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Figure 1: Example of a generated fully-textured region using the proposed technique and data processing in this paper.

ABSTRACT

In computer graphics and virtual environment development, a large

portion of time is spent creating assets - one of these being the

terrain environment, which usually forms the basis of many large

graphical worlds. The texturing of height maps is usually performed

as a post-processing step - with software requiring access to the

height and gradient of the terrain in order to generate a set of

conditions for colouring slopes, flats, mountains etc. With further

additions such as biomes specifying which predominant texturing

the region should exhibit such as grass, snow, dirt etc. much like the

real-world. These methods combined with a height map generation

algorithm can create impressive terrain renders which look visu-

ally stunning - however can appear somewhat repetitive. Previous

work has explored the use of variants of Generative Adversarial

Networks for the learning of elevation data through real-world data

sets of world height data. In this paper, a method is proposed for

learning not only the height map values but also the corresponding

satellite image of a specific region. This data is trained through

a non-spatially dependant generative adversarial network, which

can produce an endless amount of variants of a specific region. The
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textured outputs are measured using existing similarity metrics and

compared to the original region, which yields strong results. Addi-

tionally, a visual and statistical comparison of other deep learning

image synthesis techniques is performed. The network outputs are

also rendered in a 3D graphics engine and visualised in the paper.

This method produces powerful outputs when compared directly

with the training region, creating a tool that can produce many

different variants of the target terrain. This is ideally suited for the

use of a developer wanting a large number of specific structures of

terrain.
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1 INTRODUCTION

The creation of 3D terrain for virtual environments can take a large

amount of time for designers [Shaker et al. 2016]. Authored terrain

in these environments can sometimes struggle to convey exactly

what is required by the developer’s vision. In certain environments,

the terrain realism is paramount to achieve a level of immersion

within the game. Current manual tools that are used are subject to

skills and experience of the designer who uses them, such as Unity

or World Machine.

3D terrainwithin virtual environments is usually created through

displacing a flat grid of vertices with an image of data points that

correspond to the depth at which points on the grid should be dis-

placed. Usually, these are called height maps or displacement maps.

There are other techniques, however, such as directly mapping

Perlin noise [Perlin 1985] onto a grid at specific points.

Inherent problems are created with tools that use common noise-

based algorithms, such as Perlin noise. Perlin noise is capable of

producing realistic elevation values using multiple octaves of data.

However, it can be seen as repetitive by some developers [Abound-

Dragons 2019].

An important consideration when creating terrain is the use of

texturing to add to the aesthetic of the terrain. A computationally

cheap method of texturing a terrain is using an algorithm that uses

a combination of gradient slope and height values. Textures can be

added to produce realistic yet structurally repetitive textures across

the entire terrain in a straightforward manner. Terrain authors can

also be used to manually łpaintž terrains within 3D engines using

various brush tools.

The terrain in the real world has followed millions of years

of erosion and other geological effects to reach the appearance

and structure that it exhibits currently. So one way of assisting

the process of design would be to use data from the real world, in

which the terrain has already gone through the realistic geomorphic

process. With data being extremely abundant from sources such as

NASA’s Shuttle Radar Topography Mission (SRTM) elevation map

[Becker and Sandwell 2006], as nearly the entire planet’s elevation

data collected at a high resolution of one arcsecond (30m along

the equator). Furthermore, with advances in satellite imagery, high

detailed terrain maps can also be acquired from sources such as

Copernicus Sentinel satellite or Google Earth. With both elevation

and texture data, a powerful data set of real-world image data can

be obtained.

This paper will focus on the use of deep learning techniques

to create a novel approach for both height and texture generation

within the same model, allowing an entirely automated method for

producing coherent data for both texturing and displacing terrain.

Generative Adversarial Networks (GANs) [Goodfellow et al.

2014] provide a versatile method of learning underlying distribu-

tions in data sets, mapping these learned features to an output that

can mimic the input data. Deep convolutional GANs (DCGANs)

[Radford et al. 2015] use convolutions to find areas of correlation

within an image between data, a technique more applicable to spa-

tial data such as images or video.

A non-spatially dependant GAN called a Spatial GAN [Jetchev

et al. 2016] can be used in this context to learn specific features

and textures of a terrain region. Providing a perfect environment

to output regions of terrain for designers by sampling the direct

data of the real world, where feature space isn’t important.

