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Abstract

Drug repurposing ofers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. 

The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the preven-

tion of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple 

myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been 

repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, 

including efects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour 

immunology and immune evasion. Finally, we look briely at ongoing trials and future opportunities for therapeutic synergy 

when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors.

Keywords Checkpoint · Denosumab · Immunotherapy · Osteoprotegerin · RANK · RANKL

Drug repurposing as a therapeutic strategy 
in cancer

Drug discovery and development requires many years of 

research and financial investment [1]. Repurposing an 

approved therapeutic agent is generally faster and more cost 

efective than novel drug development because the largest 

and most ineicient part of the development process has 

been bypassed [1]. Repurposing may take 3–12 years, com-

pared with up to 17 years to develop a new drug, and repur-

posed drugs have the beneit of established safety proiles, 

which contribute to lower implementation failure rates than 

seen with novel agents [1]. Drugs with a history of safe use 

and a favourable toxicology proile may be candidates for 

repurposing if they have both a plausible mechanism of 

action and evidence of eicacy in the new indication [1]. 

Drug repurposing is one of the oldest development path-

ways for anti-cancer medicines; for example, anthracyclines, 

which are used extensively in the management of breast 

cancer and lymphoma, were tested as antibiotics but proved 

to be too toxic [2]. Thalidomide is another example of a 

drug successfully repurposed as a cancer treatment. Used to 

alleviate morning sickness in pregnant women, thalidomide 

was withdrawn after causing severe teratogenicity, but later 

demonstrated response rates of 25–35% in relapsed/refrac-

tory multiple myeloma and was subsequently approved for 

treatment of this cancer [3]. This inding prompted develop-

ment of thalidomide analogues, such as lenalidomide and 

pomalidomide, which are now typically preferred in clinical 

practice over the original agent [3].

Recently, there has been renewed interest in repurposing  

in the oncology ield: drugs approved in other indications 

have been shown to induce cancer cell death, suppress 

aspects of cancer cell behaviour, or even prevent cancer 

development. Examples of repurposed drugs that have 

shown anti-cancer activity in at least one clinical trial 

include cimetidine, clarithromycin, verapamil and pravas-

tatin [3]. Aspirin is also a potential candidate for repurpos-

ing as an anti-cancer agent. There is some evidence, from 
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clinical trials investigating prevention of cardiovascular 

disease and from observational studies, that it may reduce 

cancer incidence or death [4]. Similar indings have emerged 

from interventional studies evaluating the efect of aspirin 

on mortality and disease recurrence in cancer patients [4]. 

Potential antineoplastic properties of the oral antidiabetic 

agent metformin are also being investigated following obser-

vations that it reduced cancer incidence by 37% in patients 

with diabetes [5].

A further avenue open to exploration is repurposing drugs 

that target the receptor activator of nuclear factor kappa-

B (RANK) ligand (RANKL) signalling system [6], which 

has an established role in regulating bone remodelling [7, 

8]. The RANKL inhibitor denosumab was irst approved in 

2010 and is now indicated for the prevention of skeletal-

related events (SREs) in adults with advanced malignancies 

involving bone [9]. The denosumab label has recently been 

expanded to include the prevention of SREs in patients with 

multiple myeloma [9, 10]. Observations that some stromal 

cells in giant cell tumour of bone (GCTB) express RANKL, 

possibly leading to the recruitment of RANK-expressing 

osteoclast-like giant cells, led to increased understanding 

of the role of RANK–RANKL signalling in the aetiology of 

GCTB and then to investigations of the therapeutic poten-

tial of denosumab in patients with GCTB [11, 12]. Posi-

tive clinical trial results led to the approval of denosumab 

in 2013 for use in adults and skeletally mature adolescents 

with GCTB that is unresectable or where surgical resec-

tion may result in severe morbidity [13]. Accumulating data 

on the RANK–RANKL pathway raise the possibility that 

denosumab could be repurposed for use in other types of 

cancer. Evidence suggests that RANK–RANKL signalling 

may have osteoclast-independent efects on tumour biology, 

with RANK/RANKL activity demonstrating a positive cor-

relation with tumour progression and advanced disease [14]. 

Moreover, trials including denosumab have demonstrated 

positive efects on survival outcomes in patients with can-

cer, including increased overall survival (OS) in lung cancer 

and increased disease-free survival in non-metastatic breast 

cancer [15, 16]. Recent data also suggest that denosumab 

and immune checkpoint inhibitors may act synergistically 

to provide additional beneit [17]. This review explores the 

RANK–RANKL axis in cancer biology and the potential for 

repurposing denosumab.

