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Towards error categorisation in BCI: single-trial

EEG classification between different errors
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Arvaneh 1

1Automatic Control and Systems Engineering Department, University of Sheffield,

Sheffield, UK
2Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

E-mail: cwirth1@sheffield.ac.uk

Abstract.1

Objective: Error-related potentials (ErrP) are generated in the brain when humans2

perceive errors. These ErrP signals can be used to classify actions as erroneous3

or non-erroneous, using single-trial electroencephalography (EEG). A small number4

of studies have demonstrated the feasibility of using ErrP detection as feedback5

for reinforcement-learning-based Brain-Computer Interfaces (BCI), confirming the6

possibility of developing more autonomous BCI. These systems could be made more7

efficient with specific information about the type of error that occurred. A few studies8

differentiated the ErrP of different errors from each other, based on direction or severity.9

However, errors cannot always be categorised in these ways. We aimed to investigate10

the feasibility of differentiating very similar error conditions from each other, in the11

absence of previously explored metrics.12

Approach: In this study, we used two data sets with 25 and 14 participants to13

investigate the differences between errors. The two error conditions in each task14

were similar in terms of severity, direction and visual processing. The only notable15

differences between them were the varying cognitive processes involved in perceiving16

the errors, and differing contexts in which the errors occurred. We used a linear17

classifier with a small feature set to differentiate the errors on a single-trial basis.18

Results: For both data sets, we observed neurophysiological distinctions between19

the ErrPs related to each error type. We found further distinctions between age groups.20

Furthermore, we achieved statistically significant single-trial classification rates for21

most participants included in the classification phase, with mean overall accuracy of22

65.2% and 65.6% for the two tasks.23

Significance: As a proof of concept our results showed that it is feasible, using24

single-trial EEG, to classify these similar error types against each other. This study25

paves the way for more detailed and efficient learning in BCI, and thus for a more26

autonomous human-machine interaction.27

Keywords : ErrP, EEG, Classification, BCI, Human Machine Interaction, Neurophysiol-28

ogy, Error detection29

Submitted to: J. Neural Eng.30
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Towards error categorisation in BCI 2

1. Introduction31

When a human recognises that an error has been committed, either by themselves32

or in actions that they are observing, characteristic signals known as error-related33

potentials (ErrP) are generated in the brain [1]. A number of studies have shown34

that it is possible to differentiate between errors and correct actions, by detecting ErrP35

using electroencephalography (EEG), on a single-trial basis [2, 3, 4, 5]. Interestingly,36

previous studies have confirmed the possibility of using single-trial error vs non-error37

classification as a feedback function for a reinforcement learning-based Brain Computer38

Interfaces (BCI) [2, 3, 4, 5]. This opens up the possibility of moving toward autonomous39

BCI systems, allowing the machine to learn appropriate low-level actions based on the40

human’s perceptions of which actions are correct, and which are errors. Such systems are41

able to reduce human mental workload by learning quasi-optimal solutions in scenarios42

such as simple navigation tasks [3, 4]. However, when tasks increase in complexity,43

learning will become slower if the only available information is whether a given action44

was correct or erroneous. Hence, if a system can be given more detailed information45

about the type of error that occurred, it can correct its actions more appropriately, and46

learn more quickly.47

More recently, a handful of studies have shown that, beyond classifying errors48

against correct actions, it is possible to distinguish different errors against each other49

based on their ErrP. In a study by Iturrate et al., participants observed a virtual robotic50

arm, which had the task of selecting a specific basket [6]. However, the arm also could51

erroneously select baskets 1 or 2 steps away from the target, to the left and to the52

right. The study showed that there were significant differences between the ErrP for53

errors to the left vs those to the right, and also between those of small vs large errors. In54

addition to this, a small number of studies have considered neurophysiological differences55

arising from varying sources of errors. Different ErrP and error types that have been56

discussed are as follows: “response ErrP” caused when a human recognised that they57

have responded incorrectly to a task [7, 8, 5], “feedback ErrP” caused when a human58

is informed that they have made an error of which they were previously unaware [7, 5],59

“observation ErrP occurring when a human observes an error committed by a machine60

or another human [7, 5], “execution errors” occurring when a machine fails to execute61

a command as instructed by the human [9, 5], and “outcome errors” appearing when62

a human experiences a task failure [9, 5]. A study by Spüler and Niethammer showed63

that it is possible to classify outcome errors (committed by a human) against execution64

errors (committed by a machine) on a single-trial basis [9].65

Despite these recent advances, the vast majority of literature in the field concerns66

the classification of errors against correct actions, rather than the classification of67

different error types against each other. Where single-trial error categorisation has been68

explored in a few recent studies, metrics that have been considered to distinguish the69

error categories include direction, severity, and whether the error was committed by the70

human or the machine. However, different errors cannot always be categorised by such71
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Towards error categorisation in BCI 3

metrics. For example, if we are trying to navigate to a target location we could either72

take a wrong turn on the way, or we could reach the target but then pass it. These two73

errors could be of the same direction and magnitude, and therefore indistinguishable74

by currently explored metrics, but knowing which one had occurred would provide75

useful information. Therefore, it is important to consider whether there are significant76

neurophysiological distinctions in EEG signals between the brain’s responses to very77

similar error conditions, even in cases where metrics explored in existing literature are78

not available.79

To address this question, we evaluated data from two tasks. In the first task, users80

were presented with “go” and “no-go” stimuli and asked to respond to “go” stimuli, but81

withhold responses to “no-go” stimuli. All of the errors considered by this experiment82

were response errors committed by humans who failed to withhold responses to “no-go”83

stimuli, and then recognised their own errors. None of the errors had any direction84

associated with them, and participants were not instructed to consider any errors as85

more or less severe than any others. The key difference between the error conditions86

lay in the cognitive processes required to recognise them, with the recognition of one87

error condition being more memory-dependent than the other. In the second task, users88

observed a virtual robot attempting to navigate to, and grab, a target object. Here,89

we investigated users’ EEG responses to two navigational errors: moving away from90

the target when in position and ready to grab it, and moving further away from the91

target object if not already in position. Errors were equally likely to be made to the92

left or the right. In this case, all errors were being committed by the machine. As93

with the first task, direction could not be used to distinguish the error conditions, and94

users were not told to consider either error to be more or less severe than the other. As95

such, the error conditions considered here could not be differentiated by metrics used96

in existing literature. However, the contexts in which the errors arose differed slightly:97

In one condition, the expected correct action would be a lateral movement towards the98

target. In the other condition, the expected correct action would be to grab the target.99

We aimed to use distinctions in the EEG signals, arising from these subtle differences100

of cognitive load and context, to classify the error conditions against each other.101

To explore the neurophysiological distinctions between the responses to these error102

conditions, we used time domain data to compare the latency and amplitude of key ErrP103

features: the error-related negativity (ERN), and the error positivity (Pe). The ERN104

is a negative deflection, usually peaking fronto-centrally around 100ms after an error105

[10, 1, 2]. The Pe is a slower positive wave, often peaking centro-parietally between 200-106

400ms after the error [10, 11, 12, 2]. In contrast with the ERN, the Pe has been shown107

to depend on participants’ awareness and confidence that an error has been committed108

