
form ¢ = @o with p € C.([0,T)), 0 € C*®(T?), we have almost surely

- /0 ' [ nwaodade < [ n(eo) o+ /0 ' [, mtw) o dade

T
w [ [ (3ol - o v ) e
T
+ /0 » o' (u)o* (u) dzdBF(t), (2.3)
where ¢, is any function satisfying q% () =7 ()a ( ).

Remark 2.1. Note that with the partlcular choices n(r) = +r, (2.3) implies that
any entropy solution satisfies equation in the weak (in both space and time)
sense.

so that W = ;.

Our main result now states the well-posedness of £(A4, 0,§) as follows.

Theorem 2.1. Let A and & satisfy Assumption and let o satisfy Assumption
2.9, Then there exists a unique entropy solution to (1.2|) with initial condition &.
Moreover, if U is the unique entropy to solution (1.2|) with initial condition £, then

esssupE [ |u(t,z) —a(t,z)|dx < E/ &(x) — E(x)| da. (2.4)
tefo,r] JTd Td
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We also show stability of the solution map with respect to the coefficients, in the
following sense.

Theorem 2.2. Let (Ap)nen and (&n)nen satisfy Assumption uniformly in n,
and let (op)nen satisfy either Assumption @ or (@ uniformly in n. Assume
furthermore that, for n — oo, A, — A uniformly on compact sets, &, — £ in
Lins1(92 x T%), and sup, (1 + )=+, (2, 7) — (;’(:B,r)]l?2 — 0. Let up,u be
the entropy solutions of E(An,on,&n), E(A,0,8), respectively. Then u, — u in
Li(Qr x T9), as n — oo.

3. PRELIMINARIES, STRONG ENTROPY SOLUTIONS

3.1. Consequences of the setup. Let us begin with a simple consequence of
Definition 2.1l

Remark 3.1. By Definition ([, (i, it follows that for any f € C(R) satisfying
m+1
[ <N +[r|27),
we have that Wy(u) € Li(Qp; Wi (T9)) and
0iVs(u) = f(u)0;V(u). (3.1)

m+1

Indeed, let f,, € Cp(R) such that f, = f on [—n,n] and sup,, |fn(r)] < N(1+|r|2")
for all r € R. On the basis of Definition , , we have

E / W, (u) — ()| < NE / Tuon(1 4+ ™) 0,
t.x

t,x
and

E/t 1070, (u) — f(u)d ()] < NIE/ Lo (14 10,0 () 2 4 [u™1) 0, (3.2)

)

asn — oo. Hence the sequence ¥, (u) is Cauchy in Ly (Q7; Wi (T9)). Since its limit
is We(u) in Ly(Qp; L1 (T9)), this also holds in Ly (Qp; Wi(T%)), and (3.2) implies
(3-1).

The fact that we can bound the derivative of ¥(u) for any solution will be par-
ticularly useful thanks to the following lemma.

Lemma 3.1. Let Assumption hold, let uw € L1(Q2 x Qr) and for some e € (0,1),
let o : R — R be a non-negative function integrating to 1 and supported on a ball
of radius €. Then one has the bound

E/ lult, ) — ult, y)|o(x —y) < Newit (14 E[VE(u)| L 0n); (33)
t,z,y

where N depends on d, K and T.

Proof. We may and will assume that the right-hand side is finite. Using ft oy o(x—

y) < N, and ([2.2)), the left-hand side of (3.3) can then be estimated by a constant
times

E/t Ttz Viu(ty)>1ut, ©) — u(t, y)|o(z — y)
7x7y

2

m+1l
+(E/t Tueaviuteai<lult 2) = u(t.y)] " ow =) ™"
7w?y
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S E/ L)Vt =1 1Y (u(t, z) — U(u(t, y))|o(x — y)
t"r7y

+ (E /my T2y v jutty) <1 Y (u(t, ) = W (u(t, y))|o(z — y)) T (3.4)

One can now drop the indicator functions, perform the change of variables z = z—y,
and write

E / W (u(t, 2)) — Wtz — 2))]el2)

1
<E / o(2)l2] /O V() ( — A2)| dA < SB[ VU(w)] 1, 0n).

Substituting this back to (3.4)) yields the claim. O

As in [BM14], we have that for an entropy solution, the initial condition is at-
tained in the following sense:

Lemma 3.2. Let u be an entropy solution of (1.2 n Then one has

lim IE/ /|utaz (z)|> dt = 0.
h—0 h

Proof. Let o. € C*™(T9) be a mollification sequence, for example g. = p&¢. We

have
1E / Jutt.0) - g@Par < 2 / ) €@ ete )

+ E/ / u(t, z) — E(y)|%0s(x — y) dt. (3.5)

We first estimate the second term on the right hand side. Take a decreasing, non-
negative v € C*°([0,T1]), such that

1
7(0) =2, ~< 2—7[0,%}7 Oy < _EI[O,h]'

Take furthermore for each 6 > 0, ns € C?(R) defined by

15(0) = 15(0) = 0, 115 (r) = 2L 51y (|7]) + (=] + 07" + 2)Ij5-1 5149 (|7
Let y € T? and a € R. Then, using the entropy inequality (2.3) with ¢(¢,z) =
Y(t)o=(z —y), n(r) = ns(r — a), and ¢, = [; 17/({)a*(¢) (. we obtain

—/t ns(u(t, x) — a)oyy(t)oe(z —y) <2 / ns(§(z) — a)oe(z —y)

xT

+N [ (Jult, o)™ [a™ ) Agos (z — ) (2)

t.x

+1/ ns (u(t,x) — a)|o(z, u(t, $))|5295( z —y)y(t)

/ / n(u(t, ) — a)o (@, ult, 2))o-(x — y) () dB* (1),
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where for the second term on the right hand side we have used (2.1)). Notice that all
the terms are continuous in a € R. Upon substituting a = £(y) taking expectations,
integrating over y € T¢, and using the bounds on +, one gets

h
flL/O E/ ns(u(t, x) —&(y))oe(x —y) dt
z,y
<2 [ ns(e(e) - oo — )
T,y

E 2 U T m+1 T m—+1
E/O L<| (6, 2)™ 1 Je() ™) de

2h
+ E/O /I??f;'(u(t,a?) —&(2))|o(z,u(t, x>)|12206(a? ) dt.

