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Abstract 11 

OH reactivity (k’OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all 12 

sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity 13 

can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH 14 

reactivity measurements enable determination of the comprehensiveness of measurements used to predict air 15 

quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our 16 

understanding of OH production rates. 17 

In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser 18 

flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH 19 

radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the 20 

reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the 21 

instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in 22 

London, UK, and York, UK. 23 

We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for 24 

measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements 25 

to OH reactivity LFP-LIF instruments.  26 

 27 

1. Introduction 28 

OH radicals dominate atmospheric oxidation chemistry, controlling the lifetimes of most primary pollutants and 29 

greenhouse gases emitted into the atmosphere, including methane, CO, volatile organic compounds (VOCs), NO2 and 30 

SO2, whilst also contributing to the production of secondary pollutants such as ozone, sulphuric acid and secondary 31 

organic aerosol (SOA).  Appreciation of the factors controlling atmospheric OH radical concentrations is thus 32 

essential to understanding the processing and fate of trace species in the atmosphere, and to our ability to 33 

understand and predict air quality and climate change.  Moreover, the short chemical lifetimes of the OH radical and 34 

the closely related HO2 radical make OH and HO2 ideal species for testing the chemical mechanisms used in 35 

atmospheric models since their concentrations are controlled by in situ chemistry alone and are not influenced by 36 

transport processes.  However, model simulations of OH concentrations require calculation of both OH production 37 

and loss rates, and there is potential for agreement between modelled and observed OH concentrations based on 38 

opposing errors in the production and loss terms. 39 

Observations of OH radical concentrations made in conjunction with measurements of OH reactivity (k’OH), the total 40 

loss rate of OH and the inverse of the OH chemical lifetime (τOH), thus provide a means to separate the production 41 
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and loss terms for OH, enabling a more robust test of our understanding of OH radical concentrations and of 42 

atmospheric oxidation chemistry.  In addition, comparison of measured OH reactivity with calculated OH reactivity, 43 

based on observed concentrations of OH sinks and known rate coefficients for their reactions with OH (Equation 3), 44 

also provides an indication of the presence and importance of unmeasured OH sinks. 45 

    -d[OH]/dt = Σ kx[X][OH]           (Equation 1) 46 

= kOH’[OH]          (Equation 2) 47 

kOH’  = Σ kx[X]          (Equation 3) 48 

where kx is the rate coefficient for reaction of OH with species X and k’OH is the OH reactivity (the pseudo-first-order 49 

rate coefficient for reaction of OH with all reaction partners present). Finally, using both [OH] and kOH’ to determine -50 

d[OH]/dt experimentally, it is possible to evaluate the completeness of our knowledge of OH sources, which when 51 

added together should equal +d[OH]/dt if the steady-state budget is closed (Martinez et al., 2003; Whalley et al., 52 

2011; Fuchs et al., 2013; Lu et al., 2013). 53 

Measurements of OH reactivity in the atmosphere have been made by three different techniques – the flow tube 54 

technique, the laser flash photolysis technique and the comparative reactivity method, with all three methods 55 

relying on production of above ambient concentrations of OH radicals and monitoring of the OH decay rate, either 56 

directly or indirectly.  The flow tube method typically generates OH radicals at the tip of a sliding injector by 57 

photolysis of water vapour (R1) using a mercury vapour lamp, also resulting in production of HO2 radicals (R2). 58 

H2O + hν  → H + OH        (R1) 59 

H + O2 (+M)  → HO2 (+M)       (R2) 60 

The OH radical signal is monitored downstream of the injector after mixing with a flow of ambient air in the main 61 

tube.  By changing the position of the sliding injector relative to the point at which OH is detected it is possible to 62 

vary the mixing time of OH with the ambient air, and thus to determine the total loss rate for OH in the flow tube.  63 

However, the technique has a number of disadvantages.  The time resolution of measurements made by the flow 64 

tube method is relatively poor, owing to the need to measure OH signals at a number of different injector positions 65 

to obtain a kinetic profile, during which time the ambient OH reactivity could show significant variability, although 66 

Mao et al. (2009) overcome this issue for airborne measurements of OH reactivity by reducing the number of time 67 

points used to determine the OH decay rate.  The flow rates of sampled air in the flow tube method are relatively 68 

high (~ 300-900 slm (standard litres per minute)), with turbulent flow conditions leading to high wall loss rates of OH 69 

in the flow tube and relatively high uncertainties in determinations of OH reactivity owing to uncertainties in the wall 70 

loss rates.  Knowledge of the flow velocity in the flow tube, requiring direct measurement or knowledge of the flow 71 

regime, total flow rate and cross-section of the flow tube, is also needed to convert the distance over which OH and 72 

ambient air are mixed to reaction time, and can lead to uncertainties in the contact time between OH and reactants 73 

in ambient air.  A significant disadvantage of the flow tube method is the generation of equal concentrations of OH 74 

and HO2 following photolysis of water vapour at the tip of the sliding injector (reactions R1-R2), leading to the 75 

potential for production of OH in the flow tube on the timescale of the experiment owing to the reaction of HO2 with 76 

ambient NO (R3).   77 

 HO2 + NO  → OH + NO2       (R3) 78 

The production of OH from R3 reduces the observed decay rate of OH in the flow tube, and measurements of OH 79 

reactivity using the flow tube method thus also require simultaneous measurements of ambient NO concentrations 80 

in order to correct for interferences from HO2 + NO, which can be quite significant. For example, for 75 ppb NO, a 81 

typical rush hour mixing ratio in Mexico City, a correction factor of ~1.7 was required to account for the production 82 

of OH from HO2 + NO within the flow tube (Shirley et al., 2006). 83 
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In the comparative reactivity technique, a reactive molecule not usually present in air, typically pyrrole, is entrained 84 

in a gas flow and the rate of its decay owing to reaction with artificially high concentrations of OH is measured in 85 

‘zero’ air and ambient air by proton transfer mass spectrometry (PTR-MS), or gas chromatography with mass 86 

spectrometry (GC-MS) or photoionisation detection (GC-PID).  Comparison of the rates of decay of the molecule in 87 