The RANK–RANKL axis: more than bone 
turnover

RANKL, its transmembrane signalling receptor RANK, 

and the decoy receptor osteoprotegerin (OPG) belong to 

the tumour necrosis factor superfamily [7]. Competition 

between OPG and RANK to bind RANKL regulates RANK 

activation and, therefore, its signalling function [7]. Binding 

of RANKL to RANK initiates various signal-transduction 

pathways, including production of nuclear factor kappa B 

[7], the eponymous member of a transcription factor fam-

ily implicated in cancer development and progression, in 

inlammation and in crosstalk between these two processes 

[18, 19]. While the RANK/RANKL/OPG system regulates 

osteoclast function and bone remodelling in bone homeo-

stasis [7, 8], it also has roles in immunity and development 

(Fig. 1a–c). Speciically, RANK–RANKL signalling sits at 

the interface between bone and the immune system, inlu-

encing the pathology of diseases such as rheumatoid arthri-

tis [20] and immune functions unrelated to bone including 

involvement in dendritic cell survival and function, M1 

macrophage activation and T-cell diferentiation and acti-

vation [14, 21, 22]. Additionally, RANK–RANKL signalling 

functions in epithelial growth and diferentiation, includ-

ing mammary physiology [7, 23], in lymph node develop-

ment [21], in skeletal muscle [24] and in the central nervous 

system (CNS) [8]. For example, RANK–RANKL signal-

ling has been implicated in the formation and function of 

hair follicles, intestinal microfold cells, thymic medullary 

epithelium and mammary glands [7, 25]. RANK protein 

is also expressed in bronchial (but not alveolar) epithelial 

cells [23]. Of note, in mammary gland diferentiation and 

the development of the lobuloalveolar breast tissue architec-

ture required for lactation [26], RANK–RANKL signalling 

promotes the proliferation and survival of mammary epithe-

lial cells [26] and constitutive signalling may promote the 

propagation of RANK-expressing stem cells at the expense 

of normal diferentiation [27]. RANKL expression is driven 

by progesterone-responsive cells in the breast and is required 

for progesterone-driven epithelial proliferation [28, 29]. In 

skeletal muscle, the RANK–RANKL axis has been impli-

cated in the regulation of calcium storage, inluencing den-

ervated muscle function [24]. Furthermore, in the CNS, the 

RANK–RANKL axis plays a role in thermoregulation [8]. 

RANK, RANKL and OPG are, therefore, expressed across 

a variety of tissue types (Fig. 2a–c). Notably, RANK and 

OPG have relatively broad expression in normal tissues,  

while RANKL is largely restricted to osteoblasts and hae-

matopoietic lineages (Fig. 2a), where it is expressed in  

T lymphocytes and basophils [30–32].

The RANK–RANKL axis in cancer biology

Given its varied roles in human physiology, interest has 

increased in the role of the RANK–RANKL axis in tumouri-

genesis, speciically in its functions beyond bone metabo-

lism. Cells from various tumour types express RANK, 

RANKL and OPG (Fig. 3a–c) and RANK–RANKL signal-

ling appears to be involved in tumour initiation, progression 
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and metastasis (Fig. 1d) [6, 7, 25, 33]. With regard to bone 

metastasis, the efects of RANK/RANKL seem likely to be 

indirect, mediated by an osteoclast-dependent mechanism, 

or direct, via interaction of RANKL with RANK-expressing 

cells [6, 7, 25, 33]. However, there is evidence for involve-

ment of the RANK/RANKL/OPG system in the develop-

ment and metastasis of melanoma, breast, hepatocellular, 

lung, prostate and renal cell carcinomas, as well as in pri-

mary malignant tumours of the bone (osteosarcoma, multi-

ple myeloma and GCTB) [6, 7, 25, 33]. The relative levels of 

RANK/RANKL/OPG expression may inluence prognosis in 

numerous cancer types including breast, lung, endometrial, 

renal cell and gastric cancers, osteosarcoma and multiple 

myeloma (Fig. 4a, b) [34–41]. In breast cancer, microar-

ray analysis demonstrated that low RANK and high OPG 

expression were associated with longer OS (p = 0.0078 and 

p = 0.034, respectively) and disease-free survival (p = 0.059 

and p = 0.040, respectively) [34]. Immunohistochemical 

analysis demonstrated an association between high RANK 

expression and bone metastasis (p = 0.023) and shorter 

survival without bone involvement (p = 0.037) [34]. In 

another study, low RANKL expression has been associ-

ated with increased risk for bone metastases (p = 0.018) and 

shorter disease-free survival (p = 0.018) in breast cancer 

[40]. In metastatic clear cell renal cell carcinoma, an ele-

vated RANK/OPG ratio has been associated with a shorter 

median time to metastasis (p = 0.014), progression-free sur-

vival (PFS) (p = 0.001) and OS (p = 0.0001) [35]. Moreover, 

RANK expression in clear cell renal cell carcinoma has been 

identiied as an independent negative prognostic factor for 

both cancer-speciic survival and recurrence-free survival 

(p < 0.001) [42]. Additionally, high RANK expression has 

been linked to a shorter PFS (p = 0.01) and OS (p = 0.02) 

in endometrial cancer [36]. RANK-positive osteosarcomas 

Fig. 1  Involvement of the 

RANK–RANKL axis in bone 

remodelling, development, 

immunity and cancer. a In the 

mammary gland, following the 

binding of progesterone to its 

receptor, RANKL is produced. 

Increased RANKL stimulates 

mammary gland epithelial cell 

expansion via paracrine signal-

ling, leading to lactation compe-

tence. Image modiied from [96] 

under the Creative Commons 

Attribution License (https ://

creat iveco mmons .org/licen 

ses/by-nc-sa/3.0/). b Activated 

T cells and NK cells express 

RANKL, which stimulates vari-

ous processes via monocytes, 

macrophages and dendritic 

cells including dendritic cell 

survival and maturation, 

T-cell activation and NK cell 

inhibition. c Increased levels of 

RANKL have been associated 

with increased tumour growth, 

stemness, EMT and metastases. 