In the 6 — 0 limit this yields

E// u(t,x) — £(y)Po-(x — y) dt

<9E / 6(2) — £(y) Poc(e — y) da
x,y

E 2 ult. = m+1 T m—+1
E/o /$<| ()™ 1 | de

+ =
2h
+ QE/ / lo(x, u(t, x))\ligg(x —y) dt,
0 T,y
which implies that

lim sup ]E/ / ult,x) = E(y)oe(z — y) dt
7y

h—0

<9E / €(x) — €20 (z — ).

)

Consequently, by (3.5) we get

lim sup ]E/ /]u (t,x) |2dt<3E/ £(x) = E()Po=(x — y),
.,y

h—0

from which the claim follows, since right hand side goes to 0 as ¢ — 0 due to
continuity of translations in Lo(T%). O

3.2. The (x)-property. We now introduce a somewhat loaded, but important
definition. First take g € C®(R) with ¢ € CX(R), o0 € C®(T¢ x T?), ¢ €
C>((0,T)), & € C(T? x R) with linear growth, and @ € L, +1(Q7; Lyt 1(T9)). We
then introduce the notations, for 8 > 0, a € R,

¢9(t,$, Svy) = g(az,y)pg(t - S)@ <t _; S) >

T
Fy(t,z,0) := /0 / Sy, a(s,4))g(@(s,y) — a)do(t, . 5, y) A" (5).

Remark 3.2. There exists a version of the function Fp which is smooth in (¢, z,a)
(see, e.g., [Kun97, Exercise 3.15, page 78]). We will always use this version.
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) = SmE5. wwhich is chosen so that one has 743 < ;< 1.

Set = p(m Am+1) 2(m+1)

Definition 3.1. A function u € L,,11(©2 x Qr) is said to have the (x)-property
if for all g, o, 0,5, @ as above, and for all sufficiently small § > 0, we have that
F@(‘, ‘,’U,) S Ll(QT X Td) and

E [ Fy(t,z,u(t,z)) < NoI—+

E / M) i ) (s,) = s )l s9). (30)

with some constant N independent of 6.

Note that this property is only related to through the stochastic part o.
If the choice of o needs to be emphasized, we talk about the (x)-property with
coefficient o. In the terminology of [FNOS] and [BM14], an entropy solution with
the (x)-property can be referred to as a strong entropy solution.

Let us first derive some basic estimates for Fy, and hence we fix g, 0, p, 5, U as
above. First note that since ¢ is compactly supported in (0,7"), and pg(t — -) is
supported in [t — 6, t], we have for § sufficiently small,

Fot,z,a) = Iisp / 9 / (v, i(s, 9))9((s, ) — A)do(t, 2, 5,9) dB(s).  (3.7)

Lemma 3.3. For any A € (57205 5 1), k € N we have

+3
m+1)

E[l0. |7 S NOAVA LBl o) (38)

([0,T);WE | (TIxR)) = Ly+1(QT)””
where N depends only on k,p,d, T, A\, and the functions g, o, p, &, %, but not on 6.

Proof. To ease the notation we suppress the y € T¢ argument in & and the s,y € Qr
arguments in @. For any ¢ € N¢ | € N, j € {0,1}, we have by the Burkholder-
Gundy-Davis inequality

E|3) 0 91 Fy(t, 2, )™

<El»g [ /ttQZ( [ @ekigta- >aqaf¢a<msy>)2ds
L2\,

(m+1)/2

] (m+1)/2

t
SEli [ /t N @I ooy 10" (@ = DI oy~ ds}

ta(Lacy)|

t
oo, [ [ @i i,
t

A g(a — a)) ?H ds} . (3.9)

Choosing j = 0, summing over all |¢| 4+ < k, integrating over [0, 7] x T¢ x R, and
using the fact that ¢’ € C2°(R) and the trivial estimate (5.10)), we obtain

m—+1 m—+1
BN Foll " orzyavi, ooy S O°F 07 mE/”" W) a2 (@)
which by the linear growth of & gives
+1 +1
E”a F9|m OT] Wk+ (TdXR)) 50 (1+E||U|Zn +1 QT)) (310)
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Similarly, choosing 7 = 1 in (3.9)), summing over all |¢| +1 < k, and integrating over
[0,T] x T% x R gives

(m+1)

ElloaFylyi SO (A EalT o) (3.11)

1([0,T;WE 4 (T4xR)) Lm+1(QT)

By interpolating between (3.10) and (3.11)) (see also [Tri95), Section 1.18.4] for the
treatment of the extra L,,11(f2) space) we have for § € [0, 1]

m1 m+1)(1426) /2 m 1
For arbitrary ¢ € (1/(m + 1), 1/2), we set A = (14 2§)/2, and the claim follows by
Sobolev embedding. O

Remark 3.3. Since k was arbitrary, by Sobolev embedding one can estimate the
Loo(Q7 X R) norm of 9,0, Fp by the right-hand side of (3.8)), for any multi-index
« in the variables z,a. We will do so in the sequel, in fact always with the choice
A= L.

Corollary 3.4. (i) Let u, be a sequence bounded in Ly, 1(Qr x T?), satisfying
the (x)-property with coefficient oy, uniformly in n. Suppose that w, converges for
almost all w,t,x to a function u and o, converges in the supremum norm to o.
Then u has the (x)-property with coefficient o.

(i1) Let u € La(Q2 x Qr). Then one has for all >0

E [ Fyp(t,z,u(t,x)) = lim IE/ Fy(t,z,a)px(u(t,z) —a). (3.13)
t,x A—0 t,x,a

Proof. (i) We have that lim, oo Fp(t,x,un(t,x)) = Fp(t,z,u(t,x)) for almost all

(w,t,x). Moreover,

|[Eo(t, 2, un(t, )| < |10aFp|| Loc (@ xrylun(t, )| + [F' (L, 2, 0)]. (3.14)

By Lemma and the fact that E [, |Fy(t,z,0)| < co, we see that the right hand

side above is uniformly integrable in (w,t,z). Hence, one can take limits on the
left-hand side of (3.6)) to get

lim B [ Fy(t, 2, un(t, 2)) :IE/ Fylt, 2, u(t, 7).
n—00 t,x t,x
By similar (in fact, easier) arguments one can see the convergence of the second
term on the right-hand side of , and since the constant N was assumed to be
independent of n € N, we get the claim.