‘zero’ air and ambient air enables determination of the competition between the reaction of OH with the known 88 

concentration of the reactive molecule and the reaction of OH with sinks in ambient air, thus enabling measurement 89 

of the ambient OH reactivity.  Absolute measurement of the physical loss rate of OH is not required for the 90 

technique, and the limit of detection of comparative reactivity instruments is determined by the sensitivity to 91 

changes in the signal corresponding to the concentration of the reactive species.  However, OH radicals are typically 92 

produced in comparative reactivity instruments through reactions R1-R2, in a similar manner to that used in flow 93 

tube instruments and thus also producing high concentrations of HO2.  Interferences resulting from OH production 94 

from HO2 + NO are thus also potentially problematic for comparative reactivity instruments and knowledge of HO2 95 

and NO concentrations are required to correct for any interferences.  In addition, the amount of OH produced is 96 

dependent on humidity, and it is essential to ensure constant humidity between measurements made in ‘zero’ air 97 

and those made in ambient air, with significant corrections often necessary to account for any differences (Michoud 98 

et al., 2015). 99 

The laser flash photolysis technique produces OH in isolation via laser photolysis of O3, typically at a wavelength of 100 

266 nm, followed by reaction of O(1D) with ambient H2O (reactions R4-R5): 101 

 O3 + hν (λ=266nm) → O2 + O(1D)       (R4) 102 

 O(1D) + H2O  → 2 OH        (R5) 103 

The production of OH without initial co-production of HO2 minimises potential interferences from HO2 + NO and 104 

renders the flash photolysis technique more suitable to high NOx (NOx = NO + NO2) environments.  The laser flash 105 

photolysis method also has the advantage that the production of OH radicals is uniform throughout the reaction cell, 106 

minimising the risk of poor mixing which is potentially problematic for the flow tube and comparative reactivity 107 

techniques.  Flow rates of sampled air are typically lower for the laser flash photolysis instruments (~ 12-20 slm) 108 

(Sadanaga et al., 2004a) than for those using flow tubes (~ 300-900 slm) (Kovacs and Brune, 2001; Kovacs et al., 109 

2003; Ingham et al., 2009; Hansen et al., 2014), and the resulting laminar flow of gas reduces contact of the gas with 110 

the walls of the instrument, thus reducing the physical loss rate of OH and associated uncertainties.  Although 111 

averaging of data is often required to improve signal-to-noise, a significant advantage of the laser flash photolysis 112 

technique is the ability to measure ambient OH reactivity in ‘real-time’ through time-resolved measurements of the 113 

OH decay following photolysis.  The technique has the potential for significantly enhanced time resolution, both in 114 

terms of the number of time points obtained during the decay of OH, and the averaging time over which the data 115 

are reported, compared to the flow tube or comparative reactivity methods.   116 

The first atmospheric measurements of total OH reactivity were made at an urban background site in Nashville, TN, 117 

USA, in summer 1999 using the flow tube technique (Kovacs and Brune, 2001; Kovacs et al., 2003).  Calculations of 118 

OH reactivity, using VOC measurements co-located with the reactivity measurements, underestimated the total 119 

observed reactivity by ~30 % on average owing to unmeasured or unknown VOCs and VOC oxidation products 120 

(Kovacs et al., 2003).  Subsequent measurements at an urban background site in New York, NY, USA, were, on 121 

average, within 10 % of the calculated reactivity in summer 2001 (Ren et al., 2003), but were underestimated by 30-122 

40 % during morning and evening rush hours in winter (Ren et al., 2006a).  Significant underestimation of the 123 

measured OH reactivity in the morning rush hour was also reported for observations in the Mexico City Metropolitan 124 

Area (MCMA), with the observed reactivity reaching 120 s-1 (Shirley et al., 2006).  High OH reactivity has also been 125 

observed in Paris during the MEGAPOLI campaign in 2010, with kOH reaching 130 s-1 for continental air masses and 126 

calculations underestimating the reactivity by up to 75 % (Dolgorouky et al., 2012).  Reactivity measurements in 127 

Tokyo were underestimated in summer, spring and autumn, but reproduced to within 5 % in winter, with the 128 

reactivity correlating well with NOx throughout the year (Sadanaga et al., 2004b; Yoshino et al., 2006; Chatani et al., 129 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-51, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 29 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

 

2009; Yoshino et al., 2012).  Aircraft measurements of OH reactivity have also shown that reactivity tends to 130 

decrease with altitude, with discrepancies between observed and calculated reactivity most pronounced at altitudes 131 

up to 2 km and tending towards agreement at altitudes above 4 km (Mao et al., 2009). 132 

Flow tube measurements at an urban site in Houston, US, during the TEXAQS2000 and TRAMP2006 campaigns (Mao 133 

et al., 2010) and at a forested site at Whiteface Mountain, NY, USA (Ren et al., 2006b), were well reproduced by 134 

model calculations.  However, measurements made at a coastal site in Norfolk, UK, typically characterised by 135 

relatively ‘clean’ air were significantly underestimated and attributed to the presence of numerous high molecular 136 

mass VOCs at low concentrations which were not included in the VOC measurement suite (Lee et al., 2009; Ingham 137 

et al., 2009).  The presence of unmeasured VOCs was also indicated for the PROPHET 2000 campaign at a forested 138 

site in Michigan, USA, during which the measured OH reactivity was underestimated by ~50 % on average, with the 139 

‘missing’ OH reactivity exhibiting a strong temperature dependence potentially resulting from temperature-140 

dependent emissions of unmeasured biogenic VOCs (Di Carlo et al., 2004).  Uncertainties in emissions and chemistry 141 

of biogenic VOCs, particularly in the oxidation chemistry of isoprene and its oxidation products, have also been 142 

responsible for underpredictions of observed OH reactivity in forested regions in Suriname (Sinha et al., 2008) and 143 

Borneo (Whalley et al., 2011; Edwards et al., 2013).  Model calculations of OH reactivity in Borneo underestimated 144 

the observed diurnal mean reactivity by 30 %, and indicated that uncertainties in the chemistry and deposition rates 145 

of secondary oxidation products could potentially explain the observed reactivity without the need for additional 146 

primary VOC emissions, and that at least 50 % of the carbon-containing compounds which react with OH were not 147 

measured (Edwards et al., 2013). Biogenic VOCs also dominated the daytime OH reactivity in the Pearl River Delta 148 

region, China, with isoprene and its oxidation products comprising ~40 % of the total OH reactivity in the afternoon 149 

and observed reactivity underestimated by ~50 % when calculated from measured OH sinks but reproduced by 150 

model calculations considering the contributions from secondary oxidation products (Lou et al., 2010).  However, 151 

observations of OH reactivity in a forested region in Colorado, USA, during the BEACHON-SRM08 campaign were 152 

underestimated by model calculations (~ 30 %), with the dominant VOCs found to be 2-methyl-3-buten-2-ol (MBO) 153 

and monoterpenes (Nakashima et al., 2014). 154 

Using a branch enclosure technique, Kim et al. (2011) demonstrated that underestimations of observed OH reactivity 155 