Throughout these processes, 

RANKL acts as a chemoat-

tractant for RANK-expressing 

cancer. d Increased RANKL 

produced by bone stromal cells, 

including cells of the osteoblast 

lineage, leads to an increased 

rate of bone remodelling [96]. 

EMT epithelial–mesenchymal 

transition, NK natural killer, PR 

progesterone, RANK receptor 

activator of nuclear factor kappa 

B, RANKL receptor activator of 

nuclear factor kappa B ligand

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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are also associated with higher mortality than RANK-

negative cases (p < 0.05) [41]. A high RANKL expression 

has been associated with higher stage disease (p = 0.035) 

and a shorter OS (p = 0.008) in gastric cancer [37]. In lung 

adenocarcinoma, both high RANK (p = 0.01) and RANKL 

(p = 0.02) expression have been linked to worse OS [38]. 

Furthermore, in multiple myeloma, the serum RANKL/OPG 

ratio was found to correlate with the extent of bone disease 

(p = 0.023), and a high RANKL/OPG ratio was associated 

with an increased risk of death (p < 0.001) [39]. Such corre-

lation data should be interpreted with caution as the methods 

used to evaluate expression levels vary across studies, can 

include non-validated assays and require expertise to assess 

the results; therefore, further research is required to conirm 

these indings.

Indirect efects of RANK–RANKL signalling 
on tumour initiation, progression and metastasis: 
preclinical evidence

RANKL is well known to be involved in a cycle of oste-

oclast-mediated bone destruction and tumour activity that 

facilitates bone metastasis [7, 8, 25]. Both tumour cells 

and tumour-derived factors are involved in the production 

of RANKL and increase the RANKL/OPG ratio. Increased 

RANKL in the bone microenvironment upregulates oste-

oclastogenesis and the activation of mature osteoclasts 

(bone-resident macrophages), resulting in increased bone 

resorption. The subsequent release of growth factors and cal-

cium into the bone microenvironment stimulates additional 

proliferation of tumour cells and release of tumour-derived 

Fig. 2  a RANK, RANKL and 

OPG tissue expression. Data 

from the Human Protein Atlas 

available at www.prote inatl 

as.org [97]. RANK expres-

sion is relatively ubiquitous, 

while RANKL expression is 

efectively restricted to haema-

topoietic cells. OPG expression 

is highest in mucosal epithelial 

tissues, consistent with its 

role in modulating immune 

responses. b RANKL positive 

immune cells within a lymph 

node. Image reproduced from 

the Human Protein Atlas [97] 

under the Creative Commons 

Attribution License (https ://

creat iveco mmons .org/licen ses/

by-sa/3.0/); available at https ://

www.prote inatl as.org/ENSG0 

00001 20659 -TNFSF 11/tissu e/

lymph +node#img. c RANKL 

expression in normal breast 

tissue. Image reproduced 

from [98] under the Creative 

Commons Attribution License 

(http://creat iveco mmons 

.org/licen ses/by/4.0). OPG 

osteoprotegerin, RANK receptor 

activator of nuclear factor kappa 

B, RANKL receptor activator of 

nuclear factor kappa B ligand, 

TPM, transcripts per million

http://www.proteinatlas.org
http://www.proteinatlas.org
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/tissue/lymph%2bnode#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/tissue/lymph%2bnode#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/tissue/lymph%2bnode#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/tissue/lymph%2bnode#img
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
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factors, and thus further increases the RANKL/OPG ratio, 

thereby promoting continued RANKL-dependent osteoclast-

mediated bone destruction [43, 44].

With respect to bone metastasis, preclinical evidence has 

shown that high RANK expression in breast cancer cells 

increases their ability to metastasise to bone [45]. RANKL 

inhibition promoted tumour apoptosis in a mouse model of 

bone metastasis from prostate cancer, and in combination 

with docetaxel, was synergistic in improving survival [46]. 

Moreover, preclinical data have indicated that the combina-

tion of anti-RANKL therapies and AT-406 (an antagonist 

of inhibitor of apoptosis proteins) may have a beneicial 

efect on bone metastases [47]. RANKL inhibition also sup-

pressed bone invasion in mouse models of oral squamous 

cell carcinoma [48]. Furthermore, it has been shown that 

an elevated RANKL/OPG ratio increases the potential of 

human non-small cell lung cancer (NSCLC) to metasta-

sise to bone [49]. In mouse models of multiple myeloma, 

RANKL has been shown to promote the release of myeloma 

cells from dormancy through osteoclast-mediated remod-

elling of the endosteal niche, thus promoting disease pro-

gression or relapse. In line with these observations, bone 

resorption has been linked to tumour burden in patients with 

multiple myeloma [50].

In addition to these well-known bone-related pathways, 

RANK–RANKL signalling may play a role at several other 

stages of cancer development, progression and metasta-

sis [7, 25, 33]. RANKL may inluence carcinogenesis and 

Fig. 3  a Expression of RANK, RANKL and OPG in cells from 

various solid organ and haematological cancers. The results shown 

here are based upon data generated by the TCGA Research Net-

work (http://cance rgeno me.nih.gov/) obtained using the cBioPor-

tal for Cancer Genomic [95]. b RANKL expression in lung adeno-

carcinoma. c RANKL expression in pancreatic adenocarcinoma. 

