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Event-triggered multi-agent optimization for
two-layered model of hybrid energy system with

price bidding based demand response
Huifeng Zhang, Member, IEEE, Dong Yue, Senior member, IEEE, and Chunxia Dou, Member, IEEE

Kang Li, Senior member, IEEE, Xiangpeng Xie, Member, IEEE

Abstract—Due to uncertainty and dynamic characteristics
from intermittent energy and load demand response (DR), it
brings great challenge to optimal operation of hybrid energy
system. This paper proposes an event-triggered multi-agent
coordinated optimization strategy with two-layered architec-
ture. Firstly, price-bidding based DR model is proposed with
different stakeholders, and it also deduces optimal bidding
price with Nash equilibrium theory. Then, four agents are
designed to control different kind of energy resources, Agent
1 mainly analyzes the uncertainty or randomness caused by
intermittent power, Agent 2 takes charge of dynamic economic
dispatch (DED) within thermal units, Agent 3 manages the
optimal scheduling of energy storage, and Agent 4 mainly
undertakes load shifting strategy from consumers. In the upper-
layer level, all agents coordinate together to ensure the stability
of hybrid energy system with event-triggered mechanism, the
intelligent control approach mainly depends on switching on/off
power generators or curtailing system load, and consensus
algorithm is utilized to optimize subsystem problem in lower-
layer level. Furthermore, simulation results can further verify
the efficiency of proposed method, and it also reveals that event-
triggered multi-agent optimization strategy can be a promising
way for solving hybrid energy system problem.

Index Terms—event-triggered, coordinated optimization, de-
mand response, intelligent control, hybrid energy system.

I. INTRODUCTION

W ITH increasing penetration of renewable energy re-

sources, it can gradually become a great challenge

for hybrid energy management due to randomness or un-

certainty of power generation, bi-direction energy flow and

price-responsive loads, etc [1]. Effective optimization strat-

egy for hybrid energy management can be necessary to

ensure energy utilization to the maximum extent, especially

with deterministic model or without considering demand
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response [2]. However, stochastic nature of intermittent

energy and demand requirement brings great challenge on

both dynamic hybrid energy management and optimization

methodology [3], [4], [5]. With consideration of uncertainty

of intermittent energy, stochastic optimization (SO) [6], [7],

fuzzy optimization [8], [9] and robust optimization (RO)

strategy [10], [11] are employed to get rid of potential risk

to hybrid energy system. Stochastic programming approach

depends on probability density function by data sampling,

which may cause large deviation when data source is limited.

Fuzzy approach determines membership mainly by decision-

makers’ personal experience, optimal scheme can be sub-

jective. RO can achieve optimal scheme without excessive

information, but it can be conservative for exchanging eco-

nomic expense to robustness.

Besides, demand response (DR) can be another important

part in hybrid energy system, it can be dynamic and unpre-

dictable, which also motivates further research on modeling

and methodology with DR. With considering benefit of DR,

literature [12] evaluates the impact market design and DR

on reducing wind power forecast error, while literatures

[13], [14] investigates positive benefit on short-term trad-

ing of wind power producers. Literature [15] employs one

DR program with critical peak price, and investigates the

optimal value according to load serving entity that sells

wind energy to market. For properly managing demand

side requirement, multi-agent architecture has been widely

used. The intelligent bidding strategy based continues double

auction allows consumers to participate DR programs, and

agent-based architecture is developed to manage power with

considering DR [16]. With multiple micro-grids including

DR and distributed storage, an agent-based approach is

utilized to reduce system peak demand and minimize elec-

tricity cost [17]. Literature [18] has proposed a two-level

architecture of multi-agent system for multiple micro-grids,

naive auction algorithm is employed to simulate the biding

action of market agents that participate real-time bidding.

Those literatures can deal with dynamic characteristics of

micro-grids system with DR and bidding problem with

considering consumers’ behavior, but it lacks effective way

for potential risk in optimal operation.

This paper involves coordinated optimization with switch-

ing strategy to avoid potential risk in a positive and co-
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ordinated way, event-triggered mechanism is proposed for

positive action from power supply and load demand side.

Generally, event-triggered coordination approach can be con-

sidered as control theory with network communication [19],

[20], [21], [22], [23], [24]. Though literature [24] has been

successfully implemented in power system, event-triggered

strategy still depends network communication. Here, event-

triggered based multi-agent optimization is proposed to

optimize hybrid energy system with considering DR, event-

triggered mechanism is designed to avoid potential risk

caused by uncertainty from intermittent energy and system

load, the structure of proposed optimization is shown in

Fig.1. The main contribution of this paper can be summa-

rized as follows:

(1) From stakeholders’ view, all stakeholders pursuit profit

for themselves, electricity price changes with all players’

bidding actions, this paper firstly makes price bidding strat-

egy with Nash equilibrium theory, and deduces optimal price

for trade-off scheme.