at the PROPHET field site, Michigan, USA, during the 2009 CABINEX campaign were related to oxidation products of 156 

known and measured biogenic VOCs, rather than to unknown or unmeasured primary VOC emissions.  Model 157 

calculations were able to reproduce the CABINEX OH reactivity observations below the forest canopy, but 158 

discrepancies were apparent above the canopy, indicating the presence of unmeasured trace gases above the forest 159 

canopy (Hansen et al., 2014).  Model calculations and experiments using the comparative reactivity method at a 160 

forested site in Finland also observed differences between OH reactivity measured in the forest canopy and above 161 

the canopy (Mogensen et al., 2011; Nolscher et al., 2012).  While the in-canopy reactivity was typically higher than 162 

the above canopy reactivity, transport of wildfire plumes to the site significantly increased the above canopy 163 

reactivity, increasing it above the in-canopy level and increasing the ‘missing’ reactivity above the canopy from 58 % 164 

for ‘normal’ conditions to 73 % for periods impacted by transported pollution (Nolscher et al., 2012).   165 

OH reactivity measurements have also been used to determine ozone production rates in southwestern Spain during 166 

the DOMINO campaign (Sinha et al., 2012) and in London during the ClearfLo campaign (Whalley et al., 2015), and 167 

have been used in laboratory studies to assess our understanding of combustion systems (Nakashima et al., 2010) 168 

and atmospheric isoprene oxidation mechanisms (Nakashima et al., 2012; Nolscher et al., 2014).  169 

Measurements of OH reactivity thus have a number of applications, and can be used to improve our understanding 170 

of atmospheric composition and chemistry. In this work we present the design and characterisation of an instrument 171 

using laser flash photolysis coupled with laser-induced fluorescence (LFP-LIF) to measure OH reactivity in the field 172 

and in chamber experiments. 173 

 174 

 175 
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2. Experimental 176 

A schematic of the OH reactivity instrument is given in Figure 1.  The instrument comprises a reaction cell (described 177 

in Section 2.1) and a detection cell (described in Section 2.2), with the two cells typically situated approximately 5 m 178 

above ground level on the roof of a shipping container housing the FAGE mobile laboratory during ambient 179 

measurements. 180 

2.1 Reaction Cell 181 

The reaction cell consists of a cylindrical stainless steel tube of 50 mm internal diameter and 85 cm in length.  182 

Ambient air is drawn through a stainless steel sampling line (50 mm internal diameter and 20 cm in length), enters 183 

the reaction cell at 90o to the air flow in the tube, and is drawn along the tube by an extractor fan mounted on the 184 

exit arm situated immediately prior to the OH detection cell (Section 2.2).  The fan speed determines the flow rate of 185 

gas in the reaction cell, and is set to ensure a laminar flow of air through the cell with a Reynold’s number less than 186 

2300.  The flow rate of gas, determined by measurement of the flow velocity using a hot-wire anemometer (TSI Air 187 

velocity transducer 8455-150) or set by calibrated mass flow controllers during laboratory experiments (Sections 4, 6 188 

& 7) and measurements of instrument zeroes (Section 3.1), was in the range 12 to 14 slm, giving a residence time of 189 

7 to 8 s in the reaction cell and a Reynold’s number of ~ 360 (Equation 4).   190 

Re = ρvD/μ           (Equation 4) 191 

where Re is the Reynold’s number, ρ is the density of the gas, ν is the mean gas velocity, D is the diameter of the flow 192 

tube and μ is the dynamic viscosity of the gas. 193 

Production of OH radicals within the reaction cell is achieved by the 266 nm laser photolysis of O3 in the presence of 194 

water vapour (reactions R4-R5).  A flashlamp pumped Nd:YAG laser (Big Sky Laser CFR 200, Quantel USA) is used to 195 

generate laser light at 1064 nm, which is frequency doubled to 532 nm (lithium triborate, LiB3O5, doubling crystal) 196 

and then frequency doubled to generate the fourth harmonic 266 nm radiation (caesium lithium triborate, CsLiB6O10, 197 

doubling crystal) with pulse energies of ~ 50 mJ, pulse length 8 ns, and beam diameter of 6.35 mm.  The laser is 198 

operated with a Q-switch to modulate the intracavity losses and maximise the pulse energy. 199 

The 266 nm laser head is situated adjacent to the reaction cell in order to minimise the footprint of the instrument 200 

when used in the field.  The laser head is powered, controlled and water cooled by an Integrated Cooler and 201 

Electronics unit (Big Sky Laser ICE450, Quantel USA) which is housed within the FAGE shipping container and 202 

powered via an uninterruptible power supply (APC 1000VA, American Power Conversion by Schneider Electric). 203 

Laser light exiting the laser head is directed into the reaction cell using two dielectrically coated 266 nm turning 204 

mirrors of 1” diameter (Thorlabs, NB1-K04).  Immediately prior to the reaction cell, the 266 nm beam is expanded to 205 

a diameter of ~10 mm by a telescope incorporating a plano-concave lens (Thorlabs LC4252, focal length = -30 mm) 206 

and a plano-convex lens (Thorlabs LA4148, focal length = 50 mm) housed in a lens tube (SM1M20, Thorlabs) to 207 

increase the photolysis volume within the reaction cell.  The photolysis laser enters the reaction cell through a fused 208 

silica window, initiating OH radical production. 209 

Typically, there is sufficient production of OH in the instrument from reactions R4-R5 at ambient concentrations of 210 

O3 and water vapour in order to measure a temporal decay of OH. At low ambient concentrations of O3 (< 10 ppb) or 211 

during laboratory tests (Sections 4, 6 and 7) and measurement of instrument zeroes (Section 3), the OH radical 212 

concentration in the reaction cell is increased by passing a small flow (0.5 slm) of humidified ultra-high purity air 213 

(BTCA 178, BOC Special Gases) across a low pressure Hg vapour lamp and mixed with the main sampled air flow (12 – 214 

14 slm) in the inlet to the reaction cell. The mixing ratio of ozone in the reaction cell is increased by ~ 50 ppb by this 215 

method (measured by an ozone analyser (Thermo Environmental Instruments Inc., 49C O3 Analyser) situated at the 216 

end of the reaction cell during laboratory tests).  Given knowledge of the rate coefficient for reaction of OH with O3 217 