Reproduced from the Human Protein Atlas [97] under the Creative 

Commons Attribution License (https ://creat iveco mmons .org/licen 

ses/by-sa/3.0/); image in b is available at https ://www.prote inatl 

as.org/ENSG0 00001 20659 -TNFSF 11/patho logy/tissu e/lung+cance 

r#img and image in c is available at https ://www.prote inatl as.org/

ENSG0 00001 20659 -TNFSF 11/patho logy/tissu e/pancr eatic +cance 

r#img. ACC  adenoid cystic carcinoma, AML acute myeloid leukae-

mia, ccRCC  clear cell renal cell carcinoma, chRCC  chromophobe 

renal cell carcinoma, CS carcinosarcoma, DLBCL difuse large B-cell 

lymphoma, GBM glioblastoma multiforme, OPG osteoprotegerin, 

PCPG pheochromocytoma and paraganglioma, pRCC  papillary renal 

cell carcinoma, RANK receptor activator of nuclear factor kappa B, 

RANKL receptor activator of nuclear factor kappa B ligand

http://cancergenome.nih.gov/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/lung%2bcancer#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/lung%2bcancer#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/lung%2bcancer#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/pancreatic%2bcancer#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/pancreatic%2bcancer#img
https://www.proteinatlas.org/ENSG00000120659-TNFSF11/pathology/tissue/pancreatic%2bcancer#img
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Fig. 4  a Association of RANK, RANKL and OPG expression with 

survival across diferent cancer types according to published studies. 

Each line represents diferent expression data as labelled; all compari-

sons are high vs low expression except for the breast cancer results, 

which are low vs high. b Association of RANK, RANKL and OPG 

expression (low or high) with 5-year overall survival rates across var-

ious solid organ and haematological cancers. OPG expression is sig-

niicantly (p < 0.001) associated with survival in urothelial, renal and 

cervical cancers, but extreme gene expression for OPG, RANKL and 

RANK also show hypothesis-generating associations in other can-

cers. Log rank p values for Kaplan–Meier plots showing results from 

analysis of correlation between mRNA expression levels and patient 

survival from TCGA datasets are plotted. Data extracted from the 

Human Protein Atlas available at www.prote inatl as.org [97]. aTCGA 

dataset. bLung-1 dataset. + Indicates a better prognosis with high gene 

expression. − Indicates a worse prognosis with high gene expression. 

CI conidence interval, HR hazard ratio, mRNA messenger RNA, 

NR not reported, OPG osteoprotegerin, RANK receptor activator of 

nuclear factor kappa B, RANKL receptor activator of nuclear factor 

kappa B ligand, RCC  renal cell carcinoma

http://www.proteinatlas.org
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metastatic progression through efects on RANK-express-

ing tumour cells or cells from stem/progenitor compart-

ments that express RANK [7, 25, 33]. Efects on tumour 

initiation may difer between cancer types and there has 

been particular interest in the role that RANKL may play 

in breast cancer given its physiological roles in mammary 

gland epithelia and the stem cell compartment [7, 25, 33]. 

Preclinical evidence suggests that RANK/RANKL mediate 

the pro-tumourigenic role of progesterone in the mammary 

gland [28, 29, 51]. In a mouse mammary tumour virus 

model, RANK overexpression promoted tumourigenesis in 

breast tissue after treatment with carcinogen and proges-

terone, and RANKL inhibition attenuated tumourigenesis 

in this and a spontaneous breast tumour model [51]. In 

another mouse model with breast tissue deleted for RANK, 

tumourigenesis, tumour growth and stem cell expansion 

driven by medroxyprogesterone acetate were also attenu-

ated [52]. Furthermore, mammary carcinogenesis driven 

by BRCA1 mutations relies on autocrine or paracrine 

RANK–RANKL signalling in mammary progenitor cells 

[29]. Targeting the RANK–RANKL axis could conceiv-

ably, therefore, be beneicial in patients with BRCA1 muta-

tion-positive breast cancer and may provide a rationale for 

designing clinical trials of cancer prevention [29].

Preclinical data have demonstrated that when expressed 

in lung epithelial cells or other cells of the tumour micro-

environment, RANK may also promote lung cancer devel-

opment. Signalling via RANK promoted expansion of 

cancer stem-like cells in a mechanism dependent upon 

mitochondrial respiration [23]. Female sex hormones are 

also able to promote lung cancer progression through the 

RANK–RANKL axis [23]. It has been hypothesised that 

the inluence of sex hormones on RANK/RANKL might in 

part explain gender-speciic diferences observed in epide-

miological studies of human lung cancer [23, 53]. RANKL 

expression has been associated with decreased survival in 

lung adenocarcinoma [23, 38], and RANKL inhibition has 

reduced tumour progression in mouse models of lung adeno-

carcinoma [38].

The leucine-rich repeat-containing G-protein-coupled 

receptor 4 (LGR4) has recently been identiied as a RANKL 

receptor, has been shown to have an antagonistic efect on 

osteoclast diferentiation and to promote the proliferation of 

tumour cells when overexpressed [6]. Additionally, LGR4 

expression has been associated with a poor prognosis and 

metastasis in breast, prostate and colorectal cancer [54–56]; 

however, LGR4 has been associated with improved survival 

in lung adenocarcinoma [23]. In multiple myeloma, LGR4 

has been implicated in promoting Wnt/β-catenin signalling, 

which drives proliferation [57]. It could be speculated that 

patients with tumours expressing high levels of both LGR4 

and RANKL might benefit from disruption of RANKL 

signalling.

