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Missing Data Imputation with OLS-based
Autoencoder for Intelligent Manufacturing

Yanxia Wang, Kang Li*, Shaojun Gan

and Che Cameron

Abstract—Motivated by a global economy that is greatly
shaped by the landscape changes in energy and man-
ufacturing where more and more devices and systems
are interconnected, intelligent manufacturing in which data
mining is of great importance is studied. In this paper, an
energy monitoring platform for small and medium-sized
enterprises (SMEs) developed by the point energy team
(www.pointenergy.org) is first introduced, which monitors
and records the energy consumption of manufacturing
processes at various levels of granularity. In processing
the collected data, some incompleteness in the data due
to various factors needs to be addressed first otherwise
it may lead to the inaccurate portrayal of the system
and poor generalisation of the resultant model trained by
the data. Hence, a novel OLS (orthogonal least square)-
based autoencoder is proposed to generate new samples
for the imputation of missing values. This approach is to
learn the representative code from the original samples by
constructing an improved encoder network in which the
hidden neurons are orthogonal with each other. The new
samples are then generated through the decoder network.
The proposed approach selects the hidden neurons one
by one based on the OLS estimation until an adequate
network is built. The classical techniques and other gen-
erative models are compared to verify the effectiveness of
the proposed algorithm. For these methods, the optimal pa-
rameters are estimated based on the performance metric of
cross-validation mean square error. In the experiment, the
two real industrial data sets from a baking process and a
polymer extrusion process are adopted and the percentage
of missing values varies from 0.02 to 0.25. The experimental
results confirm that the proposed method offers stable per-
formance in the presence of different missing ratios, and it
outperforms significantly alternative approaches while the
missing ratio is greater than 0.05.

Index Terms—monitoring platform, missing data imputa-
tion, autoencoder, orthogonal least square

I. INTRODUCTION

O
VER the last decade, various issues associated to the global

warming due the substantial anthropological consumption of

fossil fuels have become the global concern [1]. As a con-

sequence, the UK government has committed to reduce its

greenhouse gas/carbon dioxide emission (GHG) by 80% by

2050 (compared to the 1990’s level) which is a huge leap
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from the current emissions levels in the past three decades

[2]. As a part of this commitment to lower GHG emissions,

the government has made the reduction of industrial energy

consumption a priority [3]. Industrial manufacturing is one of

the heavy energy consuming sectors, accounting for 16% of

annual usage, and should consider the GHG reduction target as

a priority [4], [5]. To gain a deep understanding of the energy

consumption and to seek opportunities to improve the energy

efficiency is of significant importance.

Data mining for improvement of energy efficiency has

resulted in unprecedented improvements in many tasks, when

given sufficient data [6], [7]. In reality, actions and decisions

often need to be taken in the presence of limited datasets or in-

complete datasets, due to various intentional and unintentional

reasons, associated to the data generation, data collection and

data transmission processes [8]. While simple extention of the

measurements may not fully recover the information of the

missing data. Taking the baking data set as an example, the

energy consumption profile varies at different times, such as

peak time and off-peak time, day and night. If the energy

consumption data at the peak time is missing, then it can

not be extended using the measurements taken at the off-

peak time, otherwise, it may lead to quite poor generalization

performance of resultant models, and the analytical results

based on the data may not yield an accurate portrayal of the

actual system. Therefore, techniques have been developed over

the years to generate more meaningful artificial data from the

original data set to improve the process modelling accuracy

[9].

Multiple imputation is a widely used approach for handling

the problem of incomplete data in practical applications [10],

[11]. K nearest-neighbour (KNN) imputation algorithm is to

find k nearest neighbours for missing data in an incomplete

dataset, and then fill in the missing values with the one which

has the highest probability of occurrence in neighbours if the

majority rule is applied; or with the mean of neighbours if the

mean rule is used. Although simple and easy to understand,

to select the distance function and the number of neighbours

is still a drawback for KNN [12], [13].

The random forest is a promising tree-based approach for

dealing with missing data which is an extension of Breiman’s

bagging idea [14], [15]. The algorithm starts with the random

selection of many bootstrap samples from original data. In a

normal bootstrap sample, approximately 63% of the original

data occur at least one time, while the observations from the

original data that do not occur are called out-of-bag. The

random forest has desired characteristics of being capable of
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dealing with mixed types of missing data and addressing inter-

action and nonlinearity. The main limitation of this method is

that a large number of trees may cost huge computation power

[16]. Besides the classical algorithms, increasing attention is

being paid to the ideas of generating samples from a probabil-

ity distribution, which could also sort the problem of missing

data. The generative adversarial networks (GAN) can represent

probability distributions over observed data via an adversarial

process [17]. It is a framework with two models: a generative

model that captures the data distribution, and a discriminative

model that estimates the probability that a sample comes from

the real data rather than generator. This method has achieved

great success in artificial intelligence applications, such as

generating realistic images and stabilising sequence learning

methods [18]–[21]. However, it is difficult to extract the real

distribution features and the stochasticity in noise may not

correspond to the characteristics of the real data [22]. The

info generative adversarial network (infoGAN) is an extension

of GAN, which could learn meaningful representations. The

loss function could be interpreted as the bound of mutual

information between generated data and features. While this

algorithm has difficulties in learning the sample category and

hence in generating class-conditional synthetic data [23].