(ii) Writing

|F9(t,x,u(t,m)) - /Fg(t,x,a)p)\(u(t, x) - a) ‘ < )‘HaaF9HLoo(QT><]R)>

a

the claim simply follows from Lemma U

Finally we formulate a simple technical statement used in the proof of Theorem

41l below.

Proposition 3.5. Let v € Li(Q x Qr), and let po(-) be either pg(-) or pe(—:).
Furthermore, let g € C°(((0,T)xT%)?), f € L1(2xQr), and let h : Qx Qp xR —
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R be a function bounded by C, such that |h(t,z,a) — h(t,z,b)| < Cla —b|, for some
constant C. Then

E / h(t, 2, 0(s,9)) £ (1, 2)g (¢, 2, 5, 9) o ¢ — 5)

o ) 0,7 )

Proof. First notice that since in the variables s,t the function g is supported com-
pactly in (0,7)% and py is supported in [—6, 8], the integration over [0, T]? can be
replaced by integration over R? and f, v can be set equal to zero on the complement
of [0,T)]. First, one has the bound

‘E/Rz/wy (t,z,0(s,9)) f(t,2) (g(t, z, 5,9) — g(t,x,t,)) po(t — 5) ds dt| < N,

where here and below IV is some constant depending on the data C,T, and the
norms of g, f. One also has

B[ [ (bt ols,) = At olt, ) £t 2)a(t, .t o)t — 5) ds
R2 Jz,y
<NE/R2/ lu(t,y) —v(s,y)| A1) f(t,2)pg(t — s)ds dt

< NE / eo()F(2) dt, (3.15)
R

where the (random) processes ey and F' are defined by

//|vty—vsy>|m>pe<t—s 0= [ 1)l

Since t + v(t,-) belongs to L1(R, L1(Q x T%)), by the continuity of translations we
get that eg — 0 as @ — 0 in L1(Q2 x R), and hence also in measure on 2 x R. Since
eg is also uniformly bounded by 1 and F' € L1(Q x R), it follows that the right-hand
side of tends to zero as # — 0. This finishes the proof. O

4. GENERALISED L{-CONTRACTION

The following result is the main step to obtain Theorem [2.1} Part (i) is the Lj-
contraction similar to our main result -, under some addltlonal assumptions.
Part (ii) is a generalised variant of the L; contraction, where we may allow the
equation itself to vary and thus deduce stability properties, at the cost of only
controlling the time integral of the Li-norm of the solution.

Theorem 4.1. Let (A,¢), (A, 5) satisfy Assumptzon and 0,6 satisfy Assump-
tion |2.4 (). Let u and @ be two entropy solutions of (A, 0,§) and E(A,5,6),
respectwely, and assume that u has the (x)-property with coefficient o. Then,

(i) if furthermore A = A and o = &, then

iiS[OSl%pE/|Utx_Ut$|<E/|g (4.1)
(i1) for all €,6 € (0,1], A € [0,1] and o € (0,1 A (m/2)), we have
ult.a) = i(t. )] < TE [ Jo(@) - &)

t.x
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+ New#t (14 E|VE(u) 1, (or)
+ T sup (E”f() ( +h)||L1 Td) )

|h|<e
+ Ne (| juzr, 1+ [DIIT, ) + Hazra U+ 1EDIT, )
2

2% | 2Rs—1 | —2:2a | _—2y2 | s—1 o(z,7) —a(x,7)lj
+N<6 R R i ) S e} )

E(L+ a7 oo + 11 0n): (42)
where N depends only on m, K,d,T,«, and Ry is given by
Ry =sup{R € [0,00] : |a(r) —a(r)] < A, V|r| < R}. (4.3)

Remark 4.1. Note that all the norms of the solutions on the right-hand side of (4.2))
are finite by Definition

Proof. The majority of the proof is identical for (i) and (ii), so their separation is
postponed to the very end. Denote g. = p®9, and fix a p € C°((0,T)) such that
”SDHLOO([O,T]) Y, H&ggoHLl([O’T]) < 1. Introduce, for 0, > 0,

P, (t,7,5,y) = po(t — s)oe (x —y) 0 (55°) , delt,2,y) = o=(w — y)o(t).
Furthermore, for each § > 0, let ns € C?(R) be defined by
n5(0) = 15(0) =0, 75 (r) = ps(Ir])-
Note that

Ins(r) — [rl] < 6, supprfl C [=3, ), /\77 Oldc<2, Il <25, (4.4)

We apply the entropy inequality (2.3) with n5(- — a) in place of n and ¢g (-, -, s,)
in place of ¢, for some s € [O,T], y € T? a € R. Assuming that 6 is sufficiently
small, one has ¢g (0,2, s,y) = 0, and thus we get

_/t U&(U(tw’f) - a)(?tgbG,e(tymasay) < /t q(g(u(t,x),a)Axgbg@(t,x,s,y)
- / n(ult, ) — a)| VoW (ult, 2)) ot 7, 5,7)

1
+ 2/ Ug(“(taﬂv) - CL)‘O'(.ZC,’U,(t, x))’lz2¢9,6(t7xu S7y)
t,x

T
4 /O / i (ult, 2) — a)o® (@, ult, 2)) oo (b, 7, 5, ) B (1), (4.5)
where .
4s(ra) = / (¢ — a)a?(C) dc.