Many of the mechanisms underlying the pro-metastatic 

activities of RANKL, including increased proliferation, 

migration and invasion of RANK-expressing tumour cells, 

could be relevant to numerous cancer types [7, 14, 25, 33]. 

RANK overexpression induced transformation and stemness 

in untransformed mammary epithelial cells, induced mark-

ers of epithelial–mesenchymal transition (EMT), known to 

be important in acquiring these metastatic capabilities [58] 

and increased invasiveness, migration and anchorage-inde-

pendent growth [59]. Additionally, RANK overexpression 

induced tumourigenesis and promoted metastasis of BRCA1-

deicient cells in immunodeicient mice [59]. Furthermore, 

disruption of RANK–RANKL signalling in mouse models 

of breast cancer reduced metastasis of RANK-expressing 

breast cancer cells to lung [7, 60] and of RANK-express-

ing melanoma cells to bone [61]; conversely, exogenous 

RANKL promoted lung metastases in mice with RANK-

expressing breast tumours [60]. In humans, high RANK/

RANKL messenger RNA expression has been signiicantly 

associated with metastatic breast adenocarcinomas [59], 

while RANKL induced markers of EMT in prostate cancer 

[62] and in head and neck squamous carcinoma cells [63]. 

RANKL has also been implicated both in the induction of 

angiogenesis and in increasing vascular permeability via 

RANK-expressing endothelial cells, which may impact intra/

extravasation and metastasis [25, 64]. Vascular endothelial 

growth factor, which is commonly expressed by tumour 

cells, enhances endothelial cell responses to RANKL [25].

Potential immunomodulatory role of RANK–RANKL 
signalling

Immune cells may represent a subset of RANKL-expressing 

cells that mediate direct efects of RANK–RANKL signal-

ling in cancer [7, 14, 25]. Such cells are commonly found 

in the tumour microenvironment but their precise roles are 

varied and not fully understood [7, 14]. The complex role 

of RANK–RANKL signalling is evident from the fact that 

it has been implicated in both the generation and regulation 

of immune responses, suggesting that RANK–RANKL sig-

nalling can enhance and suppress immunity and may afect 

inlammation, T-cell activation and immune evasion [7, 14, 

22]. Speciically, RANK–RANKL signalling supports den-

dritic cell survival and function, M1 macrophage activation 

and T-cell diferentiation and activation [14, 22]. It is also 

involved in central and peripheral tolerance [7, 14, 25] and in 

the development of lymph nodes [21]. Additionally, RANKL 

contributes to regulation of early lymphocyte development 

[14, 21]. With respect to suppression of immune responses, 

RANK–RANKL signalling is required for development 

of medullary thymic epithelial cells, which establish 

T-cell self-tolerance centrally through expression of the 

autoimmune regulator (Aire) gene [14, 65]. Peripherally, 
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RANK–RANKL signalling mediates tolerance and immu-

nosuppression in tissues such as pancreas, small intestine (in 

Peyer’s patches) and skin; defective RANK–RANKL signal-

ling is also implicated in the pathogenesis of autoimmune 

disease in these tissues [7, 14]. RANK–RANKL signalling 

is required for the formation and function of regulatory  

T cells (Tregs) [66, 67]. Speciically, RANKL is involved in 

the generation and activation of potent Tregs in the pancreas 

that are involved in preventing diabetes [66]. RANKL also 

mediates the induction of Tregs in studies of the immune 

environment in skin [67]. Modelling of the immune response 

in mice with colitis has shown that RANKL is expressed by 

Tregs and that blockade of RANK–RANKL signalling can 

impair Treg function and immune suppression [68].

Expression of RANK and RANKL is largely segregated 

among immune cells [7, 25, 69]. RANKL is primarily 

expressed in T cells and is upregulated upon T-cell stimula-

tion, enhancing T-cell proliferation and function. In contrast, 

RANK is expressed in monocytes, macrophages and den-

dritic cells and is induced in T cells and natural killer (NK) 

cells by speciic cytokines [7, 14, 25, 69]. With respect to the 

development of immune responses, RANK–RANKL signal-

ling in dendritic cells enhances their survival and function, 

including their ability to prime and activate T cells, and to 

enhance T-cell memory [70, 71], by inducing expression of 

activating cytokines [7, 14, 25, 72]. Evidence suggests that 

RANK and the co-stimulatory molecule CD40 may act co-

operatively in dendritic cell-mediated activation of T-cell 

responses [14, 71]. Disruption of RANK–RANKL signalling 

can antagonise dendritic cell function and T-cell–mediated 

immune responses [73]. RANK–RANKL signalling in mac-

rophages also enhances their survival and function, includ-

ing antigen presentation [14, 74]. However, the high levels of 

antigens and immunosuppressive factors typically found in 

tumour microenvironments can result in T-cell exhaustion, 

associated with the upregulation of markers, such as immune 

checkpoint proteins; therefore, although dendritic cells may 

initially mediate T-cell diferentiation and activation, exten-

sive inlammation can induce immune suppression [75].