(2) For properly managing different energy resources and

system load, Four agents are designed as it is shown in

Fig.1. Agent 1 analyzes uncertainty of intermittent energy

resource with uncertainty parameter, Agent 2 mainly assigns

optimal output of thermal units to minimize fuel cost,

Agent 3 ensures the stability of hybrid energy system with

charging/discharging behavior, Agent 4 makes proper load

shifting scheme for consumers to minimize switching cost.

(3) On the basis of multi-agent system, an event-triggered

optimization strategy is proposed with considering potential

risk caused by intermittent energy. Combined with coordi-

nation of different energy resources, power generators are

switched to keep stability of hybrid energy system as well

as load curtailment.

(4) In the subsystem, alternating direction method of

multipliers is utilized to achieve consensus of thermal units,

optimal solutions can be deduced with several iterative

algorithms. Finally, simulation results can prove the feasibil-

ity and priority of event-triggered multi-agent optimization

method.

In comparison to other optimization strategy, the proposed

algorithm is dynamic and systemic, which also means that

it can be robust while exempting potential risk with coor-

dination between power supply and system load side, and

further keep the stability of hybrid energy system.

II. PRICE BIDDING STRATEGY OF DEMAND RESPONSE

The electricity price mainly depends on bidding among

different stakeholders, which are market participants with

pursuing profit for themselves. Each stakeholder can be

considered as a player during price biding, generation cost

and purchasing cost are considered for each player. The

profit function of the q(q = 1, 2..., Q)th player can be

described as:

Maximizef(xq,b,t, Pq,i) (1a)

Fig. 1. The structure of event-triggered multi-agent optimization for hybrid
energy system





fq(xq,b,t, Pq,i(t)) =∑

t∈T

[γq,t(Pq,i(t)− Pq(t)−
∑

b∈B

xq,b,t)− Cq,cost]

(1b)

Cq,cost =
∑

t∈T

∑

i∈I

[αq,1i + αq,2iPq,i(t) + αq,3iP
2
q,i(t)] (1c)

where γq,t is market price, Pq(t), Pq(t) are minimum

and maximum load, B is the blocking set, xq,b,t > 0
is consumption assigned at bth block of tth time period,

the size of each block is
Pq(t)−Pq(t)

B
, Cq,cost presents the

operational cost of hybrid energy system, αq,1i,αq,2i,αq,3i

are cost coefficients, Pq,i(t) is power output, I is the set of

all energy resources respectively. Some constraints should

be properly satisfied:

0 ≤ B ∗ xq,b,t ≤ Pq(t)− Pq(t), (1d)

Pq,i ≤ Pq,i(t) ≤ Pq,i, (1e)

Pq(t)+
∑

b∈B

xq,b,t−Pq(t−1)−
∑

b∈B

xq,b,t−1 ≤ Rq,up,t, (1f)

Pq(t−1)+
∑

b∈B

xq,b,t−1−Pq(t)−
∑

b∈B

xq,b,t ≤ Rq,dn,t (1g)

where Rq,up,t,Rq,dn,t are ramp up and ramp down of total

load. The Lagrangian function can be constructed with

several penalty functions as follows:

Łq(xq,b,t, Pq,i) = fq(xq,b,t, Pq,i) + λ−
q1(Bxq,b,t − Pq(t) + Pq(t))

+ λ+
q2(Pq,i − Pq,i(t)) + λ−

q2(Pq,i(t)− Pq,i)+

λ+
q3(Pq(t) +

∑

b∈B

xq,b,t − Pq(t− 1)−
∑

b∈B

xq,b,t−1 +Rq,dn,t)+

λ−
q3(Pq(t) +

∑

b∈B

xq,b,t − Pq(t− 1)−
∑

b∈B

xq,b,t−1 −Rq,up,t)

(2)

Once all players complete biding instead of corporation,

Nash equilibrium optima means that there is no better

scheduling scheme than current scheme P ∗
q,i by adjusting its

own generation and bidding scheme. On the basis of Nash



3

Equilibrium condition, it can obtain the iteration optimiza-

tion algorithm as follows:

∂Lq

∂Pq,i(t)
= γq,t − (αq,2i + 2αq,3iPq,i(t))− λ+

q2 + λ−
q2 (3)

∂Lq

∂xq,b,t

= −γq,t +Bλ−
q1 + λ+

q3 − λ−
q3 (4)

The parameters λ−
q1, λ+

q2, λ−
q2, λ+

q3 and λ−
q3 can be iterated

with following equations:




λ−
q1 = λ−

q1 + βq1[Bxq,b,t − Pq(t) + Pq(t)]
−

λ+
q2 = λ+

q2 + β+
q2[Pq,i − Pq,i(t)]

+

λ−
q2 = λ−

q2 + β−
q2[Pq,i(t)− Pq,i]