Notice that all the expressions in are continuous in (a, s,y). We now substitute
a = u(s,y), integrate over (s,y), and take expectations. For the last term in
this is justified by . All of the other terms are continuous in a and can
be bounded by N(]a|™ 4+ X) with some constant N and some integrable random
variable X (recall ), so that substituting a = (s, y) and integrating out s, y,
and w, results in finite quantities.
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After writing the analogous inequality with the roles of u, ¢, x and 4, s, y reversed,
using the symmetry of 75, and adding both inequalities, one arrives at

E / ns(u(t, ) — i(s, 1)) (Gudor (b, 2, 5,) + Budo.(t,,5,9))
t,x,s,y
<E /t a5 (u(t, 2), (5, ) Dadp (t, 7, 5,9)
L E / Gs(i(s, ), ult, 2)) Aydoe(t. 7, 5,7)

_E / nl(ult, @) — (s, 1) [ Vo ¥ (ult, 2)) Pt 2, 5,7)

"y

|
&=

/t n (s, y) — ult, ) [Ty B (a(s, 1) 2ot 7, 5,)

Wy

1

+E2/ il (u(t, ) — (s, y))|o(z, u(t, z)>pe.c(t, 2, 5,y)
t,x,s,y

HE;/ nl(i(s,y) — u(t, 2)|5 (y, (s, y)) 2o (t, 2, 5,y)
t,x,s,y

a=1(s,y)

vef [[ i)~ 0ttt ) onclt 5 a50)| (49

a=u(t,x)

Notice that one has

at(z)@,s(ta Zz,Ss, y) + as¢9,€(t7 Zz,s, y) = P@(t - S)Q5($ - y)(atﬁp) (HTS) :
We now pass to the § — 0 limit. For the left-hand side, thanks to the above identity,
we may apply Proposition [3.5] twice: first, with
h(t,x,a) — n5(u(t7x) _a) ’
1V |u(t,x)] + 1V ]al
f:]-\/|u|7 9(t7$737y):£)5($—y)(8t(,0) (HTS)

and second, with the with the roles of u, t, z and 4, s, y reversed. For By, we set the
roles as

v =1,

oD (¢ — a)a(¢) d¢
1V |u(t,x)|™ ’
f=1V ™ gtz sy) =005, 2,y),

and for By we symmetrise as above. For Bg we set
U:ﬂa h(t,l’,(l) :ng(u(t7$)_a)7 f: |V\I/(U)’2, g(t7$737y) :gbe(t_'_TS,xay)?

and symmetrically for By. For Bs we simply change |V (u)|? to |o(u)|? above, and
symmetrically for Bg.

Next note that By = 0: an Fs-measurable quantity is substituted in a stochastic
integral from s to s+ 6, so after taking expectation the term vanishes (to make this

v =1, h(t,x,a) =
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argument completely precise, we refer to (3.13) and (3.7)). Finally, for Bg, we use

the (x)-property of u: in the notation of Definition 3 3.1| we choose nj in place of g
and g:(z — y) in place of o(z,y). After sending 6 to 0, we thereby obtain

_E/t ns(ult,z) — @(t,y)) 0. (t, z, y)

SEA g5 (ult, ), At 1)) Mg (t, 7, )

/ 33 (0t y), ult, 1)) Dy (t, 2, y)
t,x,y
E/ (u(t, ) — lt, 9)) V2 U (ut, ) e (t, 2, )
t,a:,y
E/ — )|V Bt 1) e (b, 2. )
t,m,y
+E;/t nl (ult, @) — it )o@, u(t, )2 ée (¢, 2, )
By [ Gt 2) 0 ) 7 )0, .)

E/ o u(t, 2))3 (g, @t 1)l (ult, ) — At ) e (b, 2, )

t,x,

7
=y Ci. (4.7)

=1

By the second and fourth property in (4.4)), for the last three terms we can write,
using Assumption @

Cs+ Cs + Cy

= 3B bt )~ 0ottt ) 0 50 0) et .0)

SE [ttt ) e, p)lote,utt, ) — ola i 0) et .0)
FE [ af(ta) — e )l 1(6) — o 760 (. ,)

+E[ i (ult, 2) — a(t,)lo (v, 6t ) — 5y, At 1) 2 6:(t, 7, )

. lo(@,r) = (@, 1)}
< 62/@ + 82/45—1 + (S_ISU 2
= "

m+1 m+1
EQL+[lullF o FIEITE o)

)

(4.8)

We emphasize for later use that the bound |nf| < 257! is only used in the above
estimate.

From now on, if confusion does not arise, we drop the arguments ¢, x, y, keeping
in mind that u is a function of (¢, x), @ is a function of (¢,y), and ¢. is a function
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of (t,z,y). By the relation 0,¢. = —0,,¢. we have
=B [ oo~ E[ awud,o
t,r,y t,r,y

and hence

- E/W 2o [ e Dt de
=5 e [ nearac
—-[ 0 / / Lear{ (¢ — 1)a?(C) drd¢
B[ o0 ' / sl (¢ — 1) drd. (4.9)

Symmetrically, one has

=2 e [ [
:—E/ ¢// Lsenf (¢ = 1)a(C) drdg

—E xlyﬁe/ / L<cnf (¢ —r)a*(¢) dr d¢. (4.10)
Notice also that by of Definition and Remark |3 - 3.1| we have

C3+Cy < — 2IE/ ny(u — @)V (u) - VU (@) e
t,x,y

=—-2E 02,V (u)0y, / ny(u—r)a(r)dr

t,x,y

ok [ 0, 6.0, 0(u )/uné(u—r)a( ) dr

t,z,y

=—2F - 2., 0e / / r) dra(¢) d¢

—2F / 2 6 / /u L<cnll (¢ — r)a(r)a(¢) dr d¢

—|—2IE/ﬂ2 ¢s/ / L>cns (¢ —mra(r)a(C)drd¢.  (4.11)

Relabelling the variables r <+ ( in 0) (recall that 7§ is even) and adding (4.9)),

(4.10)), and we obtain
CitCot G Ci<E [ ol [ [ 0 nlat) — 0P dc. (412)
t,x,y

D= [* [ e = nlatr) ~ P drdc.