The contributions for this paper extend previous work in this

area, where the author generated high detail height maps from a

direct feed of real-world regions [Spick et al. 2019]. This work aims

to further optimize the use of spatial GANs to improve the outputs

on terrain, provide a benchmark for outputting height maps with

synthesised texturing learned inherently within a neural network.

There will also be comparisons between real and generated regions

in a rendered version shown in Unity; these data points will be

both visually and structurally analyzed. Lastly the analysis of data

will be compared with previous state of the art texture synthesis

methods, such as DCGAN and the work of Gatys et al., showing

an improvement for the use of this type of architecture for terrain

generation.

The paper structure is as follows: Background work and related

literature are discussed in Section 2. Themethodology and approach,

which discusses data collection and network training, with an in-

depth analysis of training enhancements are in Section 3. Results

are then shown for a number of trained regions, with a method

comparison of previously used generative tools in Section 4. Finally,

a discussion of results and conclusion appear in Sections 5 and 6.

2 BACKGROUNDWORK

The generation of terrain in computer vision has been a long re-

searched topic with procedural content generation (PCG) originally

being used as a way of simply compressing data in video games.

One of the earliest examples Akalabeth: World of Doom (1979),

compressing the game’s world using a user-specified seed. This has

since set precedence for a vast amount of games to adopt this tech-

nique, allowing the generation of near-endless game environments

into just a few lines of code which could be executed either on the

fly or pre-computed [Amato 2017].

Another advantage of these compression techniques, that ex-

isted when data storage mediums were heavily constrained, for

example in Rogue (1980), would allow the developers to use more

content in the game than would have been viably stored on a con-

ventional data storage device. Another example is adventure game

Elite (1984) generating thousands of planets procedurally using

computationally efficient techniques, with prior interesting gener-

ations discovered by the developers being reproduced by simply

storing the seed of the random number generation. This is eerily

similar to popular games today, such as No Man’s Sky (2016) which

uses modern rendering techniques to create beautiful traversable

planets, but still employs the methods discussed in the previous

examples to create a near-endless amount of planets. Giving users

the ability to explore a near-infinite amount of game space, which

if were stored on a storage medium would be impossibly large.

The generation of terrain for 3D environments has been a long

researched area; the previous section touches onwhy thesemethods

are used. Although the approach has remained fixed throughout

the years, the way procedural terrain has been created has changed.
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2.1 Deep Learning & GANs

Deep learning is a method of processing data through a number

of layers of varying computational functions, where each layer

abstracts the input’s representation. This creates a representation

of the input data through the use of labels or clustering, the repre-

sentations can be used in classification or generation of new data

from the sampled distribution.

Deep learning has been used to generate content in a vast range

of areas used in computer vision. In Procedural Content Generation

via Machine Learning [Summerville et al. 2018] there are many

examples of the application domain such as images, music and

speech [Goodfellow et al. 2014].

GANs are a type of deep learning technique that uses two deep

neural networks; a generator (G) network which attempts to create

new samples from a learned understanding of the data distribution

and a discriminator (D) which attempts to determinewhether inputs

are real or fake data, with the fake data being a direct input from

the generator’s output. These initially were designed with the use

of multi-layered perceptrons for both networks.

In 2015, DCGANs [Radford et al. 2015] were created using Con-

volutional Neural Networks (CNNs) in place of the multi-layered

perceptrons as a way of more efficiently and accurately mapping

image inputs. The use of slight variations of GANs in computer

vision and games can be seen over a large number of application

areas, level generation in Mario [Volz et al. 2018], style transfer of

one image domain into a different domain [Zhu et al. 2017] and

generating 3D voxel-based models [Achlioptas et al. 2017].

Overall, GANs pose to be a useful upcoming tool for designers of

graphical systems, especially in a domain where data is readily avail-

able. Based on the techniques shown in PCG via ML [Summerville

et al. 2018] there is an obvious push for the use of unsupervised

techniques that can generate similar data to a designer’s examples.

With the increase in available data in large quantities, GANs are

proving to be an invaluable technique for unsupervised learning,

which could otherwise be a near intractable problem for a super-

vised approach.