−

λ+
q3 = λ+

q3 + β+
q3[Pq(t) +

∑
b∈B xq,b,t−

Pq(t− 1)−
∑

b∈B xq,b,t−1 +Rq,dn,t]
+

λ−
q3 = λ−

q3 + β−
q3[Pq(t) +

∑
b∈B xq,b,t−

Pq(t− 1)−
∑

b∈B xq,b,t−1 −Rq,up,t]
−

(5)

where βq1, β+
q2, β−

q2, β+
q3, β−

q3 ∈ ℜ+. When According to

equation(5), the optimal scheme can satisfy the minimum

and maximum constraints after several iterations. The bid-

ding price of the qth micro-grid can be presented as:

γq,t = αq,2i + 2αq,3iPq,i(t) (6)

The market trading price is generally the highest bidding

price among all the stakeholders, electricity price of the tth
period γt can be obtained as:

γt = max{γq,t, q = 1, 2, ..., Q} (7)

According to price biding, electricity market can have uni-

fied electricity price at tth period, the deduced bidding price

can be taken for calculating switching cost in load shifting

model.

III. UPPER LEVEL PROBLEM: EVENT-TRIGGERED

MULTI-AGENT COORDINATED OPTIMIZATION WITH

SWITCHING MECHANISM

A. Definition of four agents

For properly managing hybrid energy system, four agents

are defined to control different energy resources. Agent 1

for intermittent energy resources, agent 2 for thermal energy

resource, agent 3 for energy storage, agent 4 for system load

demand.

1) Agent 1: Intermittent power system model. It mainly

consists wind power and solar power, wind power follows

Weibull distribution [25] and normalized solar power follows

Beta distribution [26]. For simplicity, intermittent power

output PIjt can be described as:
{

PIjt = PIjt + rIjtP̃Ijt

P̃Ijt ∈ [ ˜PIjt,min, ˜PIjt,max]
(8)

where j ∈ J is the intermittent power index, J is the

number of intermittent energy resources, PIjt represents the

estimated intermittent power output,rIjt ∈ [0, 1] denotes

adjustable parameter for each intermittent energy resource,

P̃Ijt represents power disturbance of intermittent energy,
˜PIjt,min and ˜PIjt,max denote lower and upper bounds of

power disturbance.

2) Agent 2: Thermal power system model. Thermal units

generate power output Pck(t) with consuming fuel, it is a

economic issue [27], [28], economic cost can be presented

as:




minF1 =
∑

k∈K

fck =
∑

k∈K

∑

t∈T

Hkt(ak+

bkPck(t) + ckP
2
ck(t))

minF2 =
∑

k∈K

∑

t∈T

uckHkt

(9)

where fck is the economic cost of k ∈ Kth thermal

unit,Hkt ∈ 0, 1 represents turn on/off state of thermal unit,

ak,bk,ck,dk,ek are the coefficients of economic cost of kth

thermal unit, Pck,min is minimal output of kth thermal unit,

uck is efficient of switching cost. It also subjects to several

constraints as follows:
{

Pck,min ≤ Pck(t) ≤ Pck,max

DRck ≤ Pck(t)− Pck(t− 1) ≤ URck
(10)

where Pck,max is maximal output of k ∈ Kth thermal unit,

DRck, URck are the down-ramp and down-ramp limits of

kth thermal unit.

3) Agent 3: Energy storage model. For simplicity, battery

energy storage system represents the whole energy storage

of hybrid energy system, it supplements intermittent power

to ensure the stability of whole power system. The charging

and discharging output must satisfy some constraints [29]:





minF3 =
∑

l∈L fstore
l =

∑
l∈L

∑
t∈T [αl1+

αl2P
store
l (t) + αl3(P

store
l (t))2]

V store
l (t+ 1) = V store

l (t) + ηlP
store
l (t) ∗∆T

V store
l,min ≤ V store

l (t) ≤ V store
l,max

P store
l (t) = P cha

l (t), ifP store
l (t) ≥ 0

P store
l (t) = −P dis

l (t), ifP store
l (t) < 0

0 ≤ P dis
l (t) ≤ P dis

l,max

0 ≤ P cha
l (t) ≤ P cha

l,max

V store
l (0) = V store

l,initial

(11)

where fstore
l denotes the economic cost of l ∈ Lth energy

storage, P store
l (t) represents charging/discharging output of

lth battery at tth period, V store
l (t) is the storage of lth

battery at tth time period,αl1,αl2,αl3 are coefficients of

economic cost , ∆T is the time period length, V store
l,min ,

V store
l,max are the minimum and maximum storage of the lth

battery, P dis
l (t), P cha

l (t) are the output of discharging and

charging state,P dis
l,max,P cha

l,max are the maximum discharging

and charging output at l ∈ Lth battery at tth time period.