The autoencoder is a type of neural network used to learn

efficient coding in an unsupervised manner [24]. The target of

this algorithm is to learn a compressed representative coding

of the input, and then to decompress that code to something

very close to the original input. Thus, the latent code of

the autoencoder is of significant importance for generating

new samples. Particle swarm optimization (PSO) is a popular

algorithm for dealing with optimization problems and has been

adopted to optimize the number of neurons in hidden layers

(hence the number of latent variables) and the learning rate

for autoencoder [25]. While for the same numbers of latent

variables, the orthogonal ones could preserve the maximal

amount of variance of the original input [26].

In this paper, a novel OLS (orthogonal least square)-

based autoencoder approach is developed for the missing

data imputation. The algorithm is an effective integration of

OLS and autoencoder, which selects the hidden neurons into

encoder network one by one and makes the new hidden neuron

orthogonal to the existing ones. Thus, a parsimonious network

with a small number of hidden neurons could be constructed

as the contribution of each hidden neuron is evaluated by the

OLS estimation, and the computational cost would not increase

with the increase of the network complexity since only one

neuron needs to be optimized by PSO in each step. The hidden

neurons in the encoder are orthogonal to each other, which

means the latent variables are uncorrelated, thus retaining the

largest information learned from the input. To evaluate the

performance of the proposed algorithm, two real industrial

data sets collected by our energy monitoring platform are

employed in the experiment. The classical techniques and

other generative approaches are compared with the proposed

method to deal with various conditions under different missing

ratios.

II. PRELIMINARY WORK

A. Energy monitoring system

For intelligent manufacturing, a desire for detailed knowl-

edge of operating conditions, both in terms of increased

sampling rate and different granularity of use location has

driven the development of the Point Energy monitoring system

(www.pointenergy.org). Measurements of whole-factory as

well as individual equipment are achieved using a combination

of current transformers, interfaces to existing meters and

customized smart meters. The system has been field-tested in

different industrial sectors including a local bakery company

and polymer extrusion processes. The two parts of the system

can be considered as the Data Acquisition layer and the Data

Analytics layer, bridged by an on-site base station, detailed in

Fig. 1.

Fig. 1. The Energy monitoring system

Data acquisition mainly depends on various types of sen-

sors. For instance, measurement of the electrical power is per-

formed by micro-controller nodes (Multitech MDOT) that are

interfaced to ABB B24 112-100 3ph power meters via Mod-

bus. These meters are installed inside the factory’s electrical

panels, using hardwired connections for voltage measurements

with a current transformer installed at each phase to measure

current. Thus, the system is capable of collecting sufficient

data at different granularity to present a hologram picture of

energy usage in the factory. In the bakery plant, gas and water

meters produce pulse outputs which are captured via GPIO

triggered interrupts. While for polymer extrusion, the temper-

ature, viscosity and screw speed meters are also installed to

collect corresponding signals. The gathered information is sent

via the LoRaWAN radio system using the Multitech MDOT’s

integrated radio, and captured by a Multitech Conduit LoRa

concentrator. These LoRa packets are decoded and passed

to an on-site server (standard fanless x86 hardware), which

performs data concatenation and packaging before sending

the readings via MQTT to off-site cloud services. The WAN

connection is provided by a 3G/4G mobile signal however the

router hardware is capable of taking advantage of ethernet or

WiFi connections as well.

The on-site server is also responsible for node management

and is capable of local data presentation, with the expecta-

tion that actuator control decisions can be implemented if

necessary. A dashboard is hosted on a cloud server which
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presents the users with real-time (gauges and dials) and

historic (searchable graphs) energy usage information. Specif-

ically, electrical power categorised by different machines and

production lines, gas usage rate for steam and water boilers,

and the temperature of the extruder barrel, are captured and

presented in the dashboard. The complete data set is stored

in a secured MySQL database which can be accessed by the

industrial partners and the research team through a command-

line interface.