(kOH+O3 =7.3 × 10-14 cm3 s-1, Atkinson et al., 2004), the chemical loss of OH resulting from the addition of 50 ppb O3 is < 218 
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0.1 s-1 at 298 K, and any loss of VOCs in the reaction cell through reaction with ozone is extremely small given the 219 

reaction times involved. 220 

2.2 OH Detection Cell 221 

OH radicals in the reaction cell are monitored by laser-induced fluorescence (LIF) using the fluorescence assay by gas 222 

expansion (FAGE) technique.  The LIF-FAGE detection cell has been described previously in detail (Ingham et al., 223 

2009), thus only a brief description will be given here.  224 

Initial experiments were conducted with the detection cell situated midway along the reaction cell (Figure 1a), and 225 

sampling at 90o to the direction of air flow along the reaction cell, in a similar design to that described by Sadanaga 226 

et al. (2004a) and Lou et al. (2010). However, the observed OH decays in such a configuration displayed 227 

biexponential behaviour, comprising a fast initial decay followed by a slower decay representative of the expected 228 

OH reactivity, as observed in previously described instruments (Sadanaga et al., 2004a; Lou et al., 2010).  In this 229 

configuration, the photolysis laser is aligned such that the beam passes across the inlet to the detection cell without 230 

hitting the inlet (as shown in Figure 1a).  The air sampled in to the detection cell thus likely contains air that has 231 

experienced the photolysis laser (containing elevated OH concentrations) and air that has not experienced the 232 

photolysis laser (containing only ambient OH concentrations), with this mixing of air potentially leading to an 233 

apparent increase in the initial OH decay rate owing to dilution of the air containing elevated OH concentrations with 234 

air containing lower OH concentrations.  Once mixing of the air having experienced the photolysis laser with that 235 

outside the beam diameter has occurred sufficiently to give uniform OH concentrations in the reaction cell the 236 

observed OH decay will result from the chemical losses in the instrument, leading to biexponential decays.  Such 237 

biexponential behaviour has been attributed to similar effects of non-homogeneous spatial distributions of OH near 238 

the inlet to the detection cell (Lou et al., 2010) and to local heating and turbulence of the gas flow caused by the 239 

photolysis laser (Sadanaga et al., 2004a).  A comparison between sampling at 90o to the direction of air flow along 240 

the reaction cell and sampling along the axis of the direction of air flow from the centre of the reaction cell has been 241 

reported previously (Amedro et al., 2012), with different fitting procedures required to extract the OH reactivity for 242 

the different instrument configurations attributed to differences in physical effects such as diffusion which were 243 

more significant when sampling at 90o (Amedro et al., 2012). 244 

Subsequent experiments in this work (including all those described below) were performed with the detection cell 245 

situated at the end of the reaction cell along the same axis as the direction of air flow to sample air directly from the 246 

centre of the reaction cell, as shown in Figure 1b.  This configuration reduces the chance of sampling air into the 247 

detection cell that has not experienced the photolysis laser beam, and thus reduces the impact of physical effects 248 

such as diffusion.  The observed OH signals in this instrument configuration are described by a single exponential 249 

decay, although biexponential decays can still be obtained if the photolysis laser is not correctly aligned along the 250 

axis of the reaction cell. 251 

Air is sampled from the centre of the reaction cell through a pinhole of 0.8 mm diameter and 0.5 mm thickness into 252 

the aluminium detection cell, which consists of three orthogonal axes and is black anodised to minimise light 253 

scattering within the cell.  The pressure in the cell is measured by a capacitance manometer (Sensotec Z/606-01ZA) 254 

and is maintained at ~ 1.5 Torr by a roots blower backed by a rotary pump (Leybold Vacuum SV200/WAU1001), 255 

resulting in an air flow of approximately 4 slm and a supersonic expansion of the air as it is drawn through the 256 

pinhole.   257 

The probe laser consists of a Nd:YAG pumped Ti:Sapphire laser (Photonics Industries) which generates broadband 258 

radiation in the range 690-1000 nm.  A diffraction grating is used to select radiation with λ = 924 nm, which is 259 

frequency tripled through generation of the second harmonic at 462 nm followed by sum-frequency mixing of the 260 

462 nm radiation with that at 924 nm to produce the 308 nm light with a pulse repetition frequency (PRF) of 5 kHz, 261 

pulse length (full width half maximum (FWHM)) of 35 ns, laser line width (FWHM) of 0.065 cm-1 and beam diameter 262 

of ~ 3mm (Bloss et al., 2003).   263 
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A reference fluorescence cell containing a heated nichrome wire filament and humidified air at ~2 Torr to produce a 264 

constant stable source of OH radicals from dissociation of water vapour is used to facilitate tuning the probe laser to 265 

the precise wavelength required for the desired OH transition.  Approximately 1 mW of the 308 nm laser light is used 266 

for this purpose, with ~9 mW used to make measurements of OH reactivity and a further ~13 mW remaining to 267 

make measurements of ambient OH, HO2 and RO2 concentrations in a separate instrument (see, for example, 268 

Whalley et al., 2015). 269 

The probe laser, reference cell and pumps are all situated inside the shipping container.  The ~9 mW of the 308 nm 270 

laser light used to measure OH reactivity is passed to the detection cell on the roof of the shipping container via an 271 

anti-reflective coated optical fibre with an angled and polished end (Oz Optics, QMMJ-55-UVVIS-200/240-3-30-AR2-272 

SP, length = 30 m) through a baffled side-arm at 90o to the air flow.  The probe laser light exits the detection cell 273 

through a baffled side-arm and is directed onto a photodiode (New Focus Large Area Photoreceiver 2032) to 274 

measure the laser power to enable normalisation of fluorescence signals for fluctuations in laser power. For a recent 275 

intercomparison at the SAPHIR chamber, the OH reactivity instrument, comprising the reactor flowtube and OH 276 

fluorescence and associated equipment was placed in the shipping container itself. 277 

Fluorescence from electronically excited OH radicals resulting from excitation of the Q1(1) A2Σ+ (v’=0) –  X2Π3/2 (v’’=0) 278 

transition at 308 nm is collimated by a symmetrical biconvex collimating lens (Melles-Griot, focal length = 50 mm at λ 279 

= 546.1 nm, diameter = 50 mm) and focused onto the photocathode of a channeltron photomultiplier tube (PMT) 280 