ηl ∈ (0, 1] is efficiency factor of charging or discharging

state.

4) Agent 4: Load shifting model. On the demand side,

DR model can be generally classified as: incentive-based

model and price-based model, here it chooses price-based

model to describe the state of load requirements. System
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load can be divided into two parts: fixed load Pload(ti) and

controllable load P̃load(ti) as:

Pload(ti) = Pload(ti) + P̃load(ti), ti ∈ T (12)

In the power system, controllable load can be adjusted to

keep the system load balance when power supply cannot

meet load requirement from demand side, then some load

must be cut down through switching off them, it can be

described as:

P̃load(ti) =
∑

s∈S

Bs,tiPs(ti) (13)

Generally, system load cannot be adjusted, it brings switch-

ing cost as:

minF4 =
∑

ti∈T

γti
∑

s∈S

(1 +Bs,ti)Ps(ti) (14)

Subject to

P̃load(ti) =
∑

s∈S

(
∑

tj∈T,tj 6=ti

Pstjti −
∑

tj∈T,tj 6=ti

Pstitj ) (15)

Ps(ti) =
∑

tj∈T

Pstjti −
∑

tj∈T,tj 6=ti

Pstitj ≥ 0 (16)

∑

ti∈T

Ps(ti) = Ms ≥ 0 (17)

Ps,min ≤ Pstitj ≤ Ps,max, ∀ti, tj ∈ T, ti 6= tj (18)

where Bs,ti is binary number of each consumers, S rep-

resents the number of consumers, Ps is the consumption of

consumer in one day, it can be assumed that it is an invariant,

Pstitj means that consumer s moves load consumption from

ti period to tj period, Ms is a real number, which means

that electricity consumption of each consumer is certain,

Ps,min and Ps,max are the minimum and maximum value

for moving load consumption.

B. Event-triggered optimization of hybrid energy system

with probabilistic risk

In hybrid energy system, power supply must meet the

requirement from demand side, but when power generation

cannot satisfy the system load, some controllable load will

be cut down, system load topology of agent 4 can be

switched to a different one, which greatly increase the

difficulty for optimizing hybrid energy system. Here, event-

triggered method is utilized to judge switching model with

probabilistic risk, which is mainly caused by imbalance

between power supply and load demand. Thus, it is assumed

that the expected value of total power output approximates

system load as follows:

E(Ptotal,t) → Pload(t) (19)

where Ptotal,t denotes the summation of power output of all

energy resources. For ensuring that power generation meets

load requirement, the probability of above formula needs to

satisfy:

Prob(|Ptotal,t − Pload(t)| ≤ ǫt) ≥ δt (20)

where Prob() denotes the probability operator, ǫt ∈ R+

represents the deviation error, δt ∈ (0, 1) means the smallest

permitted probability, it can also be converted into other form

as follows:

Prob(|Ptotal,t − Pload(t)| ≥ ǫt)) ≤ 1− δt (21)

With considering system load balance, it can obtain:

Prob(|
∑

j∈J

rIjtP̃Ijt − [Pload(t)−
∑

j∈J

PIjt −
∑

k∈K

Pck(t)

−
∑

l∈L

P store
l (t)]| ≥ ǫt)) ≤ 1− δt

(22)

Suppose that parameters rIjt are independent variables, it

can obtain inequality with Chebyshev inequality as follows:

V ar(
∑

j∈J rIjtP̃Ijt)

ǫ2t
≤ 1− δt (23)

It can deduce the permitted deviation error:

ǫ∗t =

√
V ar(

∑
j∈J rIjtP̃Ijt)

1− δt
(24)

The deviation can guide switching scheme of multi-agent

system for controlling both power supply and load demand.

Once generated power cannot meet load requirement (calcu-

lated deviation ǫt is larger than ǫ∗t ), it needs to cut off some

controllable load or turn off some power generators to keep

the balance. Here, an efficient switching scheme is proposed

to coordinate different agent-based subsystems as follows:

Algorithm 1 Event-triggered based coordinated optimization

1: procedure S(w)itching scheme for power balance

2: Check balance |Ptotal,t − Pload(t)|
3: if ǫt < ǫ∗t then

4: switch on thermal unit Pck

5: For k = ξ : K
6: Ptotal,t = Ptotal,t + Pck

7: Until Pload(t) ∈ Range(Ptotal,t)
8: if Maxtotalt < Pload(t) then

9: switch off controllable load Ps

10: For s = 1 : η
11: Pload(t) = Pload(t)− Ps

12: Until Maxtotalt ∈ Range(Pload(t))
13: end if

14: end if

15: end procedure

where ǫ is the number of current thermal units turned

on, Range() denotes the possible interval,Maxtotalt rep-

resents current maximum output of all energy resources at

tth period, η is current number of consumers using the
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electricity. After switching scheme for power balance is

made, coordinated optimization strategy is also made to

optimize multi-agent system as follows:

Algorithm 2 Event-triggered based coordinated optimization

1: procedure C(o)ordination scheme of hybrid energy sys-

tem

2: Agent 4: Making load shifting scheme

3: Agent 1: Probabilistic analysis in small intervals

4: Pload(t) = Pload(t)− PIntermittent,t

5: if Pload(t) < Maxtotalt then

6: Agent 2: DED on thermal units

7: goto End

8: end if

9: Pload(t) = Pload(t)−Maxtotalt
10: Agent 3: Energy storage management

11: end procedure

where PIntermittent,t represents the total output of intermit-

tent energy resources at tth time period.