B. Problem formulation

Missing values often occur due to the harsh working condi-

tions or uncontrollable (unintentional or intentional) factors,

such as sensors and communication failures or intentional

malicious cyber attacks. The worse thing is that immediate

restoration is not feasible or may cost too much. In this paper,

we focus on the prediction and imputation of missing data

in the collected data sets from the manufacturing sites. To

give a clear illustration, Fig. 2 shows an example of dataset

with missing values. In industrial dataset, since each of these

dimensions in the collected data represents different signals

with different scales, normalisation is required so that all the

inputs are within a comparable range [27].
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Fig. 2. The samples of original baking data

Assume an initial data set X = {xij}, i = 1, 2, · · · , N, j =
1, 2, · · · ,M , contains N data samples from M different

sensors. Thus, the i-th data sample from j-th sensor can

be donated as xij , and the data from j-th sensor in dataset

X is denoted as xj . In this paper, when xij in dataset is

missing, it will be represented as ”NaN”. In addition, a matrix

Z ∈ R
N×M is adopted to indicate whether the value in X is

missing or recorded. The elements in Z can be defined as:

zij =

{

0 xij = NaN
1 otherwise

, (1)

where i = 1, 2, · · · , N, j = 1, 2, · · · ,M .

Hence, the initial data set X can be divided into incomplete

subset X ′ and complete subset X ′′. The corresponding matrix

Z ′ indicates the missing values in X ′, and all the elements in

Z ′′ are ones. Therefore, the problem of predicting missing data

can be defined as follows: 1) Build and train the original model

based on the complete dataset X ′′, and learn the knowledge

representation. 2) generate and produce missing values based
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Fig. 3. The structure of autoencoder

on the updated model, learned features, incomplete dataset X ′

and indicator matrix Z ′.

III. RELATED ALGORITHMS

A. Autoencoder

Autoencoder is a neural network which could be used to

reconstruct high-dimensional input vectors [24]. As shown

in figure 3, it first uses an adaptive, multilayer network to

transform the high-dimensional data into a low-dimensional

code and then a similar decoder network to generate or recover

the data. This algorithm can be composed of two parts:

Encoder: This is the part of the network that compresses the

input variables XǫRN×M into a latent-space representation. It

can be represented by an encoding function:

Φ = F (X), (2)

where X denotes the original input variables and Φ =
[Ψ1, · · · ,ΨS ] are the latent variables obtained from encoder.

Decoder: This part aims to reconstruct the input from the

latent space representation. It can be represented by a decoding

function:

Y = g(Φ), (3)

where Y is the output of decoder network.

Conventionally, the gradient is obtained based on the chain

rule to back-propagate the error derivatives through the de-

coder and encoder network. The cost function of this method

is given by:

E = ||Y −X||2 = (Y −X)T (Y −X), (4)

where || · ||2 denotes the Euclidean norm.

For the back-propagate gradient descent, it is likely to

converge to a local minimum when the objective function has

several extreme values [28].

B. Orthogonal least squares (OLS)

For a linear-in-the-parameter model, the number of can-

didate terms (or the number of hidden neurons in neural

network) could be very large, which may cause over-fitting.
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Thus, it is of importance to find a parsimonious model with

fewer terms. Among numerical methods, matrix decomposi-

tion methods have been widely adopted. In particular, OLS

with QR decomposition is an well-known subset selection

method for this target, having been successfully applied in

many applications, such as modelling, dictionary learning and

identification of nonlinear dynamic systems [29]–[31].

Suppose N data samples {xi, yi}, i = 1, 2, · · · , N are used

to represent model such that:

Y = Φθ + Ξ, (5)

where Φ ∈ R
S×N , Φ = [Ψ1, · · · ,Ψj , · · · ,ΨS ]

T ; Ψj ∈
R

1×N , Ψj = [Ψj(x1), · · · ,Ψj(xN )](j = 1, · · · , S) represents

a nonlinear function of input, Ξ = [ε1, · · · , εN ]T is the noise;

θ denotes the parameter vector of the model.

Thus, a cost function can be formulated as:

E = (Φθ − Y )T (Φθ − Y ). (6)

If Φ is of full column rank, the least square estimation of

θ that minimizes this cost function is then given by:

θ̂ = argmin
θ
||Y − Φθ||2 = (ΦTΦ)−1ΦTY, (7)

and the associated minimal cost function is:

E(θ̂) = Y TY − θ̂ΦTY. (8)

The orthogonal transformation is introduced by OLS to

produce:

Φ = WA, (9)

where W = [w1, · · · , wN ] is an orthogonal matrix satisfying

wT
i wj = 0, if i 6= j, and A is an unit upper triangular matrix:

A =











1 α12 · · · α1S

0 1 · · · α2S

...
...