(Perkin Elmer C 943P) by two plano-convex focusing lenses (UQG Optics Ltd., focal length = 75 mm at λ = 250 nm, 281 

diameter = 50 mm).  A narrow band UV interference filter (Barr Associates Inc., FWHM bandwidth of 8 ± 1.6 nm 282 

centred at 309 ± 1 nm with a peak transmission of > 50 % at 308 nm and a blocking factor of 106 at other 283 

wavelengths) is situated between the excitation region in the detection cell and the PMT to minimise detection of 284 

scattered solar photons.  The solid angle from which fluorescence is collected is effectively doubled through the use 285 

of a spherical concave mirror coated for high UV reflectance which is mounted in the detection cell opposite the 286 

side-arm bearing the PMT.  Discrete photon signals on the PMT are processed using a multi-channel scaler photon 287 

counting card (Becker and Hickl, PMS 400, minimum bin width of 250 ns) in the computer used to control the 288 

instrument.   289 

2.3 Instrument Control 290 

A digital delay pulse generator (Stanford Research Systems DG535) produces a 5 kHz TTL (transistor-transistor logic) 291 

pulse to trigger the Ti:Sapphire laser and a second delay generator (Stanford Research Systems DG535) which 292 

subsequently triggers the gating of the PMT detector for the reactivity instrument and a third digital delay pulse 293 

generator (Berkeley Nucleonics Corporation 555) to trigger the 266 nm photolysis laser and the photon counting 294 

card at the specified pulse repetition frequency in synchronisation with the 308 nm probe laser. A personal 295 

computer is used to automate data collection, with analogue signals from measurements of the pressure in the 296 

detection cell and the power of the 308 nm probe laser at the photodiode attached to the detection cell digitised by 297 

an A/D card (Measurement Computing, PCI-DAS 1200).  Electrical power to all parts of the instrument is supplied via 298 

an uninterruptible power supply (APC 1000VA). 299 

2.4 Data Acquisition 300 

Data acquisition is initiated by triggering of the photon counting card, with a background signal measured for 100 ms 301 

before triggering of the 266 nm photolysis laser and production of OH in the reaction cell.  To avoid saturation of the 302 

PMT resulting from detection of the 308 nm laser pulse itself, the PMT is gated off at the onset of the 308 nm laser 303 

pulse (35 ns FWHM) until ~100 ns after the laser pulse, thereby preventing detection of any reflected or scattered 304 

laser light.  The fluorescence signal is typically collected for 1 μs following each 308 nm probe laser pulse.  Repeated 305 

measurements of the OH fluorescence signal are taken for 900 ms following each 266 nm photolysis laser pulse, 306 

during which time the OH concentration and hence the fluorescence signal will decay to the background level. Under 307 

normal conditions this occurs within ~300 ms of the photolysis laser pulse, although this is of course dependent 308 

upon the magnitude of the OH reactivity, and may be longer.  The pulse repetition frequency of the 308 nm probe 309 
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laser (5 kHz) results in measurement of the OH fluorescence signal every 200 μs throughout the measurement 310 

period.  The data collection cycle, as illustrated in Figure 2 is typically repeated every 1 s.  Experiments, both in the 311 

laboratory and in the field, in which the PRF of the photolysis laser was varied between 0.1 and 1 Hz showed no 312 

effect on the observed OH reactivity.  313 

When measurements of OH reactivity are made alongside those of ambient OH concentrations, the acquisition of OH 314 

reactivity data is linked to measurements of ambient OH concentrations owing to the dual use of the 308 nm 315 

excitation laser.  Under such circumstances, measurements are taken on an approximate 7 min cycle, with a 5 min 316 

‘online’ period during which the 308 nm laser is at the precise wavelength to excite the OH transition, followed by a 317 

1 min ‘offline’ period during which the wavelength of the laser is moved to a nearby wavelength at which the OH 318 

transition is not excited in order to enable measurement of a background signal for determination of ambient OH 319 

concentrations (see, for example, Whalley et al. (2010)).  Approximately 1 min is then required to scan the laser 320 

wavelength over the OH transition to find the maximum OH fluorescence signal in the reference cell (Section 2.2).  321 

OH reactivity measurements are thus taken during the 5 min online period, and data from successive measurement 322 

cycles during each online period are co-added to improve the signal-to-noise ratio.  Figure 3 shows typical OH decays 323 

derived from the co-addition of data recorded throughout 5 min online periods during the Clean Air for London 324 

(ClearfLo) campaign in summer 2012.  325 

Measurements of OH reactivity may also be made independently of any other use of the 308 nm probe laser, in 326 

which case the timescale over which successive measurement cycles are co-added may be selected as desired, with 327 

the laser periodically scanned over the OH transition to ensure that the maximum OH signal is obtained. 328 

2.5 Calibration of the FAGE Detection Cell 329 

Calibration of the detection cell, although not strictly necessary for measurements of OH reactivity, is required to 330 

ensure that pseudo-first-order conditions are met in the reaction cell (i.e. combined concentrations of OH sinks are 331 

in excess over the OH concentration) and provides a means to determine any potential interferences from 332 

production of OH via ambient HO2 + NO in the reaction cell (from ambient HO2 which may survive the sampling inlet, 333 

and any HO2 generated following oxidation of OH sinks in the instrument) and to monitor potential changes in 334 

instrument sensitivity with time. 335 

The calibration procedure has been described in detail by Commane et al. (2009).  Production of OH (and HO2) is 336 

achieved through reaction R1 (and HO2 through reaction R2) by passing a turbulent flow of humidified ultra-high 337 

purity air (BTCA 178, BOC Special Gases) across a low pressure mercury vapour lamp to photolyse water vapour at λ 338 

= 184.9 nm.   339 

H2O + hν (λ=184.9 nm) → H + OH        (R1) 340 

The concentration of OH is given by Equation 5: 341 

[OH] = [H2O] σH2O φOH F δt         (Equation 5) 342 

where σH2O is the absorption cross-section of H2O at 184.9 nm (7.1 ± 0.2) × 10-20 cm2 (Cantrell et al., 1997; Creasey et 343 

al., 2000), φOH is the quantum yield for OH production (φOH = 1), F is the photon flux of the mercury lamp at 184.9 nm 344 

and δt is the residence time in the photolysis region. The product F δt  is determined by N2O actinometry (Commane 345 

et al., 2009), with F varied by changing the current supplied to the lamp, and δt controlled by the flow rate of the gas 346 

used in the calibration. The concentration of water vapour in the flow is determined by diverting a small known flow 347 

of the air to a dew point hygrometer (CR4, Buck Research Instruments). 348 

The calibration for OH was conducted over a range of mercury lamp fluxes, giving a calibration factor (COH) of (2.13 ± 349 

0.27) × 10-8 counts s-1 molecule-1 cm3 mW-1 and indicating an initial OH concentration of ~109 cm-3 produced in the 350 

reaction cell by the 266 nm photolysis laser during measurements of OH reactivity in ambient air.  The instrumental 351 
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limit of detection for OH radicals was determined to be ~ 107 cm-3, enabling observation of sufficient changes in OH 352 

radical concentrations in the reaction cell to allow measurements of ambient OH reactivity. 353 