[13, 14, 15, 16], suggesting that the Pe is linked to conscious processing of errors. In109

addition to amplitude, the “build-up rate” of the Pe (i.e. the steepness of the slope110

as amplitude increases to the peak) has also been identified as a marker of evidence111

accumulation for error detection [17]. Further to this, secondary Pe peaks have been112

identified, again being linked to conscious, evaluative processes [18, 19]. The ERN and113
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Towards error categorisation in BCI 4

Pe have been displayed in a variety of previous single-trial error classification studies114

[2, 3, 7, 9].115

We also investigated the spatial distribution of the brain’s response to each error116

condition, using topographical maps. In order to distinguish between error conditions117

on a single-trial basis, we employed a stepwise linear discriminant analysis classification118

strategy, using a small, highly discriminative set of time domain features from 20119

electrode sites. We tested the efficacy of this strategy using data from 20 young and 5120

older adults performing one task, and 14 young adults performing the other task.121

2. Methods122

2.1. Participants123

This study used data collected during two tasks, which we refer to as the “Error124

Awareness Dot Task” (EADT) and the “Claw Observation Task” (COT). Fifty-four125

healthy adults were recruited for the EADT. 28 of these were young (aged 18-34) and126

26 were older (aged 65-80). Seventeen healthy adults were recruited for the COT.127

All of these participants were included in neurophysiological analyses, but some128

were excluded from the single-trial classification phase of this study. 23 were excluded129

from the EADT (4 young, 19 older) due to not producing enough artefact-free trials for130

all conditions. A further 6 from the EADT (4 young, 2 older) were excluded as it may131

have been possible to classify their data based on motor signals, rather than ErrPs. The132

rationale for these exclusions is explained in further detail in section 2.4.1. This left133

25 participants from the EADT (20 young, 5 older) to be included in the single-trial134

classification phase. 3 participants were excluded from the COT due to not producing135

enough artefact-free trials for all conditions. All COT participants used for single-trial136

classification were young (aged 18-35).137

All participants for both tasks had normal or corrected-to-normal vision. They138

reported no history of psychiatric illness, head injury, or photosensitive epilepsy. Written139

informed consent was provided before testing began. All participants of the EADT also140

reported that they had no history of colour-blindness. All procedures for both tasks141

were in accordance with the Declaration of Helsinki. Procedures for the EADT were142

approved by the Trinity College Dublin Ethics Committee, and procedures for the COT143

were approved by the University of Sheffield Ethics Committee in the Automatic Control144

and Systems Engineering Department.145

2.2. Experimental Setup146

2.2.1. EEG Setup For the EADT, 64 channels of EEG were recorded at 512Hz,147

using the BioSemi ActiveTwo system. Electrodes were placed using the 10-20 system.148

Electrooculogram (EOG) electrodes were also placed at the outer cantus of each eye,149

and above and below the left eye. Reference electrodes were placed on the left and right150

mastoid.151
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Towards error categorisation in BCI 5

For the COT, 20 channels of EEG were recorded at 500Hz, using an Enobio 20 5G152

headset. The electrode positions used were: F7, F3, Fz, F4, F8, FC1, FC2, T7, C3, Cz,153

C4, T8, CP1, CP2, P3, Pz, P4, PO7, PO8, and Oz. Reference electrodes were placed154

on the earlobe.155

2.2.2. The Error Awareness Dot Task The EADT was a time-critical reaction task,156

requiring sustained attention. The task employed a “go/no-go” paradigm, requiring157

participants to react to “go” stimuli with a mouse click, but withhold their reaction in158

the case of “no-go” stimuli.159

Participants were shown a succession of randomised, differently-coloured dots on a160

computer screen, with a blank grey screen shown between dots, as shown in Figure 1.161

Participants were asked to perform a left mouse click, in a timely manner, in response162

to the presentation of each new dot. However, in two “no-go” scenarios, they were asked163

to withhold their response. These scenarios were the presentation of a blue dot, or of164

a dot that was the same colour as the previous dot. These are known as the “colour165

condition” and “repeat condition”, respectively. If participants did click in either of166

these scenarios, they were asked to perform a second click with the right mouse button,167

in order to indicate their awareness of the error.168

Figure 1. The Error Awareness Dot Task (EADT). Participants were asked to respond

to “go” stimuli with a left mouse button click (L). They were asked to withold this

response in the event of either a “colour no-go” stimulus (the stimulus is blue) or

“repeat no-go” stimulus (the stimulus is the same colour as the previous stimulus). If

participants performed a left mouse click following a no-go stimulus, they were asked

to follow this with a right mouse button click (R), to register their awareness of their

error.

Before testing began, a practice block took place, in which participants had to169

respond successfully to three consecutive no-go trials, either by withholding their initial170

response or, if they did click erroneously, by following up with an awareness click.171
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Towards error categorisation in BCI 6

8 blocks of trials were collected from each participant, with the exception of five,172

for whom 4-6 blocks of trials were collected. Each block lasted approximately 6 minutes,173

and contained 176 “go” trials, 16 “repeat condition” trials, and 8 “colour condition”174

trials.175

The duration for which each stimulus was shown varied throughout the task,176

depending on the accuracy of the participant in performing correct responses to go and177

no-go trials. Initially, stimuli were displayed for 750ms. However, if the participant’s178

accuracy were below 50%, stimulus duration would increase to 1000ms. Conversely,179

if the participant’s accuracy were above 60%, stimulus duration would decrease to180

500ms. Accuracy between 50 and 60% would result in stimulus duration remaining181

at, or reverting to, 750ms. Stimulus duration was updated every 40 trials. An inter-182

stimulus gap, in which the screen was a blank grey, remained constant at 750ms. This183

meant that the time period between the onset of stimulus n and the onset of stimulus184

n+ 1 could vary between 1250ms and 1750ms.185

2.2.3. The Claw Observation Task In the COT, the errors in question were committed186

by the machine and observed by the participants, as opposed to errors being committed187

by the participants themselves in the EADT. Thus, the COT is similar to error-driven188

BCI scenarios in which users observe actions made by a machine [6, 3].189

Here, participants were asked to observe a computer-controlled simulation of an190

arcade ‘claw crane’ game. Participants were shown a screen with 8 coloured circles191

arranged in a row and, above the circles, a virtual robotic arm, as shown in Figure192

2. A single circle, selected at random at the start of each run, was designated as the193

target. This circle was coloured blue and marked with a score of +25 points. Every194

other circle was coloured red. The red circles immediately adjacent to the target were195

marked with a score of -10 points, and the scores marked on each circle decreased by a196

further 5 points with each step further from the target. The robotic arm began each run197

directly above a circle either 2 or 3 steps away from the target. Every 1.5s, the robotic198

arm would either move 1 step to the left, move 1 step to the right, or extend downward199

to grab the circle beneath it. Movements occurred instantaneously. The probability200

of each type of action occurring depended on whether or not the arm was positioned201

directly above the target circle. A table of action probabilities is shown in Table 1.202

A score was also displayed in the top left corner of the screen. When a “grab”203

action was performed, the score would be updated according to the score marked on204

the circle that had been grabbed. After each “grab” action the run would finish and205

the screen would become completely black. Nine of the COT participants were asked206

to silently count the number of times each movement error was made in each run, in207

an attempt to help them stay focused on the task. These participants were asked to208

write down the number of errors on a sheet provided at the end of each run. As such,209

the gap between the end of one run and the start of the next run was 10 seconds. The210

remaining eight COT participants were not asked to perform the counting. For these211

participants, the gap between runs was 5 seconds. In either case, a beep would sound212
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Towards error categorisation in BCI 7

Figure 2. The Claw Observation Task (COT). Participants were asked to observe as

a virtual robotic claw attempted to navigate towards, and grab, a blue target ball. If

the claw was aligned over the target ball, possible actions were either to grab the ball

or take 1 step away from the target. If the claw was not aligned over the target ball,

possible actions were either to move 1 step towards the target, move 1 step further

away from the target, or grab the red ball beneath the claw’s current position.