2.2 Height Maps

Height maps are a 2-dimensional raster image of values points

which are used to displace a mesh to create 3-dimensional terrain

in computer graphics. There are several well used procedural algo-

rithms for populating height maps with elevation values.

Diamond-square [Fournier et al. 1982] is an algorithm variant of

mid-point displacement, which iteratively takes subdivision of a

grid averaging the middle point of a set of corner values which are

randomly seeded. A slight offset is usually added to the average,

which is decayed over time to determine the coarseness of the

terrain. The resulting height map appears smooth and flowing

like real terrain, with the ability to control the average height and

coarseness easily.

Gradient noise is one of the most common low-level tools for the

use in terrain generation algorithms. Ken Perlin [Perlin 1985] origi-

nally implemented this gradient noise into an algorithm known as

Perlin noise, producing continuous smooth interpolations of points

on a grid. Later Simplex noise development optimized Perlin noise

to produce smooth values in an extended number of dimensions in

a more computationally efficient way. On its own, a layer of this

type of noise does not necessarily produce realistic height maps.

Fractal Brownian Motion (FBM) [Mandelbrot and Van Ness 1968]

is an extension of Perlin noise that combines multiple layers of Per-

lin noise, each with different heights (amplitudes) and frequencies.

This results in height map generations that appear more realistic.

An approach that builds on the non deterministic gradient based

noise is an interactive approach [Gain et al. 2009], where the au-

thor generates terrain landscapes from a series of drawn curves,

spine and silhouettes. These regions are then populated with height

values through noise propagation. The approach shows more ac-

tive control over user centred design compared to the previously

discussed techqniues.

Similar to the approach in [Gain et al. 2009], deep learning gen-

erative methods have also been used to show promising results

when generating heightmaps from real-world data. Though instead

of utilising user authoring, the techniques have centered around

using pre-existing data containing many desirable features for a

height map. Using DCGANs [Wulff-Jensen et al. 2017] features

were learned from elevation data, though the lack of non-spatial

dependencies meant the height map outputs were often incoherent.

Further work using Spatial GANs [Spick et al. 2019] created a more

stable process of generating larger scale height maps from specific

regions, with outputs being highly recognizable with their derived

regions.

2.3 Texturing

Texturing of graphical environments is a key part of increasing

realism and gives the author a huge amount of control of the final

aesthetic of the environment. Texturing is usually performed as

either automated or supervised.

Using an algorithm that uses a combination of gradient slope

and height values textures can be added to produce realistic yet

repetitive textures across the entire terrain in a straight forward

manner. Perlin noise can be used to generate additional informa-

tion in an automated way, such as generating biomes for different

types of texturing to be applied, Such as sand, grass, mountainous

etc. Terrain artists can also add textures manually to the environ-

ment, directly controlling what textures appear in each area of the

environment.

An issue that applies to these methods is the actual creation of

multiple textures to be used. There is a large amount of research on

the topic of specific texture generation. However, this paper will

focus on deep learning techniques that have been recently shown

to outperform any previous techniques.

Gatys et al. [Gatys et al. 2015] shows an exploration of using deep

learning, specifically convolutional neural networks, to generate

textures using the networks filters. Target textures are trained on a

prior trained VGG-19 network, with outputs being closely related

to the original image in terms of structure, though there are some

disparities with colour and shapes of image.

Further work that built on top of the texture synthesis using

CNNs was the adoption of GANs [Goodfellow et al. 2014] with the

use of Spatial GANs [Jetchev et al. 2016], an approach similar to

DCGANs [Radford et al. 2015] but would have no concept of the

spatial positioning of features.
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Textures are defined as a uniform (brick wall) or irregular (wood

panel) image which for most terrain texturing applications do not

require a spatial correlation of features, where other image genera-

tion task such as generating faces, where eyes and mouths would

need to remain spatially correlated.

3 METHODOLOGY

This section will discuss the processing of data and the techniques

used to generate a coherent output, that can be mapped to a 3D

render with a realistic mapping of texture data from the regions

real-world satellite data.

The creation of a terrain authoring tool would allow designers to

simply pass two coordinates pointing to the corners of a rectangular

area covering a region of the world. This would then be passed

to a GAN model which could learn and output variant regions of

textured terrain for direct use within a computer vision system.