. . .
...

0 0 0 1











. (10)

Equation 5 could be rewritten as:

Y = WG+ Ξ, (11)

where G = Aθ.

According to equation (7), the estimation of G is computed

as:

Ĝ = (WTW )−1WTY. (12)

Hence, the optimized θ̂ can be given as θ̂ = A−1Ĝ, and the

corresponding cost function equation (8) becomes:

E(θ̂) = Y TY −

S
∑

i=1

(Y Twi)
2

wT
i wi

. (13)

According to equation (13), the contribution of an orthogo-

nal column wi to the cost function can be explicitly calculated

as δEi = (Y Twi)
2/wT

i wi without solving the least square

problem.

C. Particle Swarm Optimization (PSO)

PSO was proposed by mimicking the social behaviour

observed in animals, e.g., birds flocking and fish schooling

[32]. With the advantages of high precision, quick convergence

and easy implementation, PSO has gained increasing popular-

ity among researchers as an efficient technique for solving

complex optimization problems.

The algorithm begins with a swarm that the position and

the velocity of each particle are generated randomly. Each

potential solution is represented by a particle in the search

space. Suppose vi,r and xi,r be the velocity and position of the

i-th particle in the r-th iteration; x̂i,r and gr are the individual

best and global best in the r-th iteration. Hence, the velocity

and position of i-th paticle at the (r+1)-th iteration could be

updated by equation [33]:

{

vi,r+1 ← ωvi,r + c1(x̂i,r − xi,r) + c2(gr − xi,r)
xi,r+1 ← xi,r + vi,r+1

, (14)

where ω denotes the inertia factor; c1 and c2 represent learning

factors.

PSO adjusts particles at every iteration, and it will stop

when the minimum error criterion or the number of iterations

reaches the predefined limitation.

IV. THE PROPOSED ALGORITHM

For the proposed algorithm, OLS is adopted in the autoen-

coder network. The neurons in hidden layer which are related

to the features extracted from input variables are added one

by one. In each step, the best neuron is selected by OLS,

as OLS can select the terms that maximize the increment to

the explained variance of the desired output based on the

consideration of all existing candidates. Thus, an efficient

OLS-based autoencoder network could be constructed.

Suppose XǫRN×M is an input matrix, where N is the

number of samples and M stands for the number of dimen-

sions. KM×S and b1×S are the weight matrix and bias vector

between input layer and hidden layer.

In the encoder network, S is the number of hidden neurons,

namely, the number of latent variables obtained from the

encoder network. If the neurons in hidden layer are orthogonal

to each other, then the coordinates of the latent variables in the

new S-dimensional space are uncorrelated and the maximal

amount of variance of the input is preserved by only a small

number of features.

Thus, the output of this algorithm Y could be written as:

Y = Ψ(X, [K, b]) · θ + Ξ, (15)

where Ψ(X, [K, b]) is the output of hidden layer; θ represents

the parameter matrix of weights and bias between hidden layer

and output layer in decoder network.

Let Φ = Ψ(X, [K, b]), according to the orthogonal trans-

formation in equation (9), the matrix can be rewritten as

W = Φ ·A−1 and G = Aθ, thus

Y = WG+ Ξ. (16)



IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS

The sum of squares of the output variable Y is given as:

< Y, Y >=

S
∑

i=1

g2i < wi, wi > + < Ξ,Ξ >, (17)

where <> represents dot product.

The error ratio due to wi is thus defined as the proportion

of the output variable variance explained by:

[err]i =
g2i < wi, wi >

< Y, Y >
. (18)

The equation (18) suggests the way of computing wi, and

hence the matrix Φ, which can be used to calculate the

contribution of each neuron to the output of model. Thus,

the PSO algorithm could employ equation (18) as its fitness

function to choose the optimal neuron for encoder in each step.

As shown in figure 4, the detailed procedure is as follows.

Step 1: Add the first neuron to the hidden layer. For

i = 1, 2, · · · , D, where D denotes the number of particles;

r = 1, 2, · · · , R, where R is the maximum of evolutionary it-

eration. Every particle Pi,r (the i-th particle in r-th iteration) in

PSO stands for the weights and bias for the first neuron in the

hidden layer, then wi,r = Ψi,r ·A
−1, where Ψi,r = Ψ(X,Pi,r)

.

Thus, the contribution of the first neuron is defined as:

[err]i,r1 =
(gi,r1 )2 < wi,r

1 , wi,r
1 >

< Y, Y >
, (19)

where gi,r1 =
∑Q

j=1
<w

i,r
1

,yj>

<w
i,r
1

,w
i,r
1

>
.