IV. LOWER LEVEL PROBLEM: CONVEX OPTIMIZATION

FOR MULTI-AGENT SUBSYSTEM

In upper level, event-triggered switching mechanism and

coordination strategy have been made, but subsystem of each

agent still needs to be properly optimized. Here, several

optimization approaches are utilized for solving above prob-

lems. Agent 1 mainly analyzes probabilistic characteristics

of intermittent energy resources with statistical methods, it

doesn’t need optimization. Actually, optimization for Agent

3 cannot be a big problem, it can arrange energy storage from

big capacity to small capacity until system load is properly

satisfied, which can also save switching cost. Here, it focus

on the optimization of subsystems in Agent 4 and Agent

2. In Agent 4, Lagrangian relaxation approach is utilized to

obtain the iterated algorithm, which can deduce the optimal

load shifting scheme. Since problem formulation of Agent 2

can be a DED problem, consensus algorithm can be a better

way, consensus algorithm with ADMM is utilized to assign

output for each thermal unit.

A. Lagrangian relaxation approach for load shifting in

Agent 4

The load shifting model reflects consumers’ action with

disturbance of electricity price, but consumers shift load

from one time to another one with shifting cost, so how to

make shifting scheme for consumers can be a big problem.

Here, Lagrangian relaxation approach is utilized to optimize

this problem. Firstly, combine with Lagrangian relaxation

operator, it can obtain Lagrangian function as follows:

Lload = F4 +
∑

ti∈T

[λ+
s,ti

(
∑

tj∈T

Pstjti −
∑

tj∈T,tj 6=ti

Pstitj )]

+
∑

s∈S

λs(
∑

ti∈T

Ps(ti)−Ms) +
∑

ti∈T

∑

tj∈T,tj 6=ti

[λ+
s,ti,tj

(Ps,min − Pstitj )− λ−
s,ti,tj

(Pstitj − Ps,max)]

(25)

where λs,t
+

i
, λs, λ+

s,ti,tj
and λ−

s,ti,tj
are Lagrangian pa-

rameters. It can obtain following equations:




∂Lload

∂Pstitj

= −
∑

ti∈T

γti
∑

s∈S

(1 +Bs,ti) + λ+
s,ti

+

λs +
∑

ti∈T

∑

tj∈T,tj 6=ti

(λ−
s,ti,tj

− λ+
s,ti,tj

)

∂Lload

∂λ+
s,ti

=
∑

tj∈T

Pstjti −
∑

tj∈T,tj 6=ti

Pstitj ≥ 0

∂Lload

∂λs

=
∑

ti∈T

Ps(ti)−Ms

∂Lload

∂λ+
ti,tj

= Pstitj − Ps,min ≥ 0

∂Lload

∂λ−
ti,tj

= Ps,max − Pstitj ≥ 0

(26)

With above equations, the best Pstitj , λs,t
+

i
, λs, λ+

s,ti,tj

and λ−
s,ti,tj

can be deduced after several iterations, so

optimal load shifting scheme can be properly made.

B. Consensus with regularization algorithm for DED in

Agent 2

Combined with Lagrangian operator, since switching strat-

egy has been made from upper-level mechanism, it merely

needs to take fuel cost into consideration, it can be converted

into following mathematical model:

Lck =
∑

k∈K

fck + λc1(Pck(t)− Pck,min − d1)+

λc2(Pck,max − Pck(t)− d2) + λc3(Pck(t)

− Pck(t− 1)−DRck − d3) + λc4(URck+

Pck(t− 1)− Pck(t))

(27)

where λc1, λc2, λc3, λc4 represent the Lagrangian parame-

ters. For accelerating search ability, it is converted into a

distributed way with consensus theory. With equal increment

criterion, it can obtain:

∂fck
∂Pck(t)

= −λc1 + λc2 − λc3 + λc4 (28)

For output of each thermal unit, it can be deduced:

P ∗
ck(t) = (λc2 − λc1 − λc3 + λc4 − bk)/(2ck) = z (29)

where P ∗
ck(t) is the utopia optima of Pck(t), z is common

global variable. Combined with alternating direction method

of multipliers (ADMM) algorithm [30], equal increment

criterion can be treated as constraint limit, regularization

operator is taken in iterations to achieve synchronization,

it can obtain following iterative procures:




Pn+1
ck := argmin

Pck

[Lck + (ρ/2)||Pck − zn + µn
ck||

2
2]

zn+1 := argmin
z

[g(z) + (Kρ/2)||z − P̄c
n+1

− µ̄c
n||22]

µn+1
ck := µn

ck + Pn+1
ck − zn+1

(30)

where n is iteration number, µn
ck represents scaled dual

variable, ρ > 0 is augmented Lagrangian parameter, P̄c is
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Fig. 2. System load before load shifting strategy

average value of thermal units, µ̄c is average value of µck.