The method in this paper consists of training an SGAN with a

carefully prepared input image containing a textured image which

is layered directly on top of a height map using longitude and

latitude coordinates.

3.1 Data

Data collected for this paper was done using NASA’s SRTM [Becker

and Sandwell 2006] data set, whichmaps themajority of the planet’s

elevation data. A geo-rectangle of longitude-latitude values were

used to define regions that would then gather and populate a height

grid with the values for the corresponding points from the SRTM

data set. This creates a single channel grey scale texture which

would be used as a heightmap. Areas of high values shown in white,

with colours creating a gradient to black for the lowest height

values. An example of the heightmap data can be seen in Fig. 2a.

The actual longitude-latitude values were generated entirely ran-

domly, which created a large data set of randomly selected regions

of the planet - this was to avoid a bias in the data selection process,

since the SRTM mapping also includes oceanic regions, which were

almost entirely flat height map regions. After inspecting an initial

pass of data collection, the average height of oceanic height values

was below an average threshold of 0m across all elevation points.

Therefore if any region in the data set had a minimal range of height

values (average height of the elevation under 0m Mean sea level

(MSL)) they were discarded.

For the height maps corresponding texture data, Google maps

API was used. The API was used to create calls based on the longi-

tudinal and latitudinal positions of the chosen rectangle area that

would visually align with the gathered height map data. An example

of the textured data can be seen in Fig. 2b.

There were two problems in the texture data set that required

further cleaning; clouds appeared in some satellite images, and

where possible the entire region was simply discarded. In regions of

highly reflective terrain, such as snow/ice, the captured texture was

extremely saturatedwith the reflection of the sun, this was amplified

more in higher elevated regions like snowy mountains. Any region

containing any saturation of texture was also discarded.While there

are techniques that aim to remove cloud and other anomalies from

satellite images [Lin et al. 2012] it seemed unnecessary considering

Table 1: List of the main SGAN hyperparameters for the re-

sults shown in this paper. Ni represents the current layer.

Most paramaters were taken directly from the paper train-

ing height map data using SGANs [Spick et al. 2019]

Parameter Value

Optimizer ADAM

Learning rate 0.001 Decayed (0.001 ∗ 0.9986(epochs))

Momentum 0.5

L2 regularization 1e-5

Batch size 32

Depth (N) 6

Discriminator Filter’s (3,3) * 2( N
i + 6)

Generator Filter’s (7,7) * 2(N
max - Ni + 6)

the large amount of usable łinterestingž regions that were free of

errors.

A final processing step was to overlay the colour channels into

one 4 colour channelled image, with the first 3 channels (RGB)

corresponding to the texture. The final colour channel (A) would

then contain the height data of the region. With the data in this

format, the filters of the convolutions in the discriminator of the

GAN will learn from both texture and height data values. An exam-

ple of the stacked data can be seen in Fig. 2c. This also alleviates

issues surrounding whether the data would align correctly from

two separate data sources. Though it was found to align correctly

for the areas tested and shown in this paper, there could potentially

be other areas that do not align as perfectly as the areas shown

here.

3.2 Training and Initial Outputs

The data was trained using a spatial GAN [Jetchev et al. 2016]

model with non-spatially dependant feature learning. This section

will discuss the training process, hyperparameters and important

optimizations when training a GAN.

Each iteration of training consisted of a pass of 32 random crops

of the input image. These region crops built-up feature data under-

standing in the generator over time. The network hyperparameters

can be seen in Table 1 and more visually in Fig. 3. These parameters

were explored in a previous paper and found to produce the most

optimal visual results for this type of data [Spick et al. 2019].

Assisting the performance of the network is a large struggle

in generative deep learning, depending on the type, structure and

complexity of the data - more often than not, the generator and

discriminator will tend to outperform each other. There were three

important steps that were taken to ensure a smoother learning

process that would result in more coherent image results; decayed

learning rate, early stopping and discriminator/generator training

balance.