The importance of RANK–RANKL signalling in tumour 

immunology, and in stimulating or suppressing anti-tumour 

immune responses in cancer, is not yet fully understood [7, 

14, 25]. Preclinical studies suggest that RANKL can promote 

the negative selection of tumour-speciic T cells by inducing 

the expression of self-antigens that are shared with tumours 

in the thymus, thereby promoting central tolerance to tumour 

antigens and tumour immune evasion [76]. RANKL inhibi-

tion can reversibly decrease self-antigen expression in the 

thymus and can spare from deletion T cells that target mela-

noma, thus enhancing the anti-tumour immune response 

and improving survival [76]. Furthermore, synergy has 

been observed between the suppression of central tolerance 

in Aire-deicient mice and peripheral immune checkpoint 

inhibition using anti-cytotoxic T-lymphocyte–associated 

antigen-4 (CTLA-4) antibodies with respect to slowing 

tumour growth and improving survival through increasing 

T cells that target melanoma [77]. Co-treatment with anti-

RANKL and anti-CTLA-4 antibodies could not reproduce 

the synergistic efect of Aire-deiciency and anti-CTLA-4 

antibodies on survival, although synergistic improvements 

in survival with co-treatment could be achieved if mice 

were also vaccinated with tumour cells producing granulo-

cyte–macrophage colony-stimulating factor [77].

In addition to establishing central tolerance to tumours 

[7, 14, 76], RANK–RANKL signalling plays an important 

role within tumours where it may contribute to the develop-

ment of a tolerogenic immune microenvironment [25, 60, 

78, 79]. RANK is highly expressed on tumour-associated 

macrophages (TAMs), and RANKL is expressed by tumour-

iniltrating T cells [7, 25, 69]. Tregs inhibit efector T-cell 

activity and can, therefore, play a role in tumour immune 

evasion [80], and as discussed, RANKL plays a crucial role 

in the expansion of Tregs in a variety of situations. Evidence 

suggests that RANK–RANKL signalling in M2 TAMs pro-

duces chemokines that recruit immunosuppressive Tregs to 

the tumour microenvironment [7, 25, 79]. Tregs have been 

shown to produce RANKL, which functions as a chemoat-

tractant for RANK-expressing monocytes [81], suggesting 

that Tregs may perpetuate tumour progression [7, 14, 25, 

60]. Distant metastasis may also be inluenced by RANKL 

expression in tumour-iniltrating T lymphocytes [7, 14, 25]. 

Speciically, Tregs producing RANKL have been implicated 

in the development of lung metastases in a RANK-express-

ing breast cancer mouse model [60]. Although modulation 

of the tumour immune microenvironment could facilitate 

tumour progression, RANKL inhibition in mouse models 

of lung adenocarcinoma that responded to anti-RANKL 

therapy showed only modest changes in the tumour micro-

environment, including non-speciic depletion of tumour  

T cells [38]. In addition to their suggested role in modulat-

ing the tumour immune microenvironment, M2 TAMs have 

also been implicated in angiogenesis and metastasis [25]. 

NK cells play an important role in tumour immunosurveil-

lance [82]; RANKL can stimulate production of NK cell 

inhibitory factors by acute myeloid leukaemia cells, which 

also upregulate RANK expression by NK cells, promoting 

RANK–RANKL signalling that further contributes to NK 

cell inhibition [33].

Therapeutic potential of targeting 
the RANK–RANKL axis in cancer

Denosumab mimics the activity of endogenous OPG in 

binding to RANKL, although it does not inhibit the pro-

apoptotic protein TRAIL [7, 14, 25]. Various trials have 
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Table 1  Cancer clinical trials investigating the repurposing of anti-RANKL therapy

ACTRN Australian New Zealand Clinical Trials Registry, ER oestrogen receptor, NCT National Clinical Trial, PR progesterone receptor, RANKL receptor activator of nuclear factor kappa B 

ligand

Phase Cancer Intervention Primary outcome Status Trial identiier

Proof of concept Breast Denosumab Change in Ki67 expression in 

breast epithelium of BRCA1 

mutation carriers

Active ACTRN12614000694617

1 Breast (stage I–III, at least cT1) Pre-surgical denosumab Pharmacodynamic markers of 

RANKL inhibition

Recruiting NCT02900469

1 Advanced or metastatic cancer 

(relapsed or refractory to  

standard therapy)

Anakinra or denosumab and 

everolimus

Maximum tolerated dose Active but not recruiting NCT01624766

1b/2 Melanoma (unresectable, stage 

III/IV)

Ipilimumab–nivolumab– 

denosumab or  

nivolumab–denosumab

Progression-free survival, grade 

3–4 selected immune-related 

adverse events

Recruiting NCT03161756 (CHARLI)

2 Langerhans cell histiocytosis Denosumab Incidence of patients with active 

disease

Recruiting NCT03270020

2 Breast (stage cT1c to cT4a–d, 

ER negative and PR negative)

Denosumab and neoadjuvant 

therapy

Pathological complete response 

rate

Recruiting NCT02682693 (GeparX)

2 Breast (pre-menopausal, newly 

diagnosed, non-metastatic)

Pre-operative denosumab Geometric mean change in 

tumour Ki67 expression

Closed early due to poor  

recruitment

NCT01864798 (D-BEYOND)

2 Non-small cell lung (stage IV) Denosumab and standard 

therapy

Overall survival Completed NCT01951586

2 Osteosarcoma (recurrent or 

refractory)

Denosumab Disease control rate and  

objective response rate

Recruiting NCT02470091

2 Renal cell carcinoma (unresectable 

or metastatic clear cell)

Denosumab and pembrolizumab Objective response rate Recruiting NCT03280667 (KEYPAD)

2 Giant cell rich tumours of bone Denosumab The proportion of subjects 

who do not require surgery/

who undergo planned versus 

performed surgery during the 

study (salvageable disease); 

disease control and stable pain 

score (unsalvageable disease)