Assume that [err]i,r1 = max([err]i,r1 , 1 ≤ i ≤ D, 1 ≤ r ≤
R), which means the i-th particle from the r-th iteration Pi,r

is selected as the global optimal. Hence, the output of the first

hidden node Ψ1 and the associated parameters θ in decoder

network can be calculated.

Step 2: Add the second neuron to hidden layer. A new set of

particles is generated randomly by PSO algorithm, and each

particle represents the potential weights and bias. In this step,

each particle to be selected is orthogonal to the first neuron.

For i = 1, 2, · · · , D and r = 1, 2, · · · , R, compute

{

αi,r
12 =

<w1,Ψi,r>

<w1,w1>

wi,r
2 = Ψi,r − αi,r

12 · w1

, (20)

and the contribution of the second neuron is

[err]i,r2 =
(gi,r2 )2 < wi,r

2 , wi,r
2 >

< Y, Y >
, (21)

where gi,r2 =
∑Q

j=1
<w

i,r
2

,yj>

<w
i,r
2

,w
i,r
2

>
.

Assume that [err]i,r2 = max([err]i,r2 , 1 ≤ i ≤ D, 1 ≤ r ≤
R), then w2 = wi,r

2 is selected as the second column of matrix

W together with the second parameter α12 = αi,r
12 , the second

element g2 = gi,r2 , and [err]2 = [err]i,r2 . Therefore, the second

hidden node can be confirmed.

Obviously, for the t-th neuron, we have the following

equation:

Start

Generate 

particles

Select best particle 

to add new neuron

No Yes

Calculate [err] 

with OLS

Update 

particles 

Max 

generations

To desired 

tolerance 

Yes

End

No

Fig. 4. The flowchart of OLS-based autoencoder

wt = Ψt −

t−1
∑

j=1

αjt · wj . (22)

In each step, one hidden neuron is added to the neural net-

work. This selection procedure continues until to the maximum

number of neurons in the hidden layer or the error ratio to a

desired tolerance is reached:

1−

S
∑

i=1

[err]i < ρ. (23)

V. EXPERIMENT PROCEDURE

A. Industrial data sets description

The details about the two industrial data sets are summa-

rized in table I, both collected in real applications. There are

one medium-scale baking data set with 13 attributes and one

large-scale polymer data set with 20 attributes. The discussion

about the experimental results will be focused on these two

data sets.

1) Baking data set

In the bakery factory, a large portion of the electricity,

about 30-35% is consumed in the baking process. This paper

documents the initial energy consumption data set of the

baking process working with three-phase 415V AC power over

a randomly selected period. There are 13 sensors deployed to

monitor the following features at a three-minute interval across

all three phases: voltage, current, power factor, frequency,

temperature, etc. Thus, the number of dimensions for each

sample is 13. In the experiment, the data set is collected from

baking process over a fifteen-day period with no interruption,

beginning from Thursday 20th May, which consists of 7200

samples.
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2) Polymer extrusion data set

Polymer extrusion is an energy intensive industrial sector,

and the real-time monitoring of production process is neces-

sary to meet new carbon regulations. The data set of polymer

extrusion process is collected from a killion KTS-100 single-

screw extruder. For the monitoring system, each measurement

is constructed by the continuous collection of the 20-sensor

signals, e.g. temperature, speed of screw, viscosity, and power.

For the duration of two days, the length of polymer extrusion

data set is 10359 in the experiment.

To simulate the reality of missing data, we select different

percent of the original data and set them as NaN , namely the

missing data. For the fair comparison of these methods, the

missing data are randomly moved from recorded data. In the

experiment, the missing ratio of the two data sets is varied

by an increasing proportion—2%, 5%, 10%, 15%, 20%, and

25% respectively. Thus, we could get the data matrices D2,

D5, D10, D15,D20 and D25.

TABLE I
THE TWO DATA SETS IN THE EXPERIMENT

Data set Sensors Time Initial length

Baking data set 13 15 days 7200
Polymer extrusion data set 20 2 days 10359

B. Experimental setup

1) Compared algorithms

In this paper, to evaluate the performance of the proposed

method, the classical methods are chosen based on their ef-

fectiveness and popularity in solving missing data problem. In

addition to autoencoder, the compared methods also include:

• K-nearest neighbour imputation (KNN): KNN impute is

an algorithm that is useful for matching a point with its closest

k neighbors in a multidimensional space. The assumption

behind KNN is that a point value can be approximated by

the points that are closest to it [34].

• Random forest (RF): The proximity between two observa-

tions is the time that they end up in the same terminal node. If

two observations are always in the same terminal node, their

proximity will be 1. If they are never in the same terminal

node, their proximity will be 0 [35].