The decayed learning rate is a type of optimization that is used

in many deep learning models and is not specific to GANs [Fritzke

1997]. This technique decays the learning rate hyperparameter

overtime/epochs. As the learning rate decreases, the factor of the

change from the network’s updates is far smaller. By performing
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(a) Height map (b) Texture (c) Height and texture data layered

Figure 2: A randomly sampled height map image (a) and it’s aligned corresponding texture map (b) acquired using google

maps - alongside the final training data texture (c) showing alignment of height values with the texture pixel values.

this decay process slowly throughout training, allows the use of

a larger learning rate at the beginning of training, with a smaller

learning rate being achieved close to the end of training to avoid

large changes in the weights. This produced outputs of far higher

visual fidelity, with a much less stochastic training process.

An example of the learning rate over a number of epochs can

be seen in Fig. 4 with the learning rate being calculated as 0.001 ∗

0.9986(epochs) providing a close to exponential decay. A value of

slightly less than 1 was used as the coefficient of decay to provide

a very slight reduction in learning rate over epochs.

An important part of deep learning is knowing when to stop

training a model. Images are inherently difficult to statistically

understand, unlike processing other data types. Early stopping is a

way of determining when the model is trained to a point that any

further training could only cause detrimental effects. The network

training took into account the constant loss of the generator, where

it was normal for the loss to steadily decrease as the discriminator

improved, until a point at which loss plateaued. Therefore, the

gradient of the loss was calculated constantly throughout training

for a window of 25 previous epochs, when the gradient was 0±0.01

for 10 consecutive epochs, the network training was halted. These

values were found to be accurate when analysing a network that

was trained for an exaggerated amount of time - where once the

network’s generator loss started to plateau there were no witnessed

or statistical improvements in the image quality - and in some cases,

degeneration occurred.

Usually, the end of training values were signalled at epoch 600-

700 of training. This can be confirmed with the use of statistical

measures of similarity. For each output of the network, the sta-

tistical comparison values using structural similarity (SSIM) and

mean squared error (MSE) were used. Their results averaged across

10 trained regions can be seen in Fig. 5, where a stagnation in

change can be seen at around the 600 epoch mark. SSIM is a method

of detecting similarity in structures between two images, this de-

tects additional information that might not be attributed with MSE.

Where MSE attempts to perceive the actual pixel error. SSIM is an

important measure with the data in this paper, as the structural

Table 2: Median blur kernal size against change in structural

similarity index for an average of 10 output regions. Used to

discover optimalmedian blur to apply to post process height

map channel of output image. Value chosen where the SSIM

difference (change in SSIM) was minimal against visual data

loss.

Kernal Size SSIM Change in SSIM

1 0.417 0.110

3 0.527 0.031

5 0.558 0.021

7 0.579 0.015

9 0.594 0.011

11 0.597 0.003

features of the data are not spatially dependent, meaning they can

be located anywhere in an output image.

Lastly, a technique used to optimally train a generative network

is the balancing of one over-performing network compared to the

other. In our case, the loss of the discriminator was always far

lower than that of the generator, indicating that the generator part

of the network was struggling, or simply the discriminator was

getting too good at predicting real against fake data. In this case,

the solution was to train the generator twice for every update of

the discriminator, this meant the discriminator loss reduced far less

dramatically.

Post-processing of the images was performed to ensure that any

inherent noise from the training process would be removed. This

was important when attempting to keep the structural soundness

of the terrain. If there was slight noise especially in the height map

then the rendered displacements at the point of interference would

look out of place. This was not as important for the texture map as

this did not affect the dimensional space of the render.

SSIM was used to statistically choose the most optimal median

blur kernel size, SSIM plateaued at a kernel size of 9 with a large
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(a) Generator (b) Discriminator

Figure 3: Architecture of generator (a) and discriminator (b), showing the number of filters and kernel size. Output image

size of generator (a) is dependant on the latent random variable size. Real images and generated images are iteratively passed

through the discriminator.
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Figure 4: Learning rate value decayed over epochs
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Figure 5: Analyse over epochs of the average structural and

MSE similarity of 10 training regions. Determines a point at

which results no longer visually increase in quality.

jump in similarity from 3-9, without removing too much of the

output images quality. A selection of kernel sizes and correspond-

ing SSIM values can be seen in Table 2. The change in SSIM for

larger kernel sizes affected the coarser details of the heightmap too

aggressively to warrant using.