Since Lck and g(z) are differentiable and KKT conditions

can be properly satisfied, the argmin[·] operator here is

mainly implemented with derivation to deduce the extreme

value of Pck and z, which are taken as Pn+1
ck and zn+1 for

iterations. With consideration of feasibility of iterations, the

procedure is implemented as follows:

Pn+1
ck =

{
Pck Pn

ck > Pck

Pck Pn
ck < Pck

(31)

where Pck and Pck represent upper bound and lower bound

of feasible domain. The convergence can be ensured with

satisfying two assumptions in literature [31]: (1) fck and

g(z) (actually g(z) = 0 when it is implemented) are both

closed, proper and convex; (2) The function Lck has at least

one saddle point, because fck is monotonically increasing

function. Once the above iteration converges, it means

Pn+1
ck → P ∗

ck, optimal scheme can be made for dispatch

problem of thermal units.

V. CASE STUDY

For verifying feasibility and efficiency of proposed algo-

rithm, it is implemented in two test systems: hybrid energy

system without switching mode and hybrid energy system

with switching model. Test system 1 can be considered

as traditional optimal operation without considering DR,

and event-triggered multi-agent optimization is not involved.

While in test system 2, all factors are taken into con-

sideration, and comparison with test system 1 can reflect

the priority of event-triggered multi-agent optimization for

hybrid energy system.

A. Test system 1: hybrid energy system without switching

mode

This test system includes 4 wind farms, 3 photovoltaic

fields, 10 thermal units and 4 energy storage, all details

can be found in literature [32], [33]. The wind power
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Fig. 3. The Output of ten thermal units for minimizing economic cost

0 5 10 15 20 25

Period (h)

-50

-40

-30

-20

-10

0

10

20

30

40

50

O
u
tp

u
t 
(M

W
)

Storage1

Storage2

Storage3

Storage4

Fig. 4. The charging and discharging process of energy storage

can calculated with wind speed, and photovoltaic power

is closely related to illumination intensity. The predicted

wind and PV power output at least 85% confidence interval

are presented in Table.I and Table.II, which list upcoming

output interval for 24 hours. The system load includes five

different kinds of load: Load #1, Load #2, Load #3, Load #4

and Load #5, which can be found in Fig.2. For minimizing

the expected value of total economic cost, it needs to find

optimal scheme of ten thermal units and 4 energy storage,

here it is presented in Fig.3 and Fig.4. Since state of thermal

units is closely related to capacity with considering on/off

cost, most thermal units always be turned on except Unit 1,

Unit 2, Unit 7 and Unit 8, and Unit 5 and Unit 10 almost

keep maximum output during 24 hours. In Fig.3, permitted

minimum output of thermal units does not equal to 0MW, it

means that thermal unit is turned off when the output achieve

0 MW, and it is also the same for energy storage. In Fig.4,

energy storage is frequently utilized to keep the stability of

hybrid energy system, which also means that it will generate

more economic cost.
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TABLE I
85% CONFIDENCE INTERVAL OF WIND POWER GENERATION

period wind 1 wind 2 wind 3 wind 4 period wind 1 wind 2 wind 3 wind 4
00:00-00:59 [32, 45] [30, 42] [30, 40] [25, 34] 12:00-12:59 [16, 22] [15, 21] [12, 16] [13, 19]
01:00-01:59 [35, 45] [35, 41] [32, 38] [29, 35] 13:00-13:59 [20, 26] [20, 26] [17, 23] [17, 23]
02:00-02:59 [35, 44] [34, 40] [30, 36] [25, 43] 14:00-14:59 [25, 31] [22, 30] [22, 28] [21, 27]
03:00-03:59 [29, 35] [27, 35] [23, 29] [18, 24] 15:00-15:59 [30, 38] [28, 36] [27, 35] [25, 33]
04:00-04:59 [20, 28] [20, 26] [16, 24] [12, 18] 16:00-16:59 [26, 34] [24, 32] [24, 30] [22, 28]
05:00-05:59 [15, 21] [13, 19] [12, 18] [10, 18] 17:00-17:59 [24, 30] [22, 26] [20, 26] [19, 25]
06:00-06:59 [18, 26] [15, 23] [13, 20] [13, 20] 18:00-18:59 [22, 28] [19, 25] [18, 24] [17, 23]
07:00-07:59 [22, 28] [19, 25] [17, 23] [14, 22] 19:00-19:59 [15, 20] [17, 23] [ 15, 21] [15, 21]
08:00-08:59 [22, 30] [22, 28] [20, 24] [17, 23] 20:00-20:59 [22, 28] [23, 29] [20, 26] [19, 25]
09:00-09:59 [20, 26] [18, 24] [15, 23] [15, 21] 21:00-21:59 [25, 32] [28, 34] [25, 33] [23, 29]
10:00-10:59 [17, 23] [15, 19] [12, 18] [12, 18] 22:00-22:59 [31, 39] [27, 35] [25, 33] [23, 30]
11:00-11:59 [17, 23] [15, 21] [12, 18] [12, 16] 23:00-23:59 [33, 43] [32, 40] [30, 38] [27, 35]