1 second before the next run began. Participants were asked to refrain from movement213

and blinking during each run, but told that they could move and blink freely between214

runs, while the screen was blank. This process repeated until the end of the block, with215

each block lasting approximately 4 minutes. The score was reset to 0 at the beginning216

of each new block.217

The actions considered for this study were movement errors. Movements in which218

the virtual robot was aligned over one of the red non-target balls, and moved further219

away from the target, are hereafter referred to as “condition 1” errors. Movements220

in which the virtual robot was aligned over blue target ball, but stepped off it, are221

hereafter referred to as “condition 2” errors. A third error type was present in the task:222
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Towards error categorisation in BCI 8

Arm location Action Type Probability

Not above target

Move towards target Correct 0.7

Move further from target
Error

0.2
(Condition 1)

Grab Error 0.1

Above target

Grab Correct 0.65

Step off target
Error

0.35
(Condition 2)

Table 1. Action probabilities for the Claw Observation Task. Note that correct

actions and grabbing errors were not considered as a part of this study, as the robot

would always have information about whether it had performed a lateral movement or

a grab action.

a “grab error”, when the robot grabbed a non-target ball. These errors occurred from a223

different type of movement than condition 1 and 2 errors, which both occurred as a result224

of lateral movements. The robot would always have information about whether it had225

made a lateral movement or a grab action. As such, in a BCI application, there would226

be no need to differentiate grab errors against other error types using EEG. Standard227

error detection applied following a grab action would be enough to identify them. For228

this reason, grab errors were not considered as a part of this study. The score was229

only updated after a “grab” action, and not after lateral movements (including either230

“condition 1” or “condition 2” errors), therefore no points were directly gained or lost231

as a result of either error condition. Considering this, together with the fact that each232

error was of the same magnitude (1 step), we considered them to be of similar severity.233

Participants were asked to observe blocks, with breaks of as long as they wished234

between blocks, until they reported their concentration levels beginning to decrease.235

Most participants observed 6 blocks of trials. However, four participants observed 3-5236

blocks, and three participants observed 7-8 blocks.237

2.3. Data Analysis238

For both tasks, EEG data were first resampled to 64Hz. In order to do this trials were239

first upsampled, then filtered using a least squares linear phase anti-aliasing FIR filter240

with a lowpass cutoff of 32Hz. The filtered data were then downsampled by averaging241

across data points, and initial data points from the output of filtering were removed to242

compensate for the delay introduced by the linear phase filter. After resampling, data243

were band-pass filtered from 1Hz to 10Hz, as ErrP components have been shown to244

occur at low frequencies [1, 2]. Event related spectral perturbation plots confirmed that245
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Towards error categorisation in BCI 9

activity for these tasks occurred predominantly in low frequencies (see Supplementary246

Figure 1). For the EADT, trials were included in cases where the error was followed by a247

secondary mouse click to indicate the participant’s awareness of their error. Trials were248

extracted from a time window of -300ms to 700ms, relative to the commission of each249

error (i.e. the initial, erroneous mouse click). Previous literature has shown evidence250

that participants’ EEG may show signs of an error response before they commit the error251

[12]. As such, the EADT time window began before error commission. Errors of which252

the participants were unaware were not considered as part of the main investigations253

of this study. As the COT involved errors committed by the machine, rather than the254

human, it would not have been pertinent to consider signals prior to error commission.255

Therefore, for the COT, trials were extracted from a time window of 0ms to 1000ms,256

relative to the movement of the virtual robot. Each extracted error trial was baseline257

corrected relative to a period of 200ms immediately before the presentation of its related258

stimulus. Artefact rejection was performed by discarding any trials in which the range259

between the highest and lowest amplitudes, in any channel, was greater than 100µV. In260

EADT data, a mean of 1.9 colour condition trials and a mean of 3.0 repeat condition261

trials were rejected per participant, from overall means of 22.2 and 32.5 trials per262

participant for the two conditions respectively. In COT data, a mean of 2.0 trials from263

condition 1 and a mean of 0.7 trials from condition 2 were rejected per participant, from264

overall means of 48.8 and 23.4 trials per participant for the two conditions respectively.265

Further to this, independent component analysis (ICA) was performed on the pooled266

trials from all participants combined, for each task. Components resembling EOG267

artefacts, as identified by visual inspection of topographic maps, were filtered out of268

the data. Thus, one component was removed from the data related to each task, from a269

total of 64 components for the EADT and 20 components for the COT. The remaining270

components for each task were then recombined.271

Grand average time domain ErrP data were plotted using the extracted trials,272

showing the mean voltage ± 1 standard error of the following comparisons: EADT273

colour condition vs repeat condition in young adults, EADT colour condition vs repeat274

condition in older adults, and COT condition 1 vs condition 2 in all participants. A275

small number of trials were excluded from the grand average time domain plots for the276

EADT, where the initial click had occurred at least 550ms after the presentation of277

the stimulus. This was due to the fact that longer reaction times could result in the278

presentation of stimulus n+1, which could occur 1250ms after stimulus n in the EADT,279

occurring within the time window (-300ms to 700ms, relative to the click) of stimulus n,280

and so the inclusion of these trials could have contaminated the late part of the grand281

average data with responses to these following stimuli. In total, 14 out of 717 colour282

condition trials and 12 out of 1181 repeat condition trials were excluded from these plots283

for this reason.284

Peak analysis was performed in order to identify the latencies at which ERN and285

Pe occurred in the ErrP data. ErrP signals are known to be associated with midline286

electrodes [8]. Visual inspection of time domain ErrP and topographical plots showed287
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Towards error categorisation in BCI 10

high positive Pe activity around the central midline across all tasks and age groups,288

with the most notable amplitude difference between the classes being visible in Cz time289

domain data. As such, electrode site Cz was chosen as the most suitable channel for290

peak analysis for this study. In each task, this peak analysis was carried out on the291

grand average ErrP waveform related to each error condition, and also for the grand292

average ErrP of all trials of the two error conditions pooled together. In the EADT,293

the analysis was carried out seperately for each age group. For each group, the data294

were first averaged, and then peaks were identified in the resultant waveform. The ERN295

was identified as most prominent negative peak, and Pe as the highest positive peak,296

occurring in specific time windows. Time windows for ERN were -100ms to 200ms in297

the EADT, and 0ms to 300ms in the COT. Time windows for Pe were 0ms to 400ms in298

the EADT, and 100ms to 600ms in the COT. These time windows were selected based299

on a visual inspection of the time-domain data; ERN windows started slightly before the300

start of the negative deflection in grand average plots and centred on the negative peaks,301

and Pe windows began just before the start of the positive deflection and ended once302

amplitudes had returned approximately to baseline levels. As discussed earlier in this303

section, evidence has shown that some participants may show signs of an error response304

before they commit the error [12], hence the ERN time window in the EADT beginning305