4 RESULTS

In this section, the results of the network will be shown, followed

by a comparison of outputs from the Spatial GAN with previous

approaches for texture synthesis using a CNN [Gatys et al. 2015]

and the commonly used DCGAN [Radford et al. 2015].

Table 3: Structural similarity index (SSIM) andmean squared

error (MSE) analysis of height and texture data used to ren-

der the comparisons in Fig. 6 against the base line region.

Method SSIM MSE
Average Fidelity Loss

Compared to SGAN

SGAN 0.587 5876 -

DCGAN 0.410 10515 43%

Gaty et al. 0.310 11948 70%

Any 3D rendered images shown here were rendered in Unity

with no added post-processing effects - except the applied median

blur to remove noise as discussed in the Section 3, where a kernel of

(9,9) was applied to just the height data (alpha channel) to remove

resulting noise between displacement points, the texture data was

left unaltered from the output.

4.1 Method Comparison

The results in this paper compare the proposed method of using

Spatial GANs to other deep learning techniques that have been

previously used on texture generation. The examples in Fig. 6 show

the baseline rendered region (a) and three other regions compar-

ing common deep generative techniques, SGANs (proposed) (b),

DCGAN (c) and the CNN method (d) used by Gatys et al. There is

an obvious advantage to the proposed SGAN generation. This is

largely due to the inability to upsample to a larger resolution using

DCGANs due to the use of an architecture without fully connected

layers in the SGAN. Though DCGAN does capture underlying fea-

tures at a very broad level, there is a distinct lack of low-level detail

that the original region contains that DCGAN fails to learn. Further-

more, Gatys method fails to learn any of the complex features of

the terrain, though when the input data was heavily down-sampled

there was a better understanding. Though to keep the results unbi-

ased the results are shown for an input training region of size 1300

x 1300 pixels, the size of the original data points. In Table 3, each

region from the generative methods are compared to the baseline

using MSE and SSIM. This further extends the above comparison

on which generative technique produces the better results.
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(a) Baseline (Training region) (b) Proposed SGAN

(c) Gaty et al. (d) DCGAN

Figure 6: Visual comparison of 3 methods with the baseline training region rendered as a 3D terrain with generated texture.

(a) Generated height map (b) Generated texture

Figure 7: Height map and corresponding generated texture

for a trained region - with the input data for these generated

textures shown in Fig. 2c.

4.2 Outputs

Each terrain rendered in this section contains no additional detail

enhancements. They were rendered purely in Unity with the texture

map laid directly on top of the rendered height map. Figs. 8, 9 and

10 show a random sample of generated data (b) from fully trained

networks given the baseline region as the training data (a).

Each network trained to generate these renders output a 4 chan-

nel image which was separated into two images of equal size. One

with the elevation values used to displace the terrain, and the other

used to map colours from the texture to the displacement. Each

result required one network to be independently fully trained on

one specific target region - the resulting renders can be seen as

a collection of distributed learned features from the generative

network.

5 DISCUSSION

Each result can be treated independently with its derived region,

this section will overview each region and explain the strengths and

weaknesses of the resulting renders. The regions chosen were to

select a wide range of shapes of terrain and accompanying texture

structures.

The 2D texture height map and accompanied texture were used

to calculate SSIM and MSE with their derived regions, this can be

used to discover how similar the outputs will appear.

Figs. 8, 9 and 10 all visually appear similar to their derived region,

justified further with an average 0.48 similarity index for all results.

There is a disparity in the overall feature learning of the method,

this is due to the size of the filters and depth of the network. Where

the deeper the network the more of the larger structures can be

abstractly learned. Though it is clear that smaller features which

can be imagined as the features that make up the large structures

of terrain are represented well. These strengths and weaknesses are

well discussed in previous work and a prominent issue [Jetchev et al.

2016; Spick et al. 2019]. With the increasing use of higher-powered

hardware, the depth of the network could be increased, in turn

increasing the detail of larger structures of the outputs.

Further justification was explored using the similarity of colour

pixel values, calculated using a difference in a colour histogram

comparison of the exhibited colour values. For all resulting images,

the colour distribution similarity was above 85%. This justifies the
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(a) (b)

Figure 8: Training region (a) and generated region (b) - showing a predominantly desert region with several long connected

peaks. Comparing (a) to (b) with an MSE of 7346 and SSIM of 0.40.