TABLE II
85% CONFIDENCE INTERVAL OF PV OUTPUT

period PV 1 PV 2 PV 3 period PV 1 PV 2 PV 3
00:00-00:59 [0, 0] [0, 0] [0, 0] 12:00-12:59 [28, 36] [24, 32] [26, 34]
01:00-01:59 [0, 0] [0, 0] [0, 0] 13:00-13:59 [25, 35] [23, 29] [27, 33]
02:00-02:59 [0, 0] [0, 0] [0, 0] 14:00-14:59 [23, 29] [20, 24] [23, 29]
03:00-03:59 [2, 4] [0, 0] [1, 3] 15:00-15:59 [20, 24] [16, 20] [20, 24]
04:00-04:59 [4, 6] [1, 3] [2, 6] 16:00-16:59 [15, 19] [14, 18] [15, 21]
05:00-05:59 [8, 12] [6, 10] [7, 11] 17:00-17:59 [10, 14] [11, 15] [10, 14]
06:00-06:59 [11, 15] [10, 14] [8, 12] 18:00-18:59 [6, 8] [8, 12] [6, 10]
07:00-07:59 [15, 21] [13, 19] [ 12, 16] 19:00-19:59 [1, 3] [3, 5] [4, 6]
08:00-08:59 [ 16, 22] [ 17, 23] [17, 23] 20:00-20:59 [0, 0] [0, 0] [0, 2]
09:00-09:59 [20, 26] [20, 26] [17, 23] 21:00-21:59 [0, 0] [0, 0] [0, 0]
10:00-10:59 [23, 29] [22, 28] [20, 24] 22:00-22:59 [0, 0] [0, 0] [0, 0]
11:00-11:59 [23, 29] [25, 31] [24, 30] 23:00-23:59 [0, 0] [0, 0] [0, 0]
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Fig. 5. The original load and load after load migration

B. Test system 2: hybrid energy system with event-triggered

switching mode

Test system 1 can be taken as a traditional case for

optimizing hybrid energy system without DR, it is static

and simple case but widely used in real-world application.

Here, on the basis of test system 1, this test system takes all

above factors into consideration, the comparison with robust

optimization in Literature [2] and multi-agent optimization

in literature [18] are taken in Table.III, it can be seen that

the proposed method has minimal total cost with less time
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Fig. 6. System load after load shifting strategy

consumption, and it can also ensure the safety of hybrid

energy system with high average confidence degree. Since

load migration is taken into consideration, consumers can

arrange proper timing for electricity consumption, it can be

seen in Fig.5, in which system load can be more stable,

electric peak has been curtailed and electricity trough has

been supplemented in comparison to original load, five

kinds of system load after shifting have been presented in

Fig.6, and load shifting process of each system load has

been listed in Table.IV, Table.V, Table.VI, Table.VII and
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TABLE III
THE COMPARISON WITH OTHER OPTIMIZATION METHODS

Methods Literature [2] Literature [18] The proposed method
Fuel cost($) 33463 31766 30071
On/off cost($) 7382 7124 7233
Charging/discharging cost($) 10531 6254 5677
Load shifting cost($) 0 1011 2135
Total cost($) 51376 46155 45116
Time (s) 68 59 56
Average confidence degree(%) 87 82 91
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Fig. 7. The output of thermal units with event-triggered mechanism
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Fig. 8. The charging and discharging of energy storage with event-triggered
mechanism