 354 

3. Determination of OH Reactivity 355 

The observed pseudo-first-order rate coefficient for OH loss (kloss) is determined by least-squares fitting Equation 6 to 356 

the time-resolved OH decay:  357 

 SOH,t = SOH,0 exp(-klosst) + b        (Equation 6) 358 

where SOH,t is the fluorescence signal at time t after firing of the 266 nm photolysis laser, SOH,0 is the fluorescence 359 

signal at time zero (i.e. immediately following firing of the 266 nm laser and production of OH in the reaction cell), 360 

kloss is the observed rate coefficient for loss of the fluorescence signal, t is the time since firing of the 266 nm 361 

photolysis laser and b is the background fluorescence signal measured by the PMT averaged for the 1 s prior to firing 362 

of the photolysis laser (typically zero).  Values for SOH,0 and kloss are permitted to vary in the fitting process.  Figure 3 363 

shows typical fits of Equation 6 to measurements of OH reactivity made in ambient air. 364 

The value for kloss determined from the fit contains a contribution from k’OH,obs, the rate coefficient for OH loss owing 365 

to chemical losses of OH in the reaction cell (the OH reactivity), and kphys, the instrument ‘zero’ corresponding to the 366 

rate coefficient for physical losses of OH owing to diffusion out of the sampling volume and heterogeneous losses on 367 

the walls on the reaction cell.  The chemical loss of OH in the reaction cell is thus given by Equation 7, and in order to 368 

determine the OH reactivity from measurements of kloss it is therefore essential to characterise kphys (Section 3.1). 369 

 k’OH,obs = kloss – kphys         (Equation 7) 370 

At low ambient concentrations of ozone (< 10 ppb) and in laboratory experiments (Sections 4, 6 and 7) and 371 

measurements of kphys, it was necessary to add a small flow of humidified air containing a constant mixing ratio of 372 

ozone (~50 ppb) to the main air flow sampled in order to produce sufficient OH radicals in the reaction cell.   This 373 

‘non-ambient’ ozone added to the reaction cell results in a small loss of OH owing to the reaction of O3 with OH, but 374 

is expected to be < 0.1 s-1 at 298 K (Section 2.1).  However, addition of the small ozone-containing air flow (0.5 slm) 375 

to the sampled flow of ambient air (12 slm) does require a correction for the dilution of the ambient air flow, such 376 

that the OH reactivity (k’OH) is given by Equation 8: 377 

 k’OH = k’OH,obs (1+ f)           (Equation 8) 378 

where f is the dilution factor of the ambient air flow, given by the ratio of the small ozone-containing flow rate to the 379 

total flow rate of the air in the reaction cell (~0.04 for the conditions used in this work).  Potential errors arising from 380 

errors in measurements of kphys and f have been included in overall reported errors for k’OH.  381 

3.1 Determination of kphys 382 

Determination of kphys is critical to the evaluation of the true OH reactivity from observations of the total OH loss rate 383 

in the instrument (Equations 7 & 8), and requires the measurement of the OH loss rate in the absence of any 384 

chemical removal processes such that kloss is equal to kphys.  To minimise the chemical losses of OH in the reaction cell 385 

(and thus to minimise k’OH,obs) the loss of OH in the instrument is measured in ultra-high purity air (BTCA 178, BOC 386 

Special Gases) passed through scrubbers (Gatekeeper Gas Purifiers) to remove H2, CO and CO2 to sub-ppb levels.  387 

Despite the use of scrubbed ultra-high purity air, low levels of residual VOCs can remain in the air, leading to 388 

chemical losses.  Such residual VOCs in the scrubbed ultra-high purity air have been quantified by gas-389 

chromatography and their contributions (< 1 s-1) to the observed OH loss subtracted. 390 

Furthermore, humidification and addition of a small amount of O3 to the ultra-high purity air are necessary for the 391 

production of OH in the instrument during experiments to determine kphys.  Approximately 50 ppb of O3 is added to 392 
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ensure production of sufficient OH, leading to a chemical loss of < 0.1 s-1 at 298 K through the reaction of OH with O3.  393 

Moreover, despite the use of purified water for humidification, obtained using a water purification system (PURELAB 394 

flex PRIPLB0163, Elga LabWater, Veolia Water Solutions & Technologies), impurities in the water can lead to 395 

significant chemical losses for OH and the components in the purification system must remain uncontaminated in 396 

order to ensure accurate determinations of kphys. 397 

Determination of kphys in the laboratory and in the field for the ClearfLo campaign in London in 2012 gave an average 398 

value (1.1 ± 1.0) s-1 and (1.25 ± 0.42) s-1 for the campaign in York in 2014 (Section 5). 399 

 400 

4. Instrumental validation via measurements of kOH+CO and kOH+CH4 401 

As a real time technique, the accuracy of the time axis during which the OH decay is obtained is determined by the 402 

accuracy of the delay generators used to trigger the lasers and other delays (as described in Section 2.4 and shown in 403 

Figure 2), which should be absolute within 1 ps. Hence the method should be absolute in terms of the time 404 

separation between points in the decay. However, owing to various reasons, for example the appropriateness of the 405 

function used to fit the decay, or any recycling of OH from oxidation products (for example the reaction of HO2 with 406 

NO), it is prudent to characterise the instrument through the use of known concentrations of reactants for which the 407 

rate coefficient with OH is also well known. In order to validate measurements of ambient OH reactivity, the well-408 

known rate coefficients for reactions of OH with CO and CH4 were both measured under pseudo-first-order 409 

conditions using the instrumental setup described above.  Ultra-high purity air (BTCA 178, BOC Special Gases) was 410 

mixed with an excess of either CO (5 % in N2, BOC Special Gases) or CH4 (BOC, CP grade, 99.5%), producing a main 411 

flow of 11.5 slm with known concentrations of CO or CH4, prior to mixing with a small flow of humidified air (0.5 slm) 412 

containing ~ 50 ppb O3 generated by passing the air flow across a mercury vapour lamp.   413 

Figure 4 shows the OH reactivity, determined by fitting Equation 6 to the OH decay and subtracting kphys (Section 3), 414 

for a series of CO and CH4 concentrations.  The bimolecular rate coefficients for OH + CO (kOH+CO) and OH + CH4 415 

(kOH+CH4), determined at 298 K from the relationships k’OH = kOH+CO[CO] and k’OH = kOH+CH4[CH4], were found to be (2.4 ± 416 