100ms prior to error commission. To check for statistically significant differences in306

peak latencies across error conditions, the same peaks were identified in the average307

time domain data for each individual participant with at least 12 trials per condition308

and at least 40 trials in total, as previous literature has suggested that a minimum of 12309

trials are required to achieve a reasonable level of temporal stability of ERN and Pe, and310

that temporal stability increases with the number of trials [20]. Wilcoxon signed-rank311

tests were then carried out on these data, comparing the latencies identified in each of312

these participants’ average time domain waveforms for the two conditions. To check313

for statistically significant differences in peak amplitude, the amplitude was calculated314

in each of these participants’ average waveforms for each condition, in a 50ms window315

surrounding the ERN and Pe peaks identified in grand average data (from peak -25ms to316

peak + 25ms). Wilcoxon signed-rank tests were carried out to compare these amplitudes.317

Furthermore, the build-up rate of the Pe was calculated for the average waveform of each318

participant, in each error condition, for both tasks. This was achieved by performing a319

linear regression on a time window, 100ms in duration, ending at the identified Pe peak.320

This gives an indication of the rate at which the amplitude is increasing up to the peak.321

Wilcoxon signed-rank tests were carried out to check whether the build-up rates of the322

different error conditions varied in a statistically significant way.323

Topographical maps were then plotted for each error condition, using the same324

time windows. All topographical maps for a given task used the same scale, from the325

minimum value to the maximum values across all grand averages.326

While the main focus of this study was on errors of which the participants were327

aware, a brief analysis was carried out to compare the number of “aware errors” (errors328

followed by an awareness click) vs “unaware errors” (errors not followed by an awareness329
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Towards error categorisation in BCI 11

click) in the EADT. The percentage of errors of which each participant was aware was330

calculated for each error condition in each task. Wilcoxon signed-rank tests were carried331

out in order to check whether there was any significant difference between awareness332

rates for the various conditions.333

2.4. Classification334

Broadly, the same classification protocol was followed for all participants of both tasks.335

However, different time windows were used to extract features for the two tasks. The336

protocol is described in this section.337

2.4.1. Preprocessing 20 electrode channels were available in the COT data (F7, F3,338

Fz, F4, F8, FC1, FC2, T7, C3, Cz, C4, T8, CP1, CP2, P3, Pz, P4, PO7, PO8, and Oz).339

As such, these 20 channels were used for single-trial classification of the both tasks. As340

with the neurophysiological analysis, data for classification were resampled to 64Hz and341

band-pass filtered between 1Hz and 10Hz. In the EADT, trials were extracted from342

-100ms to 400ms, relative to the commision of errors (i.e. the erroneous click), in cases343

where the participants showed awareness of the error. In the COT, trials were extracted344

from 100ms to 700ms, relative to the virtual robot’s movement. These time windows345

were selected based on visual inspection of grand average time domain data for each346

task, aiming to encapsulate the areas which indicated differences between the amplitudes347

of responses to the two conditions. Trials were baseline corrected to a period of 200ms348

immediately before presentation of the stimulus, and artefact rejection was performed349

to remove any trials with a range of greater than 100µV between the highest and lowest350

amplitude in any of the channels being used for classification. After this, remaining351

EOG artefacts were cleaned using ICA, as previously described in section 2.3.352

As discussed in section 2.3, temporal stability of the ERN and Pe have been shown353

to increase with the number of trials, with a minimum of 12 trials being recommended354

to achieve a reasonable level of stability [20]. As such, for the purpose of single-trial355

classification, we only included participants who had generated at least 12 trials per356

error condition, and a minimum of 40 trials overall.357

Due to the experimental setup of the EADT, which involved participants clicking a358

mouse to confirm error awareness, motor movements would sometimes occur less than359

400ms after error commission, i.e. within the classification time window. As such, it360

was important to ensure that the classification was based on error responses rather361

than sensorimotor rhythms. To this end, two analyses were carried out on the latency362

between error commission and awareness confirmation in the various error conditions.363

Firstly, for each participant, a Fisher’s exact test was carried out on the number of trials364

that did contain awareness confirmation within the time window used for classification365

vs the number that did not, in each of the two error conditions. This test was to check,366

for each participant, whether significant classification could feasibly be achieved based367

on the presense or absence of sensorimotor rhythms. Secondly, for each participant in368
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Towards error categorisation in BCI 12

each task, Welch’s t-test was carried out, comparing the latencies at which participants369

confirmed their error awareness, between the two error conditions. The latencies of370

mouse clicks, confirming error awareness, were included in the t-test if they occurred371

within the classification time window (-100ms to 400ms). Clicks outside this window372

were ignored as they were not deemed to have a potential effect on classification.373

The t-test was automatically marked as not significant if there were no awareness374

confirmations within the classification epoch. The purpose of this test was to act as375

a guide, for each participant, as to whether significant classification could feasibly have376

been achieved based on differences in the time at which awareness-based sensorimotor377

rhythms occurred. We were mindful that the classification results of this study could378

have been unfairly biased if we had included any participants for whom classification may379

have been possible due to differences between motor signals across the two conditions.380

Therefore, participants for whom a significant result (p < 0.05) was recorded, in either381

the Fisher’s exact test or the t-test, were discarded from the classification phase.382

After preprocessing, 25 participants remained to be used in the classification phase383

from the EADT (20 young, 5 older), and 14 remained from the COT (8 asked to count384

errors, 6 not asked to count errors).385

2.4.2. Feature Extraction Our EEG data, having been resampled at 64Hz, contained386

33 time points per trial in the EADT and 40 time points per trial in the COT. If we387

were to consider all available time domain data, there would have been a total of 660388

features (20 channels × 33 time points) or 800 features (20 channels × 40 time points) to389

describe each trial. Although we employed a minimum cutoffs of 12 trials per condition390

and 40 overall trials, many participants still had relatively few trials per class. With the391

number of features given by the full time domain data greatly outweighing the number392

of trials per condition, it was clear that the curse of dimensionality could cause problems393

if we attempted to classify based on all available time domain data [21].394

Our classification was performed using stepwise linear discriminant analysis395

(SWLDA), as described in section 2.4.3. However, the feature selection inherent in396

SWLDA is relatively sophisticated, and less complex methods are known to be less397

susceptible to overfitting [22]. Therefore, we opted to reduce the dimensionality by398

using a simpler first step for preliminary feature extraction. This allowed the SWLDA399

to be applied to a small number of highly discriminative selected features.400

For each participant, the preliminary step was carried out as follows: For each time-401

domain feature (i.e. each time point in each channel), there were a set of training data402

points. Each point had an amplitude and an associated class label. A linear correlation403

coefficient was calculated between these amplitudes and class labels, resulting in each404

feature having an associated correlation coefficient. The correlation coefficients acted405

as a simple indication of how strongly related the amplitude was to the class labels in406

a given feature, and thus how separable the classes may be based on the amplitude. In407

each channel, the feature with the largest absolute correlation coefficient was selected.408

This meant that each trial was represented by 20 features.409
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Towards error categorisation in BCI 13

2.4.3. Stepwise Linear Discriminant Analysis Implementation In order to classify the410

data based on the most pertinent subset of the extracted features, SWLDA was chosen411

as our classification approach, since it has previously been shown to perform well in412

feature selection and classification of EEG data [23, 24, 25]. Stepwise regression was413

performed to select which features would be included in the model. Initially, an empty414

model was created. At each step, a regression analysis was performed on models with415

and without each feature, producing an F-statistic with a p-value for each feature. If416

the p-value of any feature was < 0.025, the feature with the smallest p-value would417

be added. Otherwise, if the p-value of any features already in the model had risen to418