(a) (b) Generated region with full texturing

Figure 9: Training region (a) and generated region (b) - showing a region with multiple small hills and a large flat area. Com-

paring (a) to (b) with an MSE of 7883 and SSIM of 0.44.

(a) Original region (b) Generated region with full texturing

Figure 10: Training region (a) and generated region (b) - showing a region with wide shallow gradient hills with several ravines

running through the terrain. Comparing (a) to (b) with an MSE of 8007 and SSIM of 0.59.

similarity of texture colours learned which is slightly more difficult

to visually compare.

Certain data points proved difficult to train, creating unfavourable

results. Input regions where the texture contained cloud or highly

reflective terrain interference corrupted the learning of the texture

part of the input. Though the elevation data was unaffected.

Based on the methodology, there were variations in the type

of data that worked well with this approach. Regions of repeating

terrain features would be far easier to train compared to those with a

variety of terrain features distributed across the region. This can be

partially seen in the observable results. Fig 8 struggles to mimic the

entire distribution of data and instead focuses on certain features,
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where the original region contains a large amount of sprawling

collective terrain structures.

6 CONCLUSION & FUTUREWORK

Overall, results in this paper show an exploration of a more specific

type of generative adversarial network for generating multiple data

in one instance. The method proposed offers the use of generative

deep learning to automate the process of environment generation -

by creating the height data and texture data from a singular input

of the desired region.

The paper builds on previous work of height map generation,

using DCGANs and later SGANs for results that are more accurate

for the use in rendering terrains. The proposed work in this paper

extends earlier efforts with the inclusion of texture data, increasing

the complexity of the data by 3 channels per pixel. This warranted a

more in-depth analysis of training methods, to create a more stable

training process. There has been a description of techniques such

as early stopping, decayed loss and balanced network training etc.

with these methods. Compared to the previous work on SGANs

the visual fidelity of the outputs has been more coherent. Further

analysis was conducted on previously state of the art techniques

and has been shown to outperform these methods at the domain of

texture generation.

The novelty of the work has the ability to change how design-

ers create environments for games and simulations. Previously

authoring tools such as Unity, or the use of Perlin noise, have been

harnessed to create terrains towards the author’s intent. Although

the method evaluated here may not fully replace the designers

engagement in creating environments, the concept provides an au-

tomated way of generating a large number of variant environments,

where these generations could utilise the aforementioned methods

(Perlin noise) to add more fine-tuned detail, or entire features could

be adapted to add areas pivotal to the design of the environment.

Alternatively, if designers require a quick way of generating 3D

environments that follow a specific structure of a target region

the proposed method would be reliable. The advantage of this

technique over using the baseline region is the ability to generate

a large number of the terrain regions, ideal for graphical systems

that wish to iteratively vary the terrain environment while keeping

to a design theme.

The analysis of optimization techniques has been discussed in

the methodology section. With SSIM and MSE being used to sta-

tistically determine the quality of the outputs. These were reliable

quantifiable measures of image łgoodnessž that correlated to how

the results were visualised.

Further research will explore the use of GauGANs [Park et al.

2019], a recent exploration by Nvidia for image inpainting of seg-

mented regions of training data, providing a method of low input

drawing to create coherent outputs - with the expressed difference

having full control over the features and structures that will appear

in the drawn segments. Opposed to the method shown here, which

only allows feature selection at a high level of which collection of

features should exist.

Using this technique applied to the type of data that has been

collected in this paper will result in a tool that will provide even

more control over the distribution of learned features. Allowing

authors to create large flowing landscapes of described regions.

Another branch of future workwill also investigate one limitation of

this method, this being the seamless connection of arbitrarily large

terrain regions, where some design choices require the generation

of tillable regions that can create an endless environment. The

use of conditional GANs [Mirza and Osindero 2014] [Isola et al.

2017] could be used to learn a seamless band between two regions,

essentially creating a pseudo endless terrain that would require the

training of a second generative network.