Table. VIII. The obtained output of thermal units has been

presented in Fig.7, it can be found that Unit 1 and Unit 2 are

almost turned off during the whole period, which can save

total economic cost better than that in test system 1. With

considering charging and discharging cost, energy storage

can be used merely when other power generation cannot

meet load requirement in Fig.8, obviously energy storage is

seldom used in comparison that in test system 1. It can be

noted that there are three key periods, where energy storage

has been used. Actually, it adjusts potential risk to minimum
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Fig. 9. The confidence degree for exempting potential risk

extent, which can be found in Fig.9. Here, δt can be set

as 0.85, once confidence degree is smaller than it, event-

triggered switching mechanism can be utilized to decrease

the potential risk or improve the confidence degree. As it

is shown in Fig.9, there are five dangerous periods with

low confidence level in original load, but they are improved

after utilizing event-triggered switching mechanism, which

also proves the feasibility of proposed method. In subsystem

level, consensus with ADMM is employed to optimize eco-

nomic dispatch of ten thermal units, those obtained results

are listed in Table.IV. It can be found that total cost has

been greatly reduced especially charging and discharging

cost in comparison to test system 1. In addition, convergence

process has also been analyzed in comparison to DP and

QP methods in Fig.10, though DP and QP have good

performance before 50 iterations, QP fall into premature

problem after 100 iterations and search ability is still not

good enough. With above comparison and analysis, four

designed agents can work properly in hybrid energy system,

the proposed event-triggered switching mechanism based

multi-agent optimization can improve optimal efficiency for

reducing the total economic cost as well as decreasing

potential risk, which can ensure the reliability of hybrid

energy system.

VI. CONCLUSION

Due to the strong uncertainty and coupled complexity

of hybrid energy system, optimal operation has become a
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great challenge for both system modeling and optimization

methodology. This paper proposes a two-layered multi-agent

optimization with event-triggered switching mechanism. Af-

ter simulation on two test systems, some merits can be

concluded as follows:

(1) Since different energy resources have different char-

acteristics, four agents are designed for different purposes.

Agent 1 analyzes probabilistic characteristics and provides

the probability interval for power dispatch. Agent 2 assigns

output of thermal units to minimize fuel cost and on/off

cost. Agent 3 manages energy storage with minimizing

the charging and discharging cost. Agent 4 provides load

shifting/migration model for consumers’ consumption in

DR.

(2) In upper level, event-triggered switching mechanism

is proposed to decrease potential risk caused by intermittent

energy, the switching of power supply’s on/off state and

load curtailment can be controlled to properly arrange power

generator state or load curtailment. For proper coordination

among different energy resources, some norms are designed

for properly optimizing of four subsystems.

(3) In lower level, ADMM is developed with regularized

consensus algorithm to optimize DED model in subsystem.

Combined with equal increment criterion, different power

generators can achieve a utopia optima after several itera-

tions.

Finally, those obtained simulation results can support

above view points, and it also reveals that the proposed

event-triggered multi-agent optimization can be a viable and

promising approach for optimal operation of hybrid energy

system.
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TABLE IV
LOAD SHIFTING PROCESS OF LOAD #1

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 - 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
3 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 23 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 8 0 0 - 0 0 0 4 0 0 0 0 0 0
15 0 0 0 1 0 6 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0
19 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0
20 0 0 4 0 0 0 3 0 0 0 5 0 0 0 0 0 0 0 0 - 0 0 0 2
21 0 0 0 0 0 0 0 0 0 26 0 3 0 0 0 2 5 0 0 0 - 0 0 0
22 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
23 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

TABLE V
LOAD SHIFTING PROCESS OF LOAD #2

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 10 0 0
2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0
3 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0
4 0 0 0 - 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1 0 0 0
6 0 0 0 0 0 - 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 - 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 8 0 0 12 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
23 0 0 0 0 0 0 0 0 5 0 24 14 0 0 0 14 0 0 0 0 0 0 - 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 -
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TABLE VI
LOAD SHIFTING PROCESS OF LOAD #3

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0
2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
3 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0
4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
7 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 9 0 0 19 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 - 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 22 0 0 0
11 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 18 - 0
24 0 0 0 0 0 0 0 0 0 0 0 9 0 37 0 0 7 0 0 0 0 0 0 -

TABLE VII
LOAD SHIFTING PROCESS OF LOAD #4

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 27 0 3 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 37 0 0 0 0 0 0 - 0 0 0 0 0 0 0 10 0 0
15 0 0 0 0 0 0 0 0 13 0 36 0 0 0 - 0 0 0 0 0 0 5 0 0
16 0 0 0 0 78 0 0 0 0 24 0 0 0 0 0 - 0 0 0 0 0 0 0 0
17 0 0 0 91 0 0 0 0 0 12 0 0 0 0 0 0 - 0 0 0 0 0 0 0
18 0 0 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 60
19 141 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0
20 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 - 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
23 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
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TABLE VIII
LOAD SHIFTING PROCESS OF LOAD #5

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 21 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 81 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 8 349
10 0 0 0 330 1 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 370 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
12 398 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
13 2 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 37 145 0 0
14 0 85 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0
15 0 30 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
16 2 0 22 0 0 55 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 109 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 211 0
19 0 0 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0
20 0 0 0 0 0 199 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -


