
This is a repository copy of Directional modulation design under a constant magnitude 
constraint for weight coefficients.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152870/

Version: Published Version

Article:

Zhang, B., Liu, W. orcid.org/0000-0003-2968-2888, Li, Y. et al. (2 more authors) (2019) 
Directional modulation design under a constant magnitude constraint for weight 
coefficients. IEEE Access, 7. pp. 154711-154718. 

https://doi.org/10.1109/access.2019.2949338

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


SPECIAL SECTION ON MISSION CRITICAL SENSORS AND SENSOR NETWORKS (MC-SSN)

Received September 30, 2019, accepted October 19, 2019, date of publication October 24, 2019,
date of current version November 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949338

Directional Modulation Design Under a Constant
Magnitude Constraint for Weight Coefficients

BO ZHANG 1, (Member, IEEE), WEI LIU 2, (Senior Member, IEEE),

YANG LI 1, XIAONAN ZHAO 1, AND CHENG WANG 1
1Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal

University, Tianjin 300387, China
2Communications Research Group, Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 4ET, U.K.

Corresponding author: Bo Zhang (b.zhangintj@tjnu.edu.cn)

This work was supported in part by the Natural Science Foundation of Tianjin under Grant 18JCYBJC86000 and Grant 18JCYBJC86400,

in part by the Science and Technology Development Fund of Tianjin Education Commission for Higher Education under Grant

2018KJ153, and in part by the Doctor Fund of Tianjin Normal University under 52XB1905.

ABSTRACT Directional modulation (DM) as a physical layer security technique has been studied from

many different aspects recently. Normally all existing designs based on antenna arrays lead to varying weight

coefficients for different antennas and for different signal symbols, which poses a particular challenge for

feed circuits design in analogue implementation. In this paper, to reduce the implementation complexity,

a constant magnitude constraint is proposed for the first time, and the resultant non-convex constraint can be

modified to a convex form so that the problem can be solved conveniently by existing convex optimisation

toolboxes. Design examples are provided to show the effectiveness of the proposed design.

INDEX TERMS Constant magnitude constraint, directional modulation, linear antenna array.

I. INTRODUCTION

With the fast development of the Fifth Generation (5G)

network, communication has been more important than

ever [1], [2]. As physical layer security technique to keep

known constellation mappings in a desired direction or direc-

tions, while scrambling them for the remaining ones, direc-

tional modulation (DM) has been studied widely [3]. In [4],

a four-element reconfigurable antenna array was designed,

where the DM design was achieved by changing elements for

each symbol. In [5], phased antenna array was employed for

DM, with an individual tailor-made feed circuit (including

phase shift and amplitude change) prepared for each antenna.

Compared with a given antenna array design, to further

reduce the number of antennas, DM design was extended

to sparse antenna arrays [6]. To overcome the inherent lim-

itation of DM, where eavesdroppers and the desired users

share the same received signal when they are in the same

spatial direction of the antenna array, two positional modula-

tion (PD) designs were proposed, with one based on a reflect-

ing surface [7], and the other employing multiple antenna

arrays [8]. Both designs are based on the idea that if the

received signal is a combination of signals from different

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

paths with different directions, then signals at these locations

can be distinguished. To increase the channel capacity of

DM, two antenna array structures were proposed recently.

One uses a crossed-dipole antenna array [9], where two DM

signals with orthogonal polarisations are transmitted in the

same direction. The second one employs multiple frequen-

cies, leading to an orthogonal frequency division multiplex-

ing (OFDM) type structure based on the inverse Discrete

Fourier Transform (IDFT) [10], [11]. A method named dual

beam DM was introduced in [12]. Different from the tra-

ditional design where inphase and quadrature (IQ) compo-

nents of signals are transmitted by the same antenna, dual

beam DM design transmits these two components by dif-

ferent antennas. In [13], directional antennas were used in

the design instead of isotropic antennas, and a narrower low

BER range was achieved. In [14], the BER was employed

for DM transmitter synthesis by linking the BER perfor-

mance to the settings of phase shifters. A pattern synthesis

approach was presented in [15], [16], where information pat-

tern and interference patterns are created together to achieve

DM, followed by an eight-element time-modulated antenna

array in [17], an artificial-noise-aided zero-forcing synthesis

approach in [18], and a multi-relay design in [19].

Recently, the introduction of artificial noise (AN) has fur-

ther advanced the directional modulation technology. AN can
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be categorised into ‘static’ AN and ‘dynamic’ AN. Static

AN results in scrambled but fixed constellation points in

undesired directions, while dynamic AN keeps the scram-

bled points change with time. For the construction of AN,

two methods were introduced. One is the orthogonal vector

method [20], [21], where the added AN vector is orthogonal

to the steering vector of the desired direction. The other one

is the AN projection matrix method [22], [23], where by

designing an artificial noise projection matrix, the AN vector

is projected into the zero space of the derivative of the desired

direction.

However, the resultant weight coefficients for existing DM

designs vary with different antennas, in particular in their

magnitudes. When implemented by analogue circuits, both

magnitude and phase responses of the feed circuits will be dif-

ferent for different antennas and different symbols, whichwill

increase the implementation complexity of the whole system.

To reduce this complexity, in this paper, a constant magnitude

constraint is proposed for the DM design, and the resultant

non-convex optimization problem is then transformed into a

convex one to facilitate its solution. In general, the resultant

weight coefficient magnitude is the same for all antennas

for the same symbol. When all the symbols have the same

magnitude, such as in phase shift keying (PSK) modulation,

the weight coefficient magnitude will be the same for all

antennas and symbols, further reducing the implementation

complexity of the whole system.

The remaining part of this paper is structured as follows.

A review of DM design based on narrowband linear antenna

arrays is given in Sec. II. The constant magnitude constraint

for weight coefficients is introduced and a solution to the

constrained design problem is derived in Sec. III. In Sec. IV,

design examples are provided, with conclusions drawn in

Sec. V.

II. REVIEW OF DM DESIGN BASED ON NARROWBAND

LINEAR ANTENNA ARRAYS

A. NARROWBAND BEAMFORMING

A narrowband linear antenna array for transmit beamforming

is shown in Fig. 1, which has N omni-directional anten-

nas with the corresponding weight coefficient wn (n =
0, 1, . . . ,N−1) and spacing dn for n = 1, . . . ,N−1 between

the first antenna to its subsequent antennas. The spatial angle

θ ∈ [0◦, 180◦]. The steering vector of the array as a function

of angular frequency ω and spatial angle θ , is given by

s(ω, θ) = [1, ejωd1 cos θ/c, . . . , ejωdN−1 cos θ/c]T , (1)

where {·}T is the transpose operation, and c is the speed

of propagation. For a uniform linear array (ULA) with a

half-wavelength spacing (dn−dn−1 = λ/2) between adjacent

antennas, the steering vector can be simplified to

s(ω, θ) = [1, ejπ cos θ , . . . , ejπ (N−1) cos θ ]T . (2)

The corresponding weight coefficients can be put together as

a vector w,

w = [w0,w1, . . . ,wN−1]
T . (3)

FIGURE 1. A narrowband transmit beamforming structure.

Then, the beam response of the array can be given by

p(ω, θ) = wH s(ω, θ), (4)

where {·}H represents the Hermitian transpose.

B. DM DESIGN BASED ON THE ABOVE STRUCTURE

The aim of DM design is to keep known constellation map-

pings in a desired direction or directions, while scrambling

them for the remaining ones. To achieve it, we need to find

the corresponding sets of weight coefficients for all symbols.

Here, forM -ary signaling, such as multiple phase shift keying

(MPSK), there are M sets of desired array responses pm(θ ),

with the corresponding weight vector

wm = [wm,0,wm,1, . . . ,wm,N−1]
T , m = 0, 1, . . . ,M − 1.

(5)

Each desired response pm(ω, θ) can be classified into one

of the two regions: the mainlobe response pm,ML , and

the sidelobe response pm,SL . Here we assume r points

θ0, θ1, . . . , θr−1 are sampled in themainlobe, andR−r points
θr , θr+1, . . . , θR−1 in the sidelobe. Then, the desired beam

responses in the mainlobe and sidelobe regions for the m-th

symbol can be represented by

pm,ML = [pm(ω, θ0), pm(ω, θ1), . . . , pm(ω, θr−1)],

pm,SL = [pm(ω, θr ), pm(ω, θr+1), . . . , pm(ω, θR−1)]. (6)

Similarly, the steering matrix for mainlobe and sidelobe

ranges can be expressed as

SML = [s(ω, θ0), s(ω, θ1), . . . , s(ω, θr−1)],

SSL = [s(ω, θr ), s(ω, θr+1), . . . , s(ω, θR−1)]. (7)

Note that all symbols for a fixed θ share the same steering

vector.

Based on the above parameters, for the m-th symbol, its

corresponding weight coefficients for DM design can be

154712 VOLUME 7, 2019
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TABLE 1. Mainlobe and sidelobe regions.

obtained by solving the following problem

min ||pm,SL − wH
mSSL ||2

subject to wH
mSML = pm,ML , (8)

where || · ||2 denotes the l2 norm. The cost function is to min-

imise the difference between desired and designed sidelobe

responses, and the equality constraint is tomake sure themain

lobe direction has the desired symbol response.