> 0.075 at the current step, the feature with the largest p-value would be removed from419

the model. This process continued until no feature’s p-value reached the thresholds for420

being added to, or removed from, the model. If no features were added to the model at421

all, a single feature with the smallest p-value would be selected. Training and test trials422

were then reduced to the selected features. The class with the fewest training trials was423

oversampled in order to ensure that training occurred with an equal number of trials424

per class. A linear classification model was then trained and tested.425

All classifiers were trained and tested using leave-one-out cross validation. For426

each iteration, one trial was selected as the test sample, and all the other trials were427

used as the training samples. Feature extraction and training of the stepwise linear428

model were then performed on the training samples. The model was then tested on429

the test sample. This process was repeated until each trial had been selected as the430

test sample. To test statistical significance of the classification, a right-tailed Fisher’s431

exact test was performed on the confusion matrix of each participant’s results. As the432

individual participants were independent, no p-value adjustments were necessary [26].433

Therefore, classification for an individual was deemed to be significant if the p-value434

was less than 0.05. In order to test the significance at a group level, individual p-values435

were combined into a group p-value using Fisher’s method [27, 28]. To test whether436

there was any difference in the efficacy of the classification strategy across age groups,437

Welch’s t-test was carried out comparing the overall accuracies of all young adults with438

those of older adults in the EADT.439

3. Results440

3.1. Neurophysiological Analysis of Error-Related Potentials441

Peak analysis was used to identify ERN and Pe latencies based on the grand average442

Cz time domain waveform for each combination of task, condition, and age group. The443

identified latencies are shown in Table 2.444

Wilcoxon signed-rank tests were carried out to check for statistically significant445

differences in the ERN and Pe amplitudes and latencies generated in response to the446

different error conditions, as discussed in section 2.3. The results of these tests are447

shown in Table 3.448
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Towards error categorisation in BCI 14

Grand Average Peak Latency Identification

ERN

Colour Condition Repeat Condition Pooled Trials

EADT, young 44ms 44ms 44ms

EADT, older 59ms 59ms 59ms

Condition 1 Condition 2 Pooled Trials

COT 78ms 141ms 78ms

Pe

Colour Condition Repeat Condition Pooled Trials

EADT, young 216ms 247ms 231ms

EADT, older 200ms 247ms 215ms

Condition 1 Condition 2 Pooled Trials

COT 281ms 344ms 328ms

Table 2. ERN and Pe latencies, relative to error commission, as identified by peak

analysis on the grand average channel Cz time domain waveform. The most prominent

negative peak, between -100ms and 200ms in the EADT, or between 0ms and 300ms in

the COT, relative to error commission, was selected as the ERN. The highest positive

peak, between 0ms and 400ms in the EADT, or between 100ms and 500ms in the COT,

relative to error commission, was selected as the Pe.

3.1.1. Error Awareness Dot Task In the grand average ErrP of young adults in the449

EADT, responses to both conditions showed ERN with latencies of 44ms, as can be450

seen in Figure 3 (blue and red lines). Wilcoxon signed-rank test showed no significant451

difference between the amplitudes of these ERNs (see Table 3), and showed no452

significant difference between the ERN latencies related to the two conditions, based453

on peaks identified in Cz data of each participant’s average waveform (p = 0.42).454

However, there was a clear difference between the error conditions in the Pe. While455

the latencies of the Pe in response to the two conditions showed no significant difference456

(p = 0.47), the amplitudes of the Pe were increased in the colour condition, compared457

to the repeat condition (p = 0.003). The build-up rate of the Pe was also greater in the458

colour condition than the repeat condition, and a Wilcoxon signed-rank test showed that459

this distinction was statistically significant (p = 0.001). Topographical maps confirmed460

negative fronto-central activity during the ERN, and positive centro-parietal activity461

during the Pe, in response to both error conditions, as shown in Figure 4 a, b, e, and462

f.463

Participants of all ages indicated awareness of a higher proportion of colour464

condition errors (mean 89.3%, SD 17.7%) than repeat errors (mean 76.4%, SD 23.5%).465

A Wilcoxon signed-rank test showed that this difference was significant (p = 8.7×10−8).466

In the older adults’ EADT data, early positivity stalls the ERN, and some467
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Towards error categorisation in BCI 15

Condition Comparisons

ERN Amplitude ERN Latency

p-value Significant p-value Significant

EADT, young 0.42 No 0.91 No

EADT, older 0.94 No 0.69 No

COT 0.22 No 0.72 No

Pe Amplitude Pe Latency

p-value Significant p-value Significant

EADT, young 0.003 Yes 0.47 No

EADT, older 0.016 Yes 0.15 No

COT 0.19 No 0.032 Yes

Table 3. Wilcoxon signed-rank test results from comparisions of peak amplitudes and

latencies of colour condition vs repeat condition (EADT) and condition 1 vs condition

2 (COT). Comparisons were performed at ERN and Pe sites, in young adults and

older adults, using electrode site Cz. Amplitude comparisons were based on the mean

amplitude recorded, for each subject, in ERN and Pe time windows 50ms in duration,

from -25ms to 25ms relative to the peak latencies identified by grand average peak

analysis. Latency comparisons were based on the peak latencies identified from each

participant’s average time domain data for each condition.

differences between the error conditions can be seen in the time domain data prior468

to error commission, as shown in Figure 3 (green and brown lines). However, the469

difference between responses to the conditions was not found to be significant in older470

adults at the ERN. As with younger adults, the latencies of the ERN and Pe showed471

no significant difference (p = 0.69 and p = 0.15, respectively). While the build-up472

rate of the Pe was appeared to be steeper in response to the colour condition than473

the repeat condition, a Wilcoxon signed-rank test did not find this to be significant in474

older EADT participants (p = 0.25). Again, the most notable difference between the475

two error conditions was the greater amplitude of the Pe in the colour condition, as476

compared to the repeat condition (p = 0.016).477

Both ERN and Pe peaks were observed to be more positive in older adults than478

young adults, in response to both error conditions. Welch’s t-tests confirmed that that479

these age-related amplitude differences were statistically significant (p = 2.1× 10−15 for480

colour condition related ERN amplitudes, p = 5.4 × 10−8 for colour condition related481

Pe amplitudes, p = 3.1 × 10−20 for repeat condition related ERN amplitudes, and482

p = 5.4× 10−13 for repeat condition related Pe amplitudes).483

The typical fronto-central negativity cannot be identified by visual inspection of484

the topographical maps of the ERN in response to either error condition for older485

adults’ EADT data (Figure 4 c-d). A posterior-anterior shift in aging (PASA) has486
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Towards error categorisation in BCI 16

Figure 3. Grand average time domain EADT data at electrode site Cz. Time shown

is relative to error commission. Central lines represent mean signals. Shaded areas

cover 1 standard error. Blue lines show colour condition data from young adults. Red

lines show repeat condition data from young adults. Green lines show colour condition

data from older adults. Brown lines show repeat condition data from older adults.