0.2) × 10-13 cm3 s-1 and (6.4 ± 0.6) × 10-15 cm3 s-1, respectively (errors are 1σ).  The values for kOH+CO and kOH+CH4 417 

determined here are in agreement with the literature values of (2.3 ± 0.5
0.6) × 10-13 cm3 s-1 and (6.4 ± 1.1

1.3) × 10-15 cm3 s-1 418 

at 298 K (Atkinson et al., 2004), respectively, providing confidence in measurements of ambient OH reactivity.  419 

 420 

5. Field measurements 421 

The laser flash photolysis OH reactivity instrument was deployed at the North Kensington measurement site (51o 31’ 422 

N, 0o 12’ W) during the Clean Air for London (ClearfLo) summer campaign in July and August 2012 (Bohnenstengel et 423 

al., 2014), with near-continuous measurements made from the 21st July to 18th August 2012, alongside FAGE 424 

measurements of OH, HO2 and RO2 radical concentrations.  Measurements of O3, CO, NO, NO2, HONO, VOCs and 425 

aerosol mass and composition were also made at the site during the campaign. 426 

Figure 5 shows the full time series of measured OH reactivity for the campaign.  The observed reactivity was highest 427 

for air masses that had previously passed over central London (24th-27th July (Julian days 206-209) and 8th-10th 428 

August (Julian days 221-223)), with a maximum reactivity of 116 s-1 recorded during rush hour on 24th July 2012. 429 

Measurements taken on the 25th July 2012 (Julian day 207) are shown in Figure 6 to highlight the capability of the 430 

instrument, and the average diurnal profile for the campaign is shown in Figure 7.  A peak reactivity, on average, of 431 

~27 s-1 was observed during morning rush hour, with a minimum of ~15 s-1 during the afternoon and a second peak 432 

during evening rush hour. Detailed analysis of these data, including model calculations using the Master Chemical 433 

Mechanism constrained to observed concentrations of long-lived species, is described by Whalley et al. (2015), and 434 

the data are shown here only to highlight the instrument capability.  435 
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Field measurements of OH reactivity have also been made at a site at the University of York (53° 56' N, 1° 02' W) 436 

from the 19th May to 16th June 2014, approximately 3 km south-east of the centre of York and 2 km west of a major 437 

road, with a small wooded area immediately to the east, and thus subject to anthropogenic emissions and local 438 

biogenic emissions.  Figure 8 shows the average diurnal during this period shown.  The observed OH reactivity was 439 

typically lower than that observed during the ClearfLo campaign, with a maximum in the diurnal average of ~6 s-1. 440 

Measurements of O3, CO, NO, NO2, VOCs and were also made at the site during this period, alongside measurements 441 

by a new instrument coupling an OH reactor to measurements of VOCs by gas chromatography with time of flight 442 

mass spectrometry (GC-TOFMS) to aid identification of any ‘missing’ OH reactivity. Detailed analysis of the results 443 

will be given in future publications. 444 

 445 

6. Chamber measurements 446 

The field instrument described above has also been modified in order to interface to the Highly Instrumented 447 

Reactor for Atmospheric Chemistry (HIRAC) to enable measurements of OH reactivity during VOC oxidation under 448 

controlled conditions. For complex reaction mechanisms, the oxidation pathway followed will have a characteristic 449 

time-evolution of the reactivity as secondary products are generated, and measurement of OH reactivity and 450 

comparison with a model prediction provides greater constraint for experimental determination of the mechanism. 451 

HIRAC is a 2.25 m3 stainless steel chamber equipped with UV photolysis lamps to initiate photochemistry and a 452 

comprehensive suite of analytical instrumentation, including gas chromatography (GC), Fourier transform infrared 453 

(FT-IR) spectroscopy, cavity ringdown spectroscopy (CRDS) and LIF-FAGE for radical measurements.  Photolysis lamps 454 

within the chamber enable initiation of photochemistry, and experiments can be conducted at temperatures 455 

between 203 and 343 K and pressures up to 760 Torr (Glowacki et al., 2007; Malkin et al., 2010; Winiberg et al., 456 

2015). 457 

Gas is sampled from HIRAC through ½ ” PTFE tubing at a flow rate of 1 slm and diluted with 5 slm of ultra-high purity 458 

air immediately on exiting the chamber, then diluted further with 9 slm of humidified ultra-high purity air and 1 slm 459 

of ultra-high purity air passed over a low pressure Hg lamp in order to generate O3, giving a total flow of 16 slm and 460 

hence a dilution factor of 1:16.  The diluted gas flow, containing ~ 45 ppb O3, is then directed into the reaction cell of 461 

the OH reactivity instrument, with instrument operation and analysis as described in Sections 2 and 3 (including the 462 

correction of observed reactivity for dilution of sampled gas from the chamber using Equation 8, which is significant 463 

for these experiments in order to avoid measurement of high reactivities (Section 7) and to reduce the volume of gas 464 

removed from the chamber for the reactivity measurements).   465 

Experiments were conducted to verify the sampling procedure by filling HIRAC with air containing known 466 

concentrations of a reactive gas, with a well-characterised rate coefficient for reaction with OH, followed by 467 

measurement of the OH reactivity in the chamber.  Determination of the pseudo-first-order rate coefficients 468 

describing the OH loss for each of the given reactive gas concentrations in the chamber enabled determination of 469 

the bimolecular rate coefficient for reaction of the reactive gas with OH for comparison with literature values, as for 470 

experiments described in Section 4.  Figure 4c shows the bimolecular plots for experiments in which the chamber 471 

was filled with n-butanol (n-C4H9OH) in air at total pressures of 760 Torr and temperatures of 298 K.  A bimolecular 472 

rate coefficient of (8.5 ± 0.1) × 10-12 cm3 s-1 was obtained, in comparison to the literature value of (8.5 ± 2.5
3.5) × 10-12 473 

cm3 s-1 (Atkinson et al., 2004), thus indicating the validity of the sampling procedure.  No dependence of the 474 

observed reactivity on the total flow rate through the instrument was observed between 10 and 22 slm. 475 

The coupling of OH reactivity measurements to chamber studies will enable detailed assessment of our 476 

understanding of the chemistry of secondary products in complex oxidation mechanisms by providing increased 477 

constraint on oxidation budgets during chamber experiments, and will be explored further in future work. 478 

 479 
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7. Effects of averaging time and future improvements to sampling 480 

Measurements have also been made in HIRAC to investigate the effect of the averaging time on the measured OH 481 

reactivity.  Figure 9 shows the observed OH reactivities, for a given set of conditions, as a function of the averaging 482 

time, showing successful measurements with an averaging time of 10 s and indicating the potential for further 483 

improvements for future integration of ambient OH reactivity observations with flux measurements. 484 