Let us set
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We easily see that (recall the third property in (4.4)

‘D| < Dy + Dy (4.13)

uVu
= [ [ e nla© st ardc + [ ja(¢) - a0 dc
auAu
At this point we make use of Assumption [2.1] to get the bounds
m=3
I\r—g\§5,\g|z25 la(r) —a(¢)] < 5—’|c\225 sup |ﬂ,(7")| NI (4.14)
re[¢—6,(+4]

and
Lr—¢i<sla(r) = a(Q)] < Ijp—¢j<s(a(r) +a(C))
(Icive)y _—
5/ sz ds<S([K|ve) = . (4.15)
0
Combining (4.14) and (4.15) we get (recall that « € (0,1))

I —¢<s)¢i>26 |a(r) — a(Q)] < 6
Using again (4.4]), and that by assumption m — 1 — 2a > —1, we have

uVu
Dy S / (Lcj<260™ 1 4 L2667 ¢ 1 72%) dC
uAu

< (5m + 62 (|u| + |Z~L|)m72a) < 620‘(1 + |u|™ + |€L|m) (4.16)
To estimate Do, we use the definition of Ry from (4.3) and the fact that a, a are
even to write
Jul ) 1 ] ) .
Dy < A +I|u|2RA(1+<m )dC—F A +I|Q|ZRA(1+Cm_ )dC
0 0
SN (Jul + 1al) + Lupsry (1 + [ul™) + Las gy (14 13]™). (4.17)
Combining (4.12), (4.13), (4.16), and (4.17)), we finally obtain
C1+Cy+C3+Cy < 6_2()\2 + 52a)E(1 + Hu||2”m(QT) + ||ﬂ||Tm(QT)) (4.18)
+ e B s r, L+ DT 0 + € Bl Dazr, L+ 1EDIT, 00

Since one has

B[ w0065 [ u—iloe] <5
t,x,y t,x,y
from (4.7)), (4.8)), and (4.18) one gets
B[ Jult.a) - (t,p)lox(o - 1)0re(t)
t,x,y
<Ne (B L=k, (1 + DI, ) + Elazr, 1+ [EDIE, 0r)
~ 2
_ o(z,r) —ao(z,r
N(52” + 2R 4 e26% L a2\ 4 5 sup oz, r) = 5, )i,
ra (14 [r])=(m+D)

X B+ [lullz, @qr) + 19lZ, @r)- (4.19)

Denote the right-hand side above by M. Let s,t € (0,7, with s < ¢, be Lebesgue
points of the function

t— E/ lu(t, z) — u(t,y)|oe(x — y),
x,Y
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and fix some v > 0 such that v <t — s and t + vy < T. We now make use of the
freedom of choosing ¢: choose in (4.19) ¢ = ¢, € C°((0,T)) obeying the bound
el oo 0,77) V 11020l Ly (fo,77) < 1, such that

Jim {lon = Cllag0,7)) = 05

where ¢ : [0,7] — R is such that ((0) = 0 and ¢’ = v s ey — Yy 44y After
letting n — oo we obtain

/Hf/ u(r,2) — ii(r. ) oz — y) v

s+
<M+ E/ / u(r,z) — a(r,y)|os(x — y) dr,

which, after letting v | 0, gives
B[ uta) -~ alt.)leto— v
.y

)

Sﬂ4+E/ fu(s, ) — @5, y)l e (& — ).

Notice that the above inequality holds for almost all s < ¢t. After averaging over
s € (0,7) for some v > 0 we obtain

B[ putt.a) it )lete )
1 v -
<M + ’YE/O /gw lu(s, ) — u(s,y)|os(x —y)ds

Letting v — 0, we obtain by virtue of Lemma

E/ fut, ) — it ) ge(x — )

)

SM+E/\am—ammm—yy (4.20)

)

To prove (ii), we integrate with respect to ¢ over [0,7], and write

E/t [u(t, z) — a(t,y)]o-(x — y)

< TM +T sup E|JE() - <+mmﬂw+Tp/m —é@).

|h|<e

Combining this with the fact that

B[ juty) - at) -2 [ jutta) - ot et o)
ty t,x,y
<E [ fult) = oo —v)

and recalling Lemma the estimate (4.2)) is proved.
Moving on to (i), first note that in this case we can take A = 0 and Ry = 0.
Since also 0 = &, we have

M = M(e,8) = N (8% + 671 + e 20 OEQ + [ull7F o +HIEITT 00))-
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We now choose v such that v € ((m A 2)7%, k) and then o < 1 A (m/2) such that
—2 4 (2a)(2v) > 0. Setting § = € then yields M — 0 as ¢ — 0. Note that for
a countable sequence ¢, — 0, inequality holds for almost all ¢ for all n, and
hence passing to the n — oo limit, we get, using again the continuity of translations
in Ll,

E/W@@—MMMSE/K@%f@N

for almost all t. Taking essential supremum in ¢ € [0, 7], we get (4.1)). O

Theorem 4.2. Assume the setting of Theorem replacing Assumption @
by Assumption (]ED Then,

(i) if furthermore A = A and o = &, then

esssupE/ lu(t,x) — a(t,z)| < E/ &(x) — E(x)]. (4.21)

te(0,7)

(i1) for all €,6 € (0,1], A € [0,1] and a € (0,1 A (m/2)), we have

E th@ﬂ@wHSTE/Kuﬁaw\

t.x

2
+ Nem+i (1 + EHV‘I/(U)HIJ(QT))

+ let‘lf (EIEC) = &€+ M)l 1y (pey) + N6~2[1og 6|~ sup |o(r) — 5(r)I7,
€ r

+ NeE(|ujzr, (L + DT, @p) + Hiazr, 1+ 1GDIT, @)
- N(] log 8|~ + e 25% + 5_2)\2>
X E(L+ [l ory + 1T 0m) (1.22)
where N depends only on m, K,d,T,«, and Ry is as in .

Proof. The main difference to the previous proof is the choice of 5. We now take,
similarly to [YWT1],

1
15(0) = 15(0) = 0, 15 = (pa (¢ gy lecton ) ) ()

We again have the first three properties in (4.4)). In place of the fourth, however,
we now have |n{(r)r| < 2|logd|~! and |nf| < 6-2|logd|~!. Hence, in ([{.8) we get
(recall that o does not depend on )

Cs5+ Ce + Cr < |log 6| + 02| log 6| sup |o(r) — 6(r)|7,-

As pointed out in the previous proof, @ is the only point where a pointwise
bound on |nj| is used, and thus the bound @D can be obtained in the same way
as (4.2)).