• Generative adversarial networks (GAN): GAN is a specific

generative adversarial framework of two competitive multi-

layer networks, aiming to learn the data distribution from a

set of samples implicitly and generate new samples from the

learned distribution [36].

• Information maximizing generative adversarial networks

(InfoGAN): In infoGAN, instead of using a single noise vector,

the input of the Generator is decomposed into two parts: i)

noise vector, which brings the variation to the new generations;

ii) the latent variable, which is related to the distribution

features [37].

For GAN and infoGAN, the mini-batch gradient descent

(MBGD) [38] and the adaptive moment estimation (ADAM)

[39] are both employed for tuning parameters.

• The denoising autoencoder (DAE) is an upgrade version of

the autoencoder [40]. The idea of this algorithm is to train the

autoencoder to reconstruct the input from a corrupted version

of it, thus forcing the encoder to discover more robust features

and to prevent it from simply learning the identity.

In the experiment, these algorithms are implemented in

Matlab version 2018a, with default parameters used, unless

otherwise specified. To optimize the hyperparameters of each

modelling paradigm, the cross validation is adopted with

the cross-validation root mean square error (CVMSE) as the

performance metric [41]. The optimal number of nearest-

neighbour columns of KNN impute algorithm is selected in

the range of [1, 5]. For RF algorithm, the number of trees in

the forest considered ranges from 100 to 500 with the interval

of 100. The number of latent code obtained in autoencoder

is decided from [1, 2M/3] (rounded down), where M is the

number of attributes in the original data set. As for GANs,

the architectures of Generator and Discriminator are the same,

both three layers. The number of neurons in the input layer

for Generator is fixed to 100. The numbers of hidden neurons

for Generator and Discriminator are both selected from [100,

500]. The activation functions in the hidden and output layers

are Sigmoid function and ReLU function respectively. For

infoGANs, the generator and discriminator also both have a

three-layer structure, and the numbers of hidden nodes are also

chosen in the range of [100, 500]. The Q-net uses the Discrim-

inator’s network except for the output layer—it implements

own output layer. The number of nodes in output layer is set

to be five, representing the number of latent variables. For

mini-batch gradient descent (MBGD) and adaptive moment

estimation (ADAM) training methods, the number of iterations

and the initial learning rate are 100 and 0.001 respectively. For

the proposed algorithm, the error ratio is set to be 0.001 and

the maximum size of the latent code also can not exceed 2M/3
(rounded down) with respect to the fairness.

2) Evaluation criteria

In the experiment, the datasets D2, D5, D10, D15,D20

and D25 with different percentages of missing data are used.

Taking D2 for instance, the data set is divided into two data

sets in line with missing values: one data set containing com-

plete samples and another data set composed of incomplete

samples, namely with missing values. The complete data set

is used for calculating and imputing the missing data in the

incomplete samples according to different approaches. The

expert assessment is calculated as the total mean squared error

(MSE) and normalized prediction error (NPE), as the effective

measures for the deviations in distances between predicted

values and the observed point coordinates. The formulas for

them are shown as follows:

MSE =

∑

i,j(1− zij)(yij − ŷij)
2

∑

ij(1− zij)
(24)

NPE =

√

∑

i,j(1− zij)(yij − ŷij)2
∑

i,j(1− zij)y2i,j
× 100% (25)

where yij is the observed variables in the industrial dataset

and ŷij is the corresponding predicted value. zij is the indi-

cator matrix.
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Fig. 5. The parameter impact in baking data set

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Parameter discussion

In this section, we will analyse the impact of parameter

choice in the various approaches for the two data sets based

on the CVMSE values. Figure 5 and figure 6 illustrate the

performances of different parameters for the baking data set

and polymer data set respectively.

As shown in these figures, the number of nearest neighbours

has little influence to the CVMSE values for KNN. For the RF

algorithm, the number of trees could affect the experimental

results significantly and a moderate number of trees could

perform better in most cases of varying missing ratios. For

GANs and infoGANs, the number of hidden neurons reflects

the structure of algorithm and the level of computational

complexity in some degree. It is revealed that the performance

of these algorithms would not become better along with the

increase of the number of hidden neurons when the number

of hidden neurons exceeds a certain threshold, which may be

caused by the issue of over-fitting. Thus, the selection of pa-

rameter of these algorithms should be made by considering the

accuracy and the structure complexity. As for the autoencoder,

the DAE technology and the proposed method, the latent codes

obtained from the encoder network represents the information

extracted from the original input. It is demonstrated that the

size of latent code in autoencoder has only a slight impact on

the performance for baking data, and this could be explained

by the first few latent variables offering sufficient coverage of

the features of the input data. For most percentages of missing

data in polymer data set, the number of latent code in DAE

could affect the experimental results largely, which indicates

the selection of the latent variables is of great importance. The

superior results of the proposed method are mainly achieved

when the latent code sizes are around 1/3 of the number of

dimensions of input variables. In summary, the parameters in

these algorithms are optimally selected based on the CVMSEs

for both the baking dataset and polymer extrusion dataset are

summarized in table II.