Experiments described in this work using known concentrations of reactive gases have been able to reproduce 485 

recommended literature values for known rate coefficients, indicating the validity of the technique described here 486 

over the dynamic ranges investigated.  However, recent work in Leeds has shown that, at higher reactivities, 487 

observed kinetics can be influenced by sampling issues related to the transport time of sampled gas from the pinhole 488 

nozzle to the point at which fluorescence is excited and detected in the FAGE cell, leading to underestimations of 489 

very high reactivities (Stone et al., 2016).  Successful measurements in HIRAC with known concentrations of CH4 at 490 

reactivities > 150 s-1 (Section 6), although scattered owing to the small number of time points over which fast decays 491 

can be measured, indicate that such effects should be minimal for the instrument described in this work, even for 492 

the highest reactivities observed during the ClearfLo campaign (> 100 s-1).  However, experiments incorporating OH 493 

reactivity measurements in chamber studies, such as those described in Section 6, must also ensure that the gas 494 

sampled from the chamber has been sufficiently diluted so as to avoid the measurement of high reactivities directly.  495 

Future work will incorporate a new inlet designed to minimise the distance between the pinhole nozzle and the 496 

point of excitation fluorescence and detection, ideally such that detection occurs within the supersonic jet formed 497 

on expansion of the gas as it flows through the pinhole.  The new inlet will not only increase the dynamic range over 498 

which reactivity measurements can be made, but sampling within the supersonic jet will also lead to increased 499 

signal-to-noise and enable further reductions in the averaging time required to achieve adequate signal-to-noise for 500 

measurements with high time resolution.  501 

 502 

8. Conclusions and Outlook 503 

In this work we present the design and characterisation of an instrument to make field and chamber measurements 504 

of OH reactivity by laser flash photolysis (LFP) coupled with laser-induced fluorescence (LIF) using the FAGE 505 

technique.  The LFP-LIF reactivity instrument, its operation and data analysis have been described in detail.  Ambient 506 

reactivity measurements obtained during field campaigns in London, UK, and York, UK, have been presented, and 507 

will be discussed further in future work.  The instrument has also been coupled to an atmospheric chamber, and 508 

preliminary results have been shown to demonstrate the potential for reactivity measurements during future 509 

chamber experiments. 510 

Reactivity measurements have been made using an averaging time of 10 s, indicating potential for integration of 511 

ambient OH reactivity observations with flux measurements.  Future development of the instrument will increase 512 

the dynamic range over which measurements can be made and will enable reduced averaging times owing to 513 

improvements in the signal-to-noise ratio. 514 
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Figures 522 

 523 

Figure 1: Schematic of the laser flash photolysis laser-induced fluorescence OH reactivity instrument for a) 524 

experiments in which the FAGE detection cell was situated midway along the reaction cell, resulting in sampling at 525 

90o to the air flow and leading to biexponential OH decays; b) experiments and field measurements in which the 526 

FAGE detection cell was situated at the end of the reaction cell and sampled from the centre of the photolysed 527 

volume, leading to OH decays described by a single exponential.  All laboratory and field measurements shown in 528 

this work were obtained with the instrument configuration as shown in panel (b). 529 
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 530 

 531 

Figure 2: a) Schematic to illustrate the Stanford Research Systems delay generator controlled gate timing of the PMT 532 

detector and photon counting card in the OH reactivity instrument.  The blue hatched region indicates the overlap 533 

between the OH fluorescence signal and the photon counting gates; b) Schematic to illustrate the photon counting 534 

bin structure used to collect OH fluorescence photons after each 308 nm probe laser pulse (5kHz pulse repetition 535 

frequency).  Four 50 s wide photon counting bins cover the time period between each 308 nm laser pulse, but only 536 

the bins immediately after the laser pulse collect any fluorescence photons (shaded bins), and only the photon 537 

counts from these bins are used to construct the OH decay. 538 
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 539 

Figure 3: Typical OH time profiles following photolysis of ambient air (mixed with a small flow of N2/O2/O3/H2O) 540 

observed during the Clean Air for London (ClearfLo) campaign (black points) with fits of Equation 6 (red lines) to the 541 

LIF data to determine k’OH for data recorded a) during a polluted period on 25th July 2012 (k’OH = (46.6 ± 0.2) s-1) and 542 

b) during a cleaner period on 7th August 2012 (k’OH = (13.9 ± 0.1) s-1).  Time zero is defined as the time at which 543 

photolysis occurs.  Decays represent data co-added throughout 5 min periods.  544 

 545 

Figure 4: Bimolecular plots of pseudo-first-order rate coefficients describing OH loss (k’OH) against known 546 

concentrations of reactive gases during laboratory tests (black points) with best fit lines (blue) and literature values 547 

(red) for a) CO at 298 K; b) CH4 at 298 K; c) n-butanol (n-C4H9OH) in chamber experiments at 298 K. Literature values 548 

are taken from Atkinson et al. (2004).  Note that values for kphys have been subtracted from the observed rate 549 

coefficients describing OH loss (Equation 7), and corrections for dilution have been applied (Equation 8). Errors are 550 

1σ. 551 
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 552 

 553 

Figure 5: Time series of OH reactivity observed during the Clean Air for London (ClearfLo) campaign (21st July to 18th 554 

August 2012).  Uncertainties (represented by the shaded area) represent 1σ combined uncertainties from the fits to 555 

observed OH decays (Equation 6), determinations of kphys (Equation 7) and uncertainties in the dilution factor, f 556 

(Equation 8). 557 

 558 

 559 

Figure 6: Time series of OH reactivity observed during the Clean Air for London (ClearfLo) campaign on the 25th July 560 

2012 (Julian day 207).  Error bars represent 1σ combined uncertainties from the fits to observed OH decays 561 

(Equation 6), determinations of kphys (Equation 7) and uncertainties in the dilution factor, f (Equation 8). 562 

 563 
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 564 

Figure 7: Diurnal average for observed OH reactivity (15 min averages) during the Clean Air for London (ClearfLo) 565 

campaign (21st July to 18th August).  Shaded areas represent the measurement variability from day-to-day during the 566 

campaign. 567 

 568 

Figure 8: Diurnal average for observed OH reactivity (15 min averages) during in York (19th May to 16th June 2014).  569 

Shaded areas represent the measurement variability from day-to-day. 570 
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 572 

Figure 9: Observed OH reactivities, for a given gas composition (for which the expected OH reactivity is shown in 573 

red), as a function of averaging time, obtained using 15 mW of 308 nm probe laser power. 574 

 575 

 576 

 577 

 578 

 579 

 580 
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