been reported in previous literature [29, 30] and is evident here in the Pe related to487

both conditions of the EADT. As discussed previously, the most positively active areas488

during the Pe are centro-parietal in young adults, as shown in Figure 4 e-f. In older489

adults, this shifts toward more fronto-central activity, in both the colour condition and490

the repeat condition, as can be seen in Figure 4 g-h. Indeed, the electrode sites491

with the highest grand average Pe amplitudes in young adults were CPz & Cz for the492

colour condition, and CPz & Pz in the repeat condition. In older adults, the highest493

grand average Pe amplitudes were found at electrode sites FCz and FC1, for both error494

conditions.495

Across all EADT participants, mean amplitudes for individual channels in the496

selected time windows ranged from −11.1µV to 8.1µV , and their associated standard497

deviations ranged from 0.04µV to 1.3µV . Further topographical maps showing the498

standard deviation from the mean at each channel in the EADT are shown in499

Supplementary Figure 3a-h.500

3.1.2. Claw Observation Task Time domain data related to responses to the COT can501

be seen in Figure 5. Here, no statistically significant difference was found between502

either the latency or amplitude of the ERN (p = 0.72 and p = 0.22, respectively). In503

contrast to the EADT, neither the amplitude of the main Pe peak, nor the build-up rate504

of the Pe showed signifigant differences (p = 0.19 and p = 0.60, respectively). However,505

the latencies of the Pe peaks, at their highest points, were found to be significantly506
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Towards error categorisation in BCI 17

Figure 4. Grand average topographical maps of EADT data. Maps were plotted

based on a 50ms window surrounding the peaks identified as ERN and Pe from grand

average data across all participants. Plots shown represent (a) ERN in the colour

condition in young adults, (b) ERN in the repeat condition in young adults, (c) ERN

in the colour condition in older adults, (d) ERN in the repeat condition in older adults,

(e) Pe in the colour condition in young adults, (f) Pe in the repeat condition in young

adults, (g) Pe in the colour condition in older adults, and (h) Pe in the repeat condition

in older adults.

different (p = 0.032), with the Pe in responses to condition 2 peaking later than that507

related to condition 1.508

A secondary component of the Pe also appeared to be present in the grand average509

COT data, and appeared to be more prominent in response to condition 2 than condition510

1, followed by a difference in grand average amplitudes. We identified that the maximum511

difference here occurred at 538ms (see Supplementary Figure 4 for illustration), and512

performed a further Wilcoxon signed-rank test on the amplitudes of the two conditions513

in the 50ms window surrounding this latency. The difference in amplitudes at this point514

was found to be statistically significant (p = 6.1× 10−4).515

Topographical maps showed broad, slightly negative amplitudes across the brain516

during the ERN of the COT, in response to both error conditions, as shown in Figure517

6 a and c. Slightly more positive amplitudes can be seen in fronto-central regions in518

response to condition 1. During the Pe, strong positive activity can be seen in central519

and centro-parietal regions, as shown in Figure 6 b and d.520

Mean amplitudes for individual channels in the time window ranged from−1.1µV to521

5.4µV , and their associated standard deviations ranged from 0.01µV to 0.8µV . Further522

topographical maps showing the standard deviation from the mean at each channel in523
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Towards error categorisation in BCI 18

Figure 5. Grand average time domain COT data at electrode site Cz. Time shown

is relative to the erroneous movement of the robot. Central lines represent mean

signals. Shaded areas cover 1 standard error. Red line shows condition 1 data from all

participants. Blue line shows condition 2 data from all participants.

the COT are shown in Supplementary Figure 3i-l.524

Figure 6. Grand average topographical maps of COT data. Maps were plotted based

on a 50ms window surrounding the peaks identified as ERN and Pe from grand average

data across all participants. Plots shown represent (a) ERN in the condition 1, (b)

ERN in the condition 2, (c) Pe in condition 1, and (d) Pe in condition 2.
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Towards error categorisation in BCI 19

3.2. Classification of EADT Errors525

The classification accuracies achieved for each individual participant in the EADT are526

shown in Table 4. The mean overall accuracy for all EADT participants was 65.2%.527

Amongst young adults, mean overall accuracy was 63.7%, and for older adults it was528

71.3%. Mean colour condition accuracy was 60.4% for all participants, 59.4% for young529

adults, and 60.4% for older adults. The mean accuracy of the repeat condition was530

67.6% for all participants, 66.0% for young adults, and 74.0% for older adults. Trained531

classification models for the EADT included a mean of 3.7 ± 1.3 features. Generally,532

more features were selected from posterior regions of the brain than anterior regions,533

echoing the heightened activity, varying in amplitude across the two classes, that was534

shown in these regions. A Wilcoxon signed-rank test was used to compare the average535

number of features selected per channel, for each participant, in more anterior channels536

(fronto-central channels and further anterior) against those in more posterior channels537

(centro-parietal channels and further posterior). The results showed the average number538

of selected features per channel was significantly higher in the posterior region compared539

to those in the anterior region (p = 4.9×10−4). At an individual level, features were often540

selected where the subject-average amplitude displayed a relatively large differences541

between the two classes. Supplementary Figure 5 contains a further breakdown of542

feature selection rates, including an example for an individual EADT participant.543

Statistically significant separation of the error conditions (p < 0.05) was found,544

using Fisher’s exact tests, for 17 of the 25 participants overall (68.0%). Statistical545

significance was achieved for 13 of the 20 young adults (65.0%), and 4 of the 5 older546

adults (80.0%). At a group level, the classification results were found to be statistically547

significant in each age group (p = 1.6× 10−16 for young adults and p = 3.2× 10−11 for548

older adults) and overall (p = 2.7× 10−25).549

The overall accuracies of young adults were compared with those of older adults550

using Welch’s t-test. The result did not show any significant difference (p = 0.16). While551

Welch’s t-test is considered to be reliable in dealing with unequal sample sizes [31, 32],552

it should be noted that only 5 older adults remained in the single-trial classification,553

which may mean that this finding should be treated with a measure of caution.554

3.3. Classification of COT Errors555

The classification accuracies achieved for each individual participant in the COT are556

shown in Table 5. The mean overall accuracy for all COT participants was 65.6%.557

Mean accuracy for condition 1 was 69.5%, and the mean accuracy for condition 2558

was 57.4%. Welch’s t-test showed no significant difference in participants accuracy559

depending on whether or not they were asked to keep count of the errors (p = 0.80, see560

Supplementary Table 1). Trained classification models for the COT included a mean561

of 2.9 ± 1.5 features. At a population level, it was difficult to discern clear patterns of562

which features were selected. However, as in the EADT, an individual level features563

were often selected where there was a relatively large difference between the subject-564
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Towards error categorisation in BCI 20

Age
Subject

# Colour # Repeat Colour Repeat Overall
Significant p-value

Group Trials Trials Accuracy Accuracy Accuracy

Young

1 27 27 55.6% 48.1% 51.9% No 0.5

2 34 42 58.8% 69.0% 64.5% Yes 0.014

3 15 35 60.0% 74.3% 70.0% Yes 0.024

4 29 55 65.5% 70.9% 69.0% Yes 0.0014

5 21 26 57.1% 61.5% 59.6% No 0.16

6 30 38 50.0% 60.5% 55.9% No 0.27

7 14 31 42.9% 58.1% 53.3% No 0.60

8 17 57 58.8% 74.6% 71.1% Yes 0.012

9 41 53 64.3% 63.0% 63.5% Yes 0.0071

10 33 43 57.6% 65.1% 61.8% Yes 0.041

11 22 34 72.2% 70.6% 71.4% Yes 0.0017

12 26 42 50.0% 64.3% 58.8% No 0.16

13 32 51 75.0% 76.5% 75.9% Yes 4.5× 10−6

14 25 46 52.0% 76.1% 67.6% Yes 0.017

15 25 51 68.0% 72.5% 71.1% Yes 8.7× 10−4

16 20 29 55.0% 75.9% 67.3% Yes 0.029

17 30 30 46.7% 56.7% 51.7% No 0.50

18 42 45 61.9% 51.1% 56.3% No 0.16

19 33 58 66.7% 67.2% 67.0% Yes 0.0017

20 28 45 69.0% 64.4% 66.2% Yes 0.0049

Older

21 17 47 41.2% 61.7% 56.3% No 0.52

22 45 33 80.0% 81.8% 80.8% Yes 4.8 × 10−8

23 21 47 76.2% 63.8% 67.6% Yes 0.0024

24 19 35 63.2% 80.0% 74.1% Yes 0.0021

25 13 46 61.5% 82.6% 78.0% Yes 0.0034

Young
Mean 27.2 41.9 59.4% 66.0% 63.7% 65.0% Group p-value

SD 7.7 10.3 8.6% 8.3% 7.2% 1.6 × 10−16

Older
Mean 23.0 41.6 64.4% 74.0% 71.3% 80.0% Group p-value

SD 12.6 7.0 15.3% 10.3% 9.8% 3.2 × 10−11

All
Mean 26.4 41.8 60.0% 67.6% 65.2% 68.0% Group p-value

SD 8.7 9.6 10.1% 9.1% 8.2% 2.7 × 10−25

Table 4. Single-trial classification results of EADT data. Overall accuracy calculated

as the percentage of trials, of either class, correctly classified. SD refers to standard

deviation. The participant for whom the highest overall accuracy was achieved is

highlighted in italics. Group p-values were calculated by combining p-values using

Fisher’s method.
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Towards error categorisation in BCI 21

Subject
# Condition 1 # Condition 2 Condition 1 Condition 2 Overall

Significant p-value
Trials Trials Accuracy Accuracy Accuracy

1 42 27 66.7% 63.0% 65.2% Yes 0.015

2 92 30 72.8% 53.3% 68.0% Yes 0.0088

3 69 22 58.0% 40.9% 53.8% No 0.63

4 43 23 65.1% 52.2% 60.6% No 0.13

5 46 29 73.9% 65.5% 70.7% Yes 8.2× 10−4

6 30 14 86.7% 64.3% 79.5% Yes 0.0011

7 48 18 79.2% 72.2% 77.3% Yes 1.8× 10−4

8 46 29 69.6% 62.1% 66.7% Yes 0.0069

9 49 21 77.6% 47.6% 68.6% Yes 0.036

10 33 19 63.6% 52.6% 59.5% No 0.20

11 34 21 58.8% 42.9% 52.7% No 0.56

12 39 26 64.1% 61.5% 63.1% Yes 0.038

13 44 13 70.5% 61.5% 68.4% Yes 0.040

14 32 22 65.6% 63.6% 64.8% Yes 0.032

Mean 46.2 22.4 69.4% 57.4% 65.6% 71.4% Group p-value

SD 16.4 5.4 8.0% 9.2% 7.6% 1.9 × 10−11

Table 5. Single-trial classification results of COT data. Overall accuracy calculated

as the percentage of trials, of either class, correctly classified. SD refers to standard

deviation. The participant for whom the highest overall accuracy was achieved is

highlighted in italics. The group p-values was calculated by combining p-values using

Fisher’s method.

average amplitudes of the classes. Supplementary Figure 5 contains a further breakdown565

of feature selection rates, including an example for an individual COT participant.566

Statistically significant separation of the error conditions (p < 0.05) was found,567

using Fisher’s exact tests, for 10 of the 14 participants (71.4%) in the COT. At a group568

level, the classification results were found to be statistically significant (p = 1.9×10−11).569

4. Discussion570

4.1. Distinctions in Responses by Condition and Age571

Previous literature has shown that different tasks can elicit differing ErrP waveforms572

[33]. In some cases, distinctions have been shown in ErrPs even when the errors are573

committed during variants of the same task [34, 35]. Indeed, our findings are aligned574

with those of the previous literature on this point. Interestingly, when comparing the575

error conditions within each task, the key neurophysiological distinctions that we were576

able to identify were found in different components of the ErrP for the two tasks in this577

study.578

In the EADT, the clearest distinction shown between the error conditions was579

in the amplitude of the Pe. We witnessed greater amplitudes of Pe in the colour580

condition than the repeat condition for both young and older adults. Previous studies,581

including some which were based on error awareness tasks, have shown a diminished Pe582
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Towards error categorisation in BCI 22

in errors of which participants are unaware, compared to errors of which they are aware583

[13, 14, 15, 16]. Here, in the case of the colour condition, all necessary information for584

the participant to know whether they have committed an error is present, on-screen, in585

the current stimulus. With the repeat condition, however, participants are relying on586

their memory of the previous stimulus to determine whether or not they have committed587

the error. Indeed, Wilcoxon signed-rank tests found that participants were significantly588

more likely to be aware that they had committed a colour condition error than a repeat589

condition error. While this study was focused on trials in which participants signified590

awareness of their errors, it is possible that participants could be more confident in their591

assertion of the error for some trials than others. It is possible, therefore, that the higher592

amplitude of the Pe in the colour conditions, compared to the repeat conditions, is due593

to greater certainty and confidence that an error was committed. Previous studies have594

also identified the build-up rate of the Pe as a marker of evidence accumulation for error595

detection [17]. In young adults, the build-up rate to the Pe was found to be significantly596

greater in the colour condition than the repeat condition. This is a further indication597

that a greater degree of awareness may be present in the case of colour condition errors598

than repeat condition errors.599

Some distinctions were also noted between the different age groups in the EADT.600

Older participants’ responses were found to generate more positive amplitudes at both601

the ERN and Pe latencies, for both error conditions. A posterior-anterior shift in aging602

was also identified in the spatial distribution of the Pe.603

In the COT, the most notable difference in time domain data appeared to result604

from a secondary component of the Pe. This occurred at around 500ms, causing an605

increase in the amplitude of responses to condition 2 compared to those of condition 1 in606

the grand average signals. This gap remained until beyond 600ms. A Wilcoxon signed-607

rank test found the amplitude difference, at its widest point (538ms) to be statistically608

significant (p = 6.1 × 10−4). As discussed in section 1, secondary Pe components609

have previously been identified, and have been linked to conscious, evaluative processes610

[18, 19]. This suggests that condition 2, in which the virtual robot steps off the target,611

having been aligned above it, elicits stronger responses in the aware aspect of the error612

response.613

4.2. Single-Trial Classification614

Across all participants who were included in the classification stage, we achieved a615

mean overall accuracy of 65.2% for the EADT data, and 65.6% for the COT data. The616

associated standard deviations were relatively high (8.2% and 7.6% respectively) as,617

although statistically significant classification was not possible for some participants,618

high classification rates were achieved for others. Indeed, in the best cases, for619

both tasks, the error conditions were classified against each other with around 80%620

overall accuracy. Group p-values calculated using Fisher’s method showed that, at a621

population level, statistically significant separation of the error conditions was achieved622
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Towards error categorisation in BCI 23