B. Results and discussion

The experimental results for the baking data set are summa-

rized in table III. The MSE and NPE values of the algorithms

are averaged based on 100 repetitions of the experiments.

Although the MSE values of the proposed method are bigger

than those of classical methods when the missing ratio is 2%

and 5%, e.g. KNN and RF algorithms, the proposed method

shows much better performance when the missing ratio is

greater than 5%. When the missing ratios are equal to 2% and

5%, RF algorithm achieves the lowest MSE with 0.008 and

0.021, followed by KNN approach. As there are more missing

values in data set, KNN and RF produce less satisfactory

results, which is illustrated by the bigger MSE values. While

when the missing ratio exceeds 5%, the MSEs of the proposed

method are the lowest compared with other baseline models.

Take missing ratio of 10% as an example, the MSE of the

proposed method is lower than those of the other methods, in

the magnitudes of 25.6%, 1.79%, 242.9%, 371.4%, 57.1%, and

46.4% respectively. The similar observations are found when

the missing ratio varies from 15% to 25%. Furthermore, for

different missing percentages, the proposed method achieves

much better than autoencoder, which implies that the imple-

mented OLS improves the performance of the algorithm in

generating new samples.
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Fig. 6. The parameter impact in polymer data set

TABLE II
THE OPTIMAL PARAMETERS SELECTED FOR DIFFERENT APPROACHES

Data set
Percentage of
missing data

KNN RF
GAN-

ADAM
GAN-

MBGD
infoGAN-

ADAM
infoGAN-

MBGD
Autoencoder DAE

Proposed
method

Baking
data set

2% 1 300 300 300 200 400 3 7 5
5% 1 100 200 300 300 500 8 8 5

10% 1 300 300 300 400 400 8 7 9
15% 1 300 300 300 200 400 7 7 6
20% 1 100 200 400 100 200 8 7 8
25% 2 100 200 300 400 400 8 9 3

Polymer
extrusion
data set

2% 2 300 200 200 400 300 5 8 5
5% 2 200 200 200 200 300 10 10 5

10% 4 300 200 200 100 500 9 5 5
15% 4 300 400 400 200 500 2 11 4
20% 2 300 400 200 500 300 10 5 6
25% 4 200 200 400 300 300 3 3 4

The NPE values in the experiment reveals similar results

as the MSEs with the exception for missing ratio being 5%

and 10%. The NPE calculated by the proposed method is the

lowest when the missing ratio is 5%, which is 12% lower than

that achieved by RF. The best NPE value 11.07% appearing

in the condition of missing ratio being 10% is computed by

RF, which means the difference between generated samples

and original samples of this algorithm is the smallest. The

performances of autoencoder are better than those of the DAE

approach except for the conditions of missing percentage being

2% and 25%. As for NPE values, the experimental results

obtained by GANs and infoGANs are very close, while the

proposed method produces better results.

The experimental results of polymer data set are summa-

rized in table IV. For fair comparisons, the expert assessment

is again calculated based on the average of 100 repeated

experiments. For the MSE values, the proposed approach can

not perform as well as the classical methods (such as KNN and

RF) when the missing ratio is small. The KNN achieves the

smallest MSE when the missing ratio is 2% and the RF obtains

the best MSE when the missing ratio is 5%. The KNN and RF

performs worse as the missing ratio increase, while the other

generative methods offer stable performance, despite the fact

that there is a little bit variation with various conditions. When

the missing ratio exceeds 5%, the proposed method performs

much better than the other algorithms. Although the proposed

method performs slightly inferior to the DAE approach when

the missing ratios are 2% and 20%, it offers better performance

in the other conditions. The MSEs achieved by the proposed

method are 110.4%, 211.9%, 79.7%, 10%, 5.9%, and 41.6%

lower than those of autoencoder when the missing ratios vary

from 2% to 25% respectively. It indicates that the integration

of OLS could also improve the generative capability of the

original autoencoder in dealing with the polymer data set.