The proof of part (i) is also very similar, except for the passage to the ,6 — 0
limit. As before, we take A = 0, Ry = oo, and since the 2§~ term is now not
present, there are no negative powers of §, so we may pass to the § — 0 limit
first. This eliminates the e7262“ term, after which no negative power of ¢ is left,
so we then may pass to the ¢ — 0 limit. The proof is then concluded precisely as
above. O
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5. APPROXIMATION AND PROOF OF THEOREMS [2.1H2 2]

To approximate the coefficients of (|1.2]), we take

R(d _ _
= pl/(n+1) * Tp, On(x,r) =0(x,—nV (r An)),&, = p‘?/i x(—nV (EAn)). (5.1)
If o and & satisfy Assumption (ED (or (]ED) and Assumption (]E[), respectively,
with a constant K > 1, then the same holds for o,, and &, with, say, constant 2K.
It is also clear that o, € C°°(T¢ x R) with bounded derivatives. The following red
part should be removed: Indeed, for any z € T%, k € N, and r € [k, k + 1], one can
write

‘8 ( p?/(sﬂ) xo(x,r)—o(z, k)) ‘l2

<n®™? sup |o(z,r) —o(z, k)|, <2Kntt2
relk,k+2]

|Opon (7)1, =

Similar argument shows the uniform bound on |Vzoy,(z,7)|. Also, &, is a bounded
Fo-measurable C*(T?)-valued random variable for any k£ € N, and

lo(z,7) — on(z,7)I7,
+ [r[)m+1

su
T (

+1
_>oo Oa EH& gnHZL +1 'Ifd _> 0. (52)

The approximation of A is a bit more subtle so let us state it separately.

Proposition 5.1. Let A satisfy Assumption (@ with a constant K > 1. Then,
for all n there exists a function A, € C®(R) with bounded derivatives, satisfying
Assumption[2.1] (d) with constant 3K, such that a,(r) > 2/n, and

sup |a(r) — a,(r)| < 4/n. (5.3)

Ir|<n

Proof. Take a symmetric mollifier p. supported on [—¢,¢|, for instance p.(r) :=
Jg pe(r + 8)pe(s) ds. Define e, := sup{e € (0,1] : |a(r) — a(¢)| < 1/n,V|r| <
3n, | —r| <3e} > 0. We then claim that

An(r) = /07" aZ2(Q)d¢, an(r) = pe, * (2/n+a(3, V|| A 3n)),

behaves as stated.

It is trivial that A,, is smooth, has bounded derivatives, and that a, > 2/n. The
bound follows from the definition of &,. To verify Assumption @, the
first bound in is obvious. As for the second, we have a/,(r) = 0 for |r| < 2¢,,,
while for |r| > 2¢,, one has

@< s jd(Ql< sup [o(Q)] < 2K|r|T
CE[r—en,r+en] CE[r/2,2r]
For (2.2)) notice that by choosing &, as above, we have that on [—2n,2n], a, > a.
This easily implies the bounds Kay(r) > I},|>; and
K|Wn(r) = Un(Q)] = K[¥(r) = ¥(C)|, if[r| V(] <2

If |r| V|| > 2, we separate three cases:

(i) if |r] A || > 1, and r and ¢ have the same sign, then simply from Ka,(r) >
Ijp>1 we get K|[Wn(r) — Wp(Q)] = [r —¢|.
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(i) if |r| A (] > 1, and r and ¢ have the opposite sign, then by symmetry we may
assume r > 2, ( < —1. We can then write
K|\I}n(r) - \I’n(C)‘ Z K(‘I’n(r) - \Ijn(l)) + K(\Ijn(_l) - \Ijn(C))
Sro1-1-C=ro (o2 (13)( ).
(iii) if || A |¢| < 1, then by symmetry we may assume r > 2, |(| < 1. We can then
write
K[W,(r) = Un(O)] > K(Un(r) = Ta(1)) 27— 12> (1/3)(r = Q).
The proof is finished. U

Taking A,,, o,, and &, as above, by [DHVI6, Sec 4], for every n the Cauchy
problem E£(A,,on,&,) has a unique solution w, in the Lo sense, that is, u, is a
predictable, continuous Ly (T¢)-valued process, u, € La(Qr, WH(T9)), VA, (u,) €
Ly(Qr, Ly(T?)), and the equality

t

(tn(t, ), 0) = (€0, ) — /0 (VA (1tn(s,)), V) ds + / (0 un(s, ) 6) dB"

holds for all ¢ € C*°(T¢), almost surely for all ¢ € [0,T]. For such processes Ito’s

formula holds for || - HL (T4) and || - ||m+1 (Td) (see [Kryl3, Sec 3] and the approx-

imation argument in [DG15, Lemma 2], respectively) which implies the uniform
estimates

Eigg Huan +EHV\I/ (un)HL (Qr) < N(1 JFIE||§n||L (T4) )
ESUP HunHLmH(QT) < N +E||&] 71'13:1(1“1))’

for all p > 2. Applying also Itd’s formula for the function u — [ [i" An(s)ds and
using the above estimate yields

EHVAn(Un)H%Q(QT) < N(1 +E[|&] TLn::jl(Td))'

In these estimates, the constant N depends only on K,T,d,p and m (but not on
n € N). Notice that &, are bounded by n, which implies that the right hand side of
the above inequalities is finite. Moreover, by construction of &, one concludes that
for all p > 2

Eﬁllp [unlly, pay + BIVEn(un)ll7, 0p < N +EIENT, pay), (5.4)

E sup lunl 7 o) + EIVAR(un)lI, gy < N +EIENTT a)- (5.5)

with N dependlng only on K, T,d,p and m. Finally, since a,, > 2/n > 0, we have
|Vu,| < N(n)|V¥,(un)|, and so by (5.4), we have the (n-dependent) bound

E||Vun||L ) < 00 (5.6)

Lemma 5.2. The functions u, above, have the (x)-property with coefficient o,,. If

moreover €|, (ray has finite moments up to order 4, then the constant N in (3.6)
1s independent of n.