Active EudraCT number 2016-005244-42

3 Breast (stage II/III, high risk for 

recurrence)

Adjuvant denosumab and 

standard neoadjuvant/adjuvant 

therapy

Bone metastasis-free survival Terminated following primary 

analysis

NCT01077154 (D-CARE)

3 Non-small cell lung (stage IV) Denosumab and standard 

therapy

Overall survival Active but not recruiting NCT02129699 (SPLENDOUR)
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recently completed or are in progress, particularly in 

breast and lung carcinoma, that are providing insight into 

the repurposing of denosumab to an anti-cancer therapy 

(Table 1). Anti-RANKL therapy may have the potential to 

help patients with primary bone tumours other than GCTB, 

or who have associated lesions, such as aneurysmal bone 

cysts [83]. Moreover, denosumab is hypothesised to have 

a number of anti-tumourigenic efects including increasing 

bone metastasis-free survival (BMFS), reducing prolifera-

tion and stemness in early tumourigenesis and augmenting 

checkpoint immunotherapy (Fig. 5a, b).

In a phase 3 clinical trial of 1432 patients with castration-

resistant prostate cancer at high risk of bone metastasis, den-

osumab signiicantly increased BMFS, but did not improve 

OS, compared with placebo [84]. A single-arm phase 2a 

study (D-BEYOND), conducted to determine whether 

a short course of neoadjuvant denosumab (two 120 mg 

doses a week apart) can decrease tumour proliferation rates 

(based on Ki67 immunohistochemistry) in newly diagnosed, 

early-stage breast cancer in pre-menopausal women, found 

that a short course of denosumab did not reduce prolifera-

tion rate, but did induce a signiicant increase in tumour-

iniltrating lymphocytes. These data support the hypothesis 

that denosumab may potentiate immunotherapy eicacy 

[85]. ABCSG-18, a phase 3 study using adjuvant denosumab 

(60 mg every 6 months) in patients with oestrogen and/or 

progesterone-positive non-metastatic breast cancer receiv-

ing aromatase inhibitors has demonstrated a 50% reduction 

in fractures alongside a clinically meaningful impact on 

disease-free survival (secondary endpoint) after a median 

follow-up of 72 months (hazard ratio = 0.823, 95% coni-

dence interval 0.69–0.98, p = 0.026) [16]. However, the 

primary analysis of the phase 3 clinical trial D-CARE in 

non-metastatic high-risk early-stage breast cancer patients 

reported that the interventional scheme of denosumab 

(120 mg monthly for 6 months, then every 3 months for 

5 years) failed to demonstrate an improvement over placebo 

with respect to the trial’s unconventional composite primary 

Fig. 5  Targeting of the  

RANK–RANKL pathway may 

improve patient outcomes by  

a reducing self-renewal of cancer 

stem cells and b augmenting 

immunotherapy, tipping the 

balance in favour of the immune 

system. c Concomitant immune 

checkpoint inhibitor and deno-

sumab therapy is associated 

with a higher response rate than 

has been reported for immune 

checkpoint inhibitors alone [17, 

99, 100]a. Red colouring indi-

cates studies of patients with 

melanoma; blue colouring indi-

cates studies of patients with 

NSCLC; square = nivolumab; 

triangle = pembrolizumab; 

circle = atezolizumab, 

hexagon = avelumab; dia-

mond = ICI + denosumab. aAs 

the trials difer in study design 

and methodology, such cross-

trial comparisons should be 

viewed as hypothesis-generating 

only. ICI immune checkpoint 

inhibitor, NSCLC non-small 

lung cell carcinoma, RANK 

receptor activator of nuclear 

factor kappa B, RANKL receptor 

activator of nuclear factor  

kappa B ligand
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endpoint of BMFS [86]. This was deined as the time from 

randomisation to the irst observation of bone metastasis 

or death and, at the primary analysis, death accounted for 

42% of the BMFS endpoint [86], confounding the abil-

ity to observe an efect of denosumab in preventing the 

development of bone metastasis. Moreover, in contrast to 

ABCSG-18, there was a lack of disease-free survival beneit 

in D-CARE [16, 86]. This may however be attributed to the 

heterogeneous high-risk early-stage breast cancer population 

and investigational dosing regimen used in D-CARE [86].

In a retrospective analysis of a phase 3 clinical trial of 

denosumab versus zoledronic acid in the treatment of bone 

metastases from solid tumours, denosumab was associated 

with increased OS in 811 patients with bone metastases 

from any lung cancer [15]. This outcome aligns with evi-

dence from mouse models indicating that RANKL inhibi-

tion impairs the progression of lung adenocarcinomas [38]. 

However, recent prospective data from a phase 2 trial and 

the phase 3 SPLENDOUR trial showed that the addition 

of denosumab to standard irst-line therapy in patients with 

metastatic NSCLC (with or without bone metastases) did 

not improve OS or PFS [87, 88]. Consistent with the above 

retrospective analysis [15], a slight improvement in OS was 

observed in the subgroup of patients with bone metastases 

receiving denosumab in the phase 2 study, but this efect was 

not signiicant [87, 88].

Given the multifactorial roles of the RANK–RANKL 

axis in the immune system, there has been interest in the 

potential of RANKL inhibitors to improve response to 

immune checkpoint inhibitors in the treatment of cancer 

[6, 89]. Inhibitors of immune checkpoint proteins such 

as CTLA-4 and anti-programmed death-1 (PD-1) or its 

ligand have revolutionised treatment for some patients [89]. 