ACKNOWLEDGMENTS

This work was supported by the EPSRC Centre for Doctoral Train-

ing in Intelligent Games&Games Intelligence (IGGI) [EP/L015846/1]

and theDigital Creativity Labs (digitalcreativity.ac.uk), jointly funded

by EPSRC/AHRC/Innovate UK under grant no. EP/M023265/1.

REFERENCES
AboundDragons. 2019. Perlin Noise, Procedural Content Generation, and

Interesting Space. https://heredragonsabound.blogspot.com/2019/02/
perlin-noise-procedural-content.html. (2019). [Online; accessed 6-February-2019].

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2017.
Learning representations and generative models for 3d point clouds. arXiv preprint
arXiv:1707.02392 (2017).

Alba Amato. 2017. Procedural Content Generation in the Game Industry. In Game
Dynamics. Springer, 15ś25. PCG Online and offline definitions. A few examples of
games that used pcg History of PCG.

JJ Becker and DT Sandwell. 2006. SRTM30_PLUS: SRTM30, coastal & ridge
multibeam, estimated topography. Electronic journal. URL: http://topex. ucsd.
edu/WWW_html/srtm30_plus. html (2006).

Alain Fournier, Don Fussell, and Loren Carpenter. 1982. Computer rendering of
stochastic models. Commun. ACM 25, 6 (1982), 371ś384.

Bernd Fritzke. 1997. Some competitive learning methods. Artificial Intelligence Institute,
Dresden University of Technology (1997).

James Gain, Patrick Marais, and Wolfgang Stra. 2009. Terrain Sketching. In Proceedings
of the 2009 Symposium on Interactive 3D Graphics and Games (I3D ’09). ACM, New
York, NY, USA, 31ś38. https://doi.org/10.1145/1507149.1507155

Leon Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis us-
ing convolutional neural networks. In Advances in Neural Information Processing
Systems. 262ś270.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672ś2680.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. arXiv preprint (2017).

Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. 2016. Texture synthesis with
spatial generative adversarial networks. arXiv preprint arXiv:1611.08207 (2016).

Chao-Hung Lin, Po-Hung Tsai, Kang-Hua Lai, and Jyun-Yuan Chen. 2012. Cloud
removal from multitemporal satellite images using information cloning. IEEE
transactions on geoscience and remote sensing 51, 1 (2012), 232ś241.

Benoit B Mandelbrot and John W Van Ness. 1968. Fractional Brownian motions,
fractional noises and applications. SIAM review 10, 4 (1968), 422ś437.

Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets.
CoRR abs/1411.1784 (2014). arXiv:1411.1784 http://arxiv.org/abs/1411.1784

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. GauGAN: Se-
mantic Image Synthesis with Spatially Adaptive Normalization. In ACM SIGGRAPH
2019 Real-Time Live! (SIGGRAPH ’19). ACM, New York, NY, USA, Article 2, 1 pages.
https://doi.org/10.1145/3306305.3332370

Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985),
287ś296.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434 (2015).

Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content generation
in games. Springer.

Ryan J Spick, Peter Cowling, and James Walker. 2019. Procedural Generation using
Spatial GANs for Region-Specific Learning of Elevation Data. (2019).

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K
Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Procedural content
generation via machine learning (PCGML). IEEE Transactions on Games 10, 3 (2018),
257ś270.



CVMP 2019, Dec. 17–18, London, UK Spick and Walker

Vanessa Volz, Jacob Schrum, Jialin Liu, SimonM Lucas, Adam Smith, and Sebastian Risi.
2018. Evolving mario levels in the latent space of a deep convolutional generative
adversarial network. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 221ś228.

Andreas Wulff-Jensen, Niclas Nerup Rant, Tobias Nordvig Mùller, and Jonas Aksel
Billeskov. 2017. Deep Convolutional Generative Adversarial Network for Procedural
3D Landscape Generation Based on DEM. In Interactivity, Game Creation, Design,
Learning, and Innovation. Springer, 85ś94.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vision. 2223ś2232.


	Abstract
	1 Introduction
	2 Background Work
	2.1 Deep Learning & GANs
	2.2 Height Maps
	2.3 Texturing

	3 Methodology
	3.1 Data
	3.2 Training and Initial Outputs

	4 Results
	4.1 Method Comparison
	4.2 Outputs

	5 Discussion
	6 Conclusion & Future Work
	Acknowledgments
	References