Proof. Fix 6 > 0 small enough so that (3.7 holds. To ease notation we drop the
lower index in Fy. We proceed by two approximations: first, as in Corollary (i),
the substitution of w, (¢, z) into F(¢,x,-) is smoothed, and second, w,, is regularised.



20 K. DAREIOTIS, M. GERENCSER, AND B. GESS

For a function f € Lo(T9) let f() := (p,)®? % f denote its mollification. Then,

u$ satisfies (pointwise) the equation

du,(]) _ A(An(un))("*) dt + (aﬁ(un))(V) dﬁk(t). (5.7)
We note that

‘]E/t F(t,x,a)px(up(t,x) —a) — E F(t,z,a)pa(ul (t,z) — a)‘

t,x,a

= ‘E/ (F(t,z,a) — F(t,z,a+ ul (t, ) — un(t, ))) palun(t, z) — a)‘
t,z,a
1/2 1/2
<N (Ellun = uP M 0r)  (BIOFI} (grery) =0, (5.8)

as v — 0. By we have EF(t,z,a)X = 0 for any F;_g-measurable bounded
random variable X. Hence,
EF(t,z,a)px(u{) (¢, 2) - )
— EF(t,z,0)[pr(u)) (1, 2) — a) — pa(ul) (¢ — 0,2) — )]
By and It6’s formula one has

/t F(t,z,a) (p,\(ug’) (t,x) —a) — pA(ugﬂ) (t—0,z)— a))

= /t F(t,z,a) /t P\ (s, ) — a) A(An(u,)) ds

—0
t

+ t F(t,x,a) /t_ep;(u;ﬂ(s,x)—a>(a'f(x,un(s,x)))<v> dB*(s)

+ [ Py [ A0 - 0) Y 0 () O ds

t,x,a k—1

=)+ + . (5.9)

By (3.7) and integration by parts (in x) we have

t
0= [t [ Vo a0 5.0) OV (A )
,T,a t

t

+ F(t,z, a)p')f(uf])(s, x) — a)Vuf])(s, x)V(An(un))(V) ds
11 12
= o)+ o

/QT /ttg 1f(s)| dsdt < e/OT |f(s)| ds. (5.10)

Hence, after integration by parts with respect to a, by the Cauchy-Schwarz inequal-
ity and Lemma we have

Note that

t
E\cgn = E| Liwg /t 9Vx(?aF(t7:c,a)p>\(u$7)(s,x) — a)V(Ap(up)) ds|

t,x,a
1/2 1/2
< N6 (BIVo0uFI1f rumy)  (EIVAu(a) I3, o))

< N(n)g'—+. (5.11)
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Similarly, this time integrating by parts twice in a we have

_m _

m+1 m

To bound the right-hand side, note that by (5.6), vul) = Vu, in L »( La(Q1)),
for any p, and by (5.5), V(An(us))?) — VA (u,) in Lo (9 LQ(QT)) Therefore,

: )
%g%EHVu,J V(A () HL ) = E[Vun VA, (“n>”L1 (Qr)

2(m+1)
= IE||V\IJn(un)||L2Ez2T) < N(n). (5.12)
Together with (5.11]), we therefore get
hmsupIE|C | < N(n)o'~+. (5.13)

’Y*)

To bound C§\3), we proceed similarly: integrate by parts twice with respect to a,

use Lemma and (5.10) to get
1/2

3 1/2 _
EICS)| < N0 (E|0aF I3 _(@rxmy)  (Elllon(un)l,IEum) < N0
(5.14)
Next, one has by Itd’s isometry

(2) (s T, Up (S, T @) u(s —a
EC //9 (v i(5,9) (0B (&, un(s,2)) Vg als,y) — )
x ph(uy 7) (s,z) —a)pg(t,z,s,y)ds
:—E/t /to (y,u(s,y)) (o k(2 un (s, :U)))(’Y)g'(&(s,y)—a)

X pa(u (7)(8 z) —a)o(t, ,s,y) ds.

Now the passage to the v — 0 limit is straightforward. Passing to the A — 0 limit
is also quite immediate, since,

E|C} — Cool (5.15)
t
< Asup|g”(a)|E / / 100 ) 0 (5,20 5,1, 5
a tx,y Jt—

Putting all of (3.13)), (5.8)), (5.9), (5.13)), (5.14)), and (5.15|) together, we conclude

E [ F(t,z,v(t,x))

t,x
< hmsuphnrlsupIE(|C§\1 | + |C’/(\3)|) + hm hm JEC( )
A—=0 ~¥—0 v o
SN@OH B [ 5 (gl 0))ok (w0 (2(5.9)  uns,2)) 60,
s,t,x,y

as claimed. Moreover if EH§ H4 0o, then by virtue of ( and (5.5) it is
clear that in , , and , we can choose N mdependent of n € N,
which completes the proof O

We are ready to proceed with the proof of our main theorem.
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Proof of Theorem [2.1. We only give the details for the case that o satisfies As-
sumption @ The statement in the case of Assumption (]ED is obtained
analogously, making use of Theorem instead of Theorem

FEzistence: First assume that EHfH‘lLQ(Td) < oo. We will show that (uy)nen is a

Cauchy sequence in L1 (Qr; L1(T%)). Set eg > 0 arbitrary. As in the conclusion of
the proof of Theorem we choose v such that v € ((m A 2)~!, &) and then we
choose av < 1 A (m/2) such that —2 + (2a)(2v) > 0. Then, we apply Theorem {4.1
(i) to u, and wu,, for arbitrary n < n’, setting 6 = €2, and A = 8/n. Thanks to
, we have that Ry > n. Recalling the uniform estimates , and the triangle
inequality