(p = 2.7×10−25 for the EADT and p = 1.9×10−11 for the COT). As a proof of concept,623

these classification accuracies show that it is possible to classify these subtly different624

error conditions, which could not be differentiated by previously explored metrics such625

as direction or severity, against each other using single-trial EEG.626

A Welch’s t-test, comparing the results of young adults with those of older adults,627

returned non-significant results. Though this finding should be taken tentatively, due to628

the small number of older participants included in the classification phase, it suggests629

that our chosen classification strategy is robust across different age groups, despite some630

age-related neurophysiological differences.631

In previous literature regarding error decoding, a wide variety of classification632

accuracies have been reported. When classifying errors against non-errors, some studies633

have been able to achieve very high single-trial classification rates. For example, SVM-634

based classification models have been used to achieve average accuracies of 80% [36] or635

even above 90% [5], deep learning approach achieved average accuracy of 84% [37], and636

Gaussian models have been reported to achieve a high of around 90% [38].637

Classification of different error conditions against each other can be considered638

more challenging than error vs non-error classification as the EEG signals in response639

to errors are expected to be more similar to each other than to the signals of non-640

errors. Nonetheless, some errors have been classified against each other on a single641

trial basis with a high level of success. In a virtual robot reaching task, performed642

by 2 participants, Iturrate et al. reported correct classification of left vs right sided643

errors with an impressive 90% accuracy [6]. Furthermore, in the same study, they644

were able to distinguish small vs larger errors with around 75% accuracy. Spüler and645

Niethammer reported an overall accuracy of 75.5% for the classification of execution646

errors against outcome errors (i.e. errors committed by a machine vs errors committed647

by a human) during a computer game task [9]. However, they did not find significant648

differences between movement errors occurring at different angles, highlighting the649

potential difficulty of differentiating errors based on subtle differences.650

One of the challenges in error decoding is that data sets for error trials may be small,651

as errors often occur more rarely than correct actions, both in real-world scenarios [5]652

and experimental paradigms [39]. Small sample sizes are known to be challenging in653

classification problems [40, 41]. This is exacerbated when attempting error vs error654

classification, as the error trials are divided into still smaller groups. Indeed, for both655

tasks of the present study, we were able to achieve higher classification accuracy for the656

class with more training samples, on average.657

Given the challenges of comparing such similar error conditions as the ones in this658

study, we believe that the results are encouraging. Separation of the error conditions659

was above chance level for most participants across both tasks. While mean overall660

classification rates did not reach the accuracy of the most successful studies discussed661

above, this study has shown that it is indeed feasible to classify ErrPs of different error662

conditions against each other based on differences in cognitive process, or in the context663

of differing expected actions. The fact that overall accuracy of around 80% was achieved664
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Towards error categorisation in BCI 24

for some participants is particularly encouraging. In future, it may be interesting to665

investigate the use of other classification techniques such as those discussed above,666

especially if larger training sets are available, with the aim of increasing classification667

accuracy further.668

4.3. Implications for BCI669

Error detection is becoming an increasingly useful aspect of BCI [2]. It has proven to be670

utilisable in increasing the accuracy of existing BCI control techniques, such as motor671

imagery [42] and P300 [43], by performing immediate error correction [44]. Furthermore,672

error detection has been successfully integrated into various BCI systems as feedback for673

reinforcement learning (RL) strategies, allowing the systems to gradually improve over674

time [45, 3, 4, 5]. As discussed in section 1, this creates the possibility of BCI becoming675

more autonomous [3, 4]. RL-based systems such as these can work effectively as long as676

the classification accuracy exceeds chance level [2, 3].677

It has been shown, in previous literature, that different errors can elicit different678

ErrP waveforms [46, 47]. Recently, a few studies have begun to classify different errors679

using single-trial EEG, based on aspects such as the direction of the error [6], the severity680

of the error [6], or whether the error was committed by the human themselves or by a681

machine [9].682

In the COT, we presented a scenario in which a virtual robot was attempting to683

navigate towards, and grab, a target object among several non-target objects. This684

scenario could be used in an error-driven BCI. Each robot action would be followed685

by single-trial EEG classification, to tell the robot what kind of action the human had686

observed. If we employed simple error detection, we would be able to tell the robot when687

it had made an incorrect move. However, with the error categorisation displayed in this688

study, an extra layer of detail could be switched on for participants with statistically689

significant separation. In the case of condition 1 errors, we could tell the robot that690

the target is in the other direction, but is not in the adjacent location. In the case of691

condition 2 errors, we could tell the robot precisely that the target is in the location it692

just stepped away from. These principles could be applied to a number of BCI-based693

navigation or target selection scenarios.694

Investigating the EADT allowed us to provide further evidence that errors can be695

categorised in the absence of previously used metrics, with only subtle difference between696

error conditions.697

Statistically significant classification accuracy was achieved for the vast majority698

of the participants included in the classification phase in our study. Thus, the error699

categorisation displayed here is accurate enough to be utilised in a BCI, for immediate700

and specific error correction, or as an integral part of a learning system. This opens up701

the potential for more detailed information to be garnered about the category of error702

that has occurred, thus allowing for a BCI with more effective error correction and more703

efficient error-driven learning.704
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Towards error categorisation in BCI 25

5. Conclusion705

The error conditions considered in this study were very similar to one another.706

Nevertheless, due to the different cognitive processes required to recognise the errors in707

the EADT, and the different contexts in which the errors occurred in the COT, we were708

able to identify differences between the grand average ErrP waveforms of the different709

error conditions. In the EADT, the clearest distinction between the error conditions710

was found in the amplitude of the Pe. The colour conditions generally elicited greater711

amplitudes than the repeat conditions, leading us to speculate that the increased Pe in712

these conditions could be due to greater certainty that an error had been committed.713

In the COT we found distinctions in the ERN, and in a secondary component of the714

Pe. These distinctions led us to speculate that participants may have had a heightened715

anticipation of a correct action when the virtual robot was aligned above the target,716

ready to grab it.717

Interestingly, we were able to classify the error conditions of both the EADT and the718

COT, the latter of which could be directly applied in a BCI, with over 65% mean overall719

accuracy, and around 80% in the best cases. Classification rates were above chance level720

(p < 0.05) for most participants, of those included in the classification phase of the721

study, for both tasks, and group-level analysis showed the single-trial separation of the722

different error conditions to be highly significant overall (p = 2.7× 10−25 for the EADT723

and p = 1.9×10−11 for the COT). The ability to classify such similar errors using single-724

trial EEG, as we have shown here, is very promising for the future prospect of making725

error-driven BCI more efficient through the acquisition of more detailed information.726

We believe that the findings of this study uncover new opportunities in brain-727

machine interaction, pushing towards a more autonomous BCI.728
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[45] Anna Buttfield, Pierre W. Ferrez, and José del R. Millán. Towards a robust bci: Error potentials852

and online learning. IEEE Trans. Neural Syst. Rehabil. Eng, 2:164–168, 2006.853

[46] Peter S Bernstein, Marten K Scheffers, and Michael G H Coles. Where did i go wrong?854

a psychophysiological analysis of error detection. J Exp Psychol Hum Percept Perform,855

21(6):1312–1322, 1995.856

[47] G. Spinelli, G. Tieri, E.F. Pavone, and S.M. Aglioti. Wronger than wrong: Graded mapping of857

the errors of an avatar in the performance monitoring system of the onlooker. Neuroimage,858

167:1–10, 2018.859

Page 28 of 28AUTHOR SUBMITTED MANUSCRIPT - JNE-103108.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t