For the NPE values, the proposed approach calculates the

best results when the ratios are 5%, 20% and 25%. When the
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TABLE III
THE EXPERIMENTAL RESULTS OF BAKING DATA SET

Pct. of
missing data

Assess KNN RF
GAN-

ADAM
GAN-

MBGD
infoGAN-

ADAM
infoGAN-

MBGD
Auto-

encoder
DAE

The proposed
method

2%
MSE 0.009 0.008 0.173 0.216 0.131 0.216 0.045 0.043 0.034
NPE 12.42% 8.51% 30.38% 21.90% 27.94% 25.30% 20.33% 20.91% 17.91%

5%
MSE 0.039 0.021 0.150 0.250 0.144 0.257 0.038 0.035 0.031
NPE 25.96% 22.05% 16.57% 23.13% 15.15% 21.74% 14.83% 21.12% 10.17%

10%
MSE 0.070 0.057 0.192 0.264 0.149 0.264 0.088 0.082 0.056

NPE 26.64% 11.07 % 25.40% 34.72% 19.41% 34.16% 15.11% 15.13% 12.97%

15%
MSE 0.079 0.062 0.108 0.211 0.113 0.214 0.106 0.109 0.061

NPE 32.05% 21.71% 21.16% 36.97% 22.58% 37.20% 14.18% 15.28% 12.70%

20%
MSE 0.072 0.070 0.163 0.264 0.184 0.263 0.086 0.074 0.060

NPE 25.32% 19.27% 18.67% 37.70% 23.25% 37.96% 15.71% 16.13% 13.16%

25%
MSE 0.084 0.074 0.153 0.296 0.106 0.295 0.080 0.066 0.042

NPE 29.50% 26.13% 30.82% 35.64% 22.41% 35.89% 17.42% 14.04% 15.96%

missing ratio is as small as 2%, the NPE value of the KNN

is just 12.78%, followed by the second value obtained by the

RF, while the NPE of the proposed method reaches up to

50.31%, much higher than that of classical methods. Although

the NPEs of the proposed approach decrease with the increase

of the missing ratio, the RF still achieves best results with the

value of 13.81% and 14.3% when the missing ratio is 5% and

15% respectively. When the missing ratio is higher than 15%,

the classical algorithms appear to be worse, thus the NPEs

of 23.02% and 32.03% obtained by the proposed method are

the smallest for the last two conditions. Although NPEs of

DAE approach are smaller than those of autoencoder when

missing ratios are 2% and 5%, the proposed method offers

better results than the DAE approach for all missing ratios. In

addition, the performances of GANs and infoGANs are stable

for various missing ratios, and the effectiveness of the MBGD

technique is slightly inferior to that of the ADAM approach

for the most conditions with different missing ratios.

In conclusion, when the missing ratio is small, the classical

imputation methods are more suitable than the generative

methods. As the missing ratio increases, the performance

of classical algorithms will get worse, while the proposed

generative approach could can deliver stable and desirable

performance. The achievements of the GANs, infoGANs and

autoencoder are almost the same for different missing ratios.

The DAE approach performs better than autoencoder for most

missing ratios, while worse than the proposed method. In

addition, the performance of the proposed approach is better

than that of autoencoder for most missing ratios, which implies

that the implementation of OLS could optimize the structure

of the autoencoder and improve its generative capability.

VII. CONCLUSION

In this paper, the energy platform developed for small and

medium-sized enterprises (SMEs) by the point energy team

of the authors (www.pointenergy.org) is introduced, which

can monitor and record the operating conditions of industrial

machinery at different granularity levels. While analysis is

hindered by the fact that data always displays some incom-

pleteness due to various factors, such as measurement or

transmission errors during data collection. This paper has

proposed the OLS-based autoencoder to generate new samples

for missing data imputation. Advantages of this approach are

as follows: i) It selects the hidden neurons one by one using

the OLS estimation until an adequate network is built, which

avoids redundant structure. ii)The hidden neurons of encoder

are orthogonal to each other, which means the latent variables

extracted from the original input are uncorrelated. iii) The

computational cost does not increase with the increase of the

structure complexity as only one neuron needs to be optimized

at each step.

In the experiments, the classical methods and other gener-

ative approaches are compared to verify the effectiveness of

the proposed technique. Two real industrial data sets from a

baking process and a polymer extrusion process are employed

and the percentage of missing values changes between 2% to

25%. The experimental results can be concluded as follows:

• The proposed technique produces stable performance for

different missing ratios.

• The classical methods, e. g. KNN and RF, are suitable for

dealing with the cases of small missing ratios.

• The proposed model is competitive to other alternative

approaches when the missing ratio is greater than 0.05.

• For most cases, the performance of the proposed algorithm

is better than that of autoencoder, which means the implemen-

tation of OLS improves its generative capability.

With these improvements, the data mining can be more

rigorously conducted based on the data completeness offered

by the proposed technique and more precise recommendations

can thus be provided for the industrial partners.
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