El[&n () = & (- + )l oy ray S E[EC) — &+ M)l 1y (ray + 2E[IE — &l 1, (19
the right-hand side of (4.2)) is bounded by
M(e) + NE[§ — &l (rey + NE(I€ = &nll 1, (19)

lon (x,7r) — an/(x,r)\%
+ Ne %su 2
er (L [

+ Ne?E( a1 + lun )T @) + My e+ lun DT 0)

where M(g) — 0 as € — 0. Let € > 0 be such that M () < gy. By (5.2)), one can
then choose ng sufficiently large so that for ng < n < n’ the second through fifth
terms above are each bounded by g9. The same is true for the last term, thanks to
the uniform integrability (in (w,t,z)) of 1+ |uy|™, which in turn follows from (5.5)).
Hence, indeed, for ng < n < n/, one has

+ Ne 2p~2

E / () — e (£, )] < 620.
t,x

Therefore, (uy,)nen converges in Li(Qp; L1(T?)) to a limit u. Moreover, by passing
to a subsequence, we may also assume that

lim u,, = u, for almost all (w,t,z) € Qp x T (5.16)

n—o0

Consequently, by Lemma (5.5), and Corollary (i), we have that u has the
(%)-property with coefficient o. In addition, it follows by (5.5)) that for any ¢ < m+1,

(Jtn (£, )|1)22, is uniformly integrable on Q7 x T (5.17)

We now show that u is an entropy solution. From now on, when we refer to the
estimates , we only use them with p = 2. By the estimates in , it follows
that u satisfies (i) from Definition

For f € Cy(R) and 7 as in Definition we define ¥,, ; and g, , analogously to
Uy and ¢, but with a, in place of a. For each n, we clearly have W, r(u,) €
Lo (Qrp; W21(']I'd)) and 0V, r(un) = f(un)0i¥n(uyn). Also, we have |[Uy,(r)] <
| £1l 23K ||+ D/2 for all » € R, which combined with and gives that
that

supIE/||\11n7f(un)||12/V21(Td) < 0.
n ¢

Hence, for a subsequence we have ¥, ¢(u,) — vy, ¥p,(u,) — v for some vy, v €

Lo(Qr; Wa(T?)). By (5.3) and (5.16)-(5.17) it is easy to see that vy = Ws(u),
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v = U(u). Moreover, for any ¢ € C®(T?), B € F, we have

EIB 81\Ilf(u)¢ == h_)m EIB 81\I/f,n(un)<b

tx t,x

= nh_}rrolo Elp S (un)0iVy (un) @

t,x

=EIg [ f(u)o;¥(u)g,

t,x

where for the last equality we have used that 0;U,,(u,) — 0;¥(u) (weakly) and

f(uy) — f(u) (strongly) in Lo(Q7; Lo(T¢)). Hence, (ii) from Definition is also
satisfied. We now show . Let n and ¢ be as in (iil) and let B € F. By Itd’s
formula (see, e.g., [Kry13]) for the function

u / n(u)e
and Ité’s product rule, we have
s [ wudo <o | [ 060600+ [ nalun)ars
t,x T t,x

Vi 1 1
on (un)\V\Pn(un)]Q +§ ; on (un)\an(un)\i

t,x

+ /OTA¢n’(un)0§(un)dﬁk(t)] : (5.18)

On the basis of (5.16)-(5.17)) and the construction of &,, o, and a,, it is easy to see
that

i Bl [ n(6)00 =l [ n(©)00
n—00 t.x t,x

lim EIB/ n(up)0¢ :EIB/ n(u)0s
n—00 t.x t.x

h_)m IEIB/ Iny(un)Ae :IEIB/ an(u)A¢
n—00 t,x t,x

lim BTy qﬁn/’(un)ran(un)r?—EIB o' (w)lo(u )2

t,x
lim IEIB/ /¢77 un)op (un) dB*(t) EIB/ /cbn u) dB*(¢).
n—oo
Let us set f = /1" (r). Notice that 0; \Iff " (un) = /1" (un)0; ¥y (uy). As before
we have (after passing to a subsequence if necessary) O;¥¢ (un) — 9V 5(u) in

Ly(Qr; L2(T?)). In particular, this implies that ;¥ 7 (un) — ;¥ §(u) in LQ(QT X
T4, i), where dfi := Ip¢ dP ® dx ® dt. This implies that
EIg [ ¢n"(w)|VU(u)]* <lminfEIg | o1 (un)| VU (un)?.
t.x n—00 t.x

Hence, taking liminf in (5.18]) along an appropriate subsequence, we see that u
satisfies also (iii).
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To summarise, we have shown that if in addition to the assumptions of Theorem
we have that EHéHL (ray < 00, then there exists an entropy solution to (11.2))

which has the (x)-property with coefficient o (therefore it is also unique by Theorem
. In addition, we can pass to the limit in - ) to obtain that

Boup [ul}, ro) + BIVYIE 0r) < N1+ €I, ),
(5.19)

IElsup 1l 75 oy + EIVA@IZ, g < N +EIENTT ra),

with a constant N depending only on d, K, T and m.

We now remove the extra condition on £. For n € N, let £, be as in and
let u(,) be the unique solution of £(4,0,§,). Notice that u,) has the (x)-property
with coefficient 0. Hence, by Theorem (i) we have that (u(,)) is Cauchy in
L1(Qp; L1(T?)) and therefore has a limit u. In addition, u(y) satisfy the estimates
uniformly in n € N. With the arguments provided above it is now routine to
show that w is an entropy solution.

Uniqueness: We finally show which also implies uniqueness. Let @ be an
entropy solution of £(4, o, ). By Theorem we have

essup | fugy (t.2) (62 <E [ 67(0) ~ €@,
te[0,T]

where u,) are as above. We then let n — oo to finish the proof. (]
Proof of Theorem[2.3. For each n € N, let &, = —NoV (&n A Np), where Ny = Ny(n)
is chosen so that E[|§, — &, (rey < 1/n. Furthermore, let 4, denote the entropy

solution of & (An,an,én), which, by the preceding, exists, is unique, and has the
(%)-property. Since by ([2.4) we have that

EHﬁn - unHLl(QT) < T/”?

it suffices to check that i, — u in Li(Q7 x T?). This however follows from the

bounds (4.2)), (4.22]), precisely as in the previous proof. O
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