These agents have been approved in several tumour types, 

including melanoma, head and neck squamous carcinoma, 

NSCLC, renal cell and urothelial carcinoma, gastric cancer 

and Hodgkin’s lymphoma [89]. However, their efectiveness 

is limited by variable responses to treatment in individual 

patients; there is a need to improve their activity overall and 

to develop biomarkers that can predict which patients are 

likely to derive beneit from current strategies [89]. Preclini-

cal data and emerging data from real-world practice suggest 

that denosumab and immune checkpoint inhibitors may act 

synergistically [69, 90]. For example, in one case report, 

a patient with melanoma presented 13 months after initial 

diagnosis with an axillary nodal mass and widespread bone 

metastases and demonstrated an unexpected dramatic partial 

response following concomitant treatment with denosumab 

and single-agent ipilimumab (anti-CTLA-4) [90].

Preclinical studies suggest a synergistic efect of anti-

RANKL in combination with anti-CTLA-4 and PD-1  

antibodies, which have demonstrated tumour growth sup-

pression in mouse models of melanoma, prostate and colon 

cancer [91]. In mouse models of melanoma, the addition 

of RANKL inhibition to anti-CTLA-4 antibodies did not 

deplete Tregs, but increased tumour-iniltrating CD4 + and 

CD8 + T cells compared with anti-PD-1 and anti-CTLA-4 

therapy [69, 91]. T-cell effector function (measured by 

cytokine production) was also enhanced in tumours treated 

with both agents compared with tumours treated with either 

single agent [69, 91]. Interestingly, the synergistic efect of 

anti-RANKL and anti-PD-1 antibodies on lung metasta-

sis was dependent upon NK cells, whereas the synergistic 

efect on subcutaneous tumour growth was dependent upon 

T cells [90, 91]. Building on these data, real-world evidence 

using Flatiron Health’s electronic health record database 

from ~ 255 cancer clinics across the US, including patients 

with advanced melanoma or NSCLC, found that a longer 

mean duration of concomitant immune checkpoint inhibitor 

and denosumab therapy was associated with improved over-

all response rate (p = 0.0172 and p < 0.0001 for melanoma 

and NSCLC, respectively) [17]. The response rate associated 

with the combination appears to be higher than reported 

historical response rates to immune checkpoint inhibitors 

alone (Fig. 5c). Additional survival analyses supported the 

association of concomitant therapy and improved survival 

outcomes, primarily in NSCLC (p < 0.0001) [17].

Prospective studies combining denosumab and check-

point inhibitor immunotherapy are in progress. A phase 2 

Australia and New Zealand Urogenital and Prostate Can-

cer Trials Group investigator-sponsored trial (KEYPAD) 

of denosumab and the PD-1 inhibitor pembrolizumab in 

patients with vascular endothelial growth factor receptor 

tyrosine kinase inhibitor-refractory clear cell renal cell car-

cinoma (NCT03280667), and an Australia and New Zea-

land Melanoma Trials Group phase 1b/2 trial (CHARLI) of 

ipilimumab–nivolumab–denosumab and nivolumab–deno-

sumab in patients with unresectable stage III/IV melanoma 

(NCT03161756) are currently recruiting (Table 1). Of note, 

denosumab has an established safety proile in clinical prac-

tice, including when used in combination with novel anti-

cancer agents, with no new detected safety signals to date 

[9, 92].

Discussion and conclusions

Expanding knowledge of biological mechanisms as well as 

bioinformatic and combinatorial screening approaches are 

being used to identify existing agents that may be repur-

posed to beneit people with cancer. Improved knowledge 

relating to the role played by the RANK–RANKL axis in 

the cancer setting has highlighted that agents targeting this 

pathway may be able to modulate diferent stages of tumour 

progression from initiation to metastasis. In this respect, tri-

als are investigating denosumab in diferent cancers with 
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promising results. Such trials also ofer the opportunity to 

identify potentially meaningful clinical synergy with check-

point inhibitor immunotherapies through characterisation 

of the immune efects of denosumab on intratumoural cell 

populations.

A focus for further work will be to establish if there are 

groups of patients likely to derive beneit from denosumab 

as an anti-RANKL agent in cancer in combination with anti-

cancer therapy. For example, the RANKL system is strongly 

inluenced by sex hormones [8, 29], and RANKL activity 

is increased in post-menopausal women lacking oestrogen 

owing to decreased OPG expression [6, 29]. Endogenous 

levels of OPG are lower in BRCA1 mutation carriers, who 

are at greater risk of breast cancer than the general popula-

tion, compared with levels in women without the mutation 

[93]. A trial will assess the efect of denosumab on normal 

breast tissue in these individuals as well as BRCA2 mutation 

carriers and high-risk, non-BRCA  carriers [94]. Moreover, 

RANK/RANKL/OPG and LGR4 expression data for pri-

mary tumours, such as renal, breast and lung, may assist in 

identifying patients most likely to beneit from denosumab 

therapy [95].

Overall, given the increased understanding of the pleio-

tropic roles of RANK/RANKL/OPG signalling in tumours 

and immune cells, the repurposing of denosumab, with its 

potential to enhance the eicacy of immuno-oncology drugs, 

could be a cost-efective component of such a combination 

approach for the treatmentof people with cancer.
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