III. CONSTANT MAGNITUDE CONSTRAINT

FOR WEIGHT COEFFICIENT

However, the magnitudes of weight coefficients in (8) are not

the same for different antennas and different symbols. In other

words, we need an individual tailor-made feed circuit (includ-

ing phase shift and amplitude change) for each antenna for

analogue implementation. To simplify implementation of a

DM design, in this section, we introduce a constant magni-

tude constraint for weight coefficients, i.e.,

|wm,n| = δm, n = 0, 1, . . . ,N − 1, (9)

where δm represents the given magnitude for each weight

coefficient for the m-th symbol, so that we only need to

change the phase response of the feed circuit for differ-

ent antennas. The mainlobe and sidelobe regions are shown

in Table 1. The DM design under the constant magnitude

constraint for weight coefficient can be formulated as follows

min ||pm,SL − wH
mSSL ||2

subject to wH
mSML = pm,ML

|wm,n| = δm

n = 0, 1, . . . ,N − 1. (10)

However, δm is not arbitrary, and there is a valid range for

it. To derive it, we first have

wH
m s(ω, θr̂ )

= pm(ω, θr̂ )

⇒ |wH
m s(ω, θr̂ )| = |pm(ω, θr̂ )|

= |w∗
m,0 + w∗

m,1e
jωd1 cos θr̂/c + . . . + w∗

m,N−1e
jωdN−1 cos θr̂/c|

≤ |w∗
m,0| + |w∗

m,1e
jωd1 cos θr̂/c| + . . .

+ |w∗
m,N−1e

jωdN−1 cos θr̂/c|
≤ |w∗

m,0| + |w∗
m,1| · |ejωd1 cos θr̂/c| + . . .

+ |w∗
m,N−1| · |ejωdN−1 cos θr̂/c|

≤ |w∗
m,0| + |w∗

m,1| + . . . + |w∗
m,N−1|, (11)

for r̂ = 0, 1, . . . ,R − 1 including mainlobe and sidelobe

regions.

Due to the proposed constant magnitude constraint, where

the magnitudes of all weight coefficients have to be the same,

i.e.,

|w∗
m,0| = |w∗

m,1| = . . . = |w∗
m,N−1|, (12)

(11) can be further simplified to

|pm(ω, θr̂ )| ≤ N |w∗
m,n| = N |wm,n|. (13)

Therefore, we have

|wm,n| ≥ |pm(ω, θr̂ )|
N

. (14)

Since the maximum value of
|pm(ω,θr̂ )|

N
is

max (
|pm(ω, θr̂ )|

N
) = |pm(ω, θ0)|

N
, (15)

where θ0 represents the mainlobe direction with the maxi-

mum magnitude response value, we have

|wm,n| ≥ |pm(ω, θ0)|
N

. (16)

Then, with the equality constraint |wm,n| = δm for n =
0, 1, . . . ,N−1 from (10), the inequality (16) can be replaced

by

|wm,n| = δm

δm ≥ |pm(ω, θ0)|
N

. (17)

Then, the formulation in (10) becomes

min ||pm,SL − wH
mSSL ||2

subject to wH
mSML = pm,ML

δm ≥ |pm(ω, θ0)|
N

|wm,n| = δm

n = 0, 1, . . . ,N − 1. (18)

For the purpose of saving the transmission power for each

antenna, i.e., setting the minimum magnitude of weight

coefficient, we select the minimum value of the constant

magnitude

δm = |pm(ω, θ0)|
N

. (19)

Note that in practice if we need to increase the transmission

power of the array to increase its communication range,

we can uniformly increase the magnitude of all coefficients

accordingly. Therefore, using (19) to set the minimum trans-

mission power will not cause any additional issues in practice.

Then, the formulation (18) becomes

min ||pm,SL − wH
mSSL ||2

subject to wH
mSML = pm,ML

|wm,n| = |pm(ω, θ0)|
N

n = 0, 1, . . . ,N − 1. (20)

VOLUME 7, 2019 154713
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Note that for the above formulation to work, the maximum

magnitude response in the mainlobe can only be located at

one single direction (θ0 in our case), i.e., a flat top main beam

can not be achieved. We will prove this later at the end of

Section III. Here, with the single maximum mainlobe direc-

tion represented by θ0, the formulation (20) can be simplified

to

min ||pm,SL − wH
mSSL ||2

subject to wH
m s(ω, θ0) = pm(ω, θ0)

|wm,n| = |pm(ω, θ0)|
N

n = 0, 1, . . . ,N − 1. (21)

Moreover, the equality constraint |wm,n| = |pm(ω,θ0)|
N

in

(21) is non-convex. To solve the problem using the CVX

toolbox in Matlab, we propose a new constraint

||wm||∞ ≤ |pm(ω, θ0)|
N

, (22)

to replace the equality constraint |wm,n| = |pm(ω,θ0)|
N

in (21),

where || · ||∞ represents the l∞ norm (the maximum magni-

tude of the entries in the vector). This inequality constraint is

to set the entry with themaximummagnitude of the vectorwm

no greater than
|pm(ω,θ0)|

N
. According to (16), if the maximum

value or any other entries of the vector is less than
|pm(ω,θ0)|

N
,

then the constraint wH
m s(ω, θ0) = pm(ω, θ0) cannot be sat-

isfied. Therefore, the proposed constraint (22) can force all

entries of the vector to have the same value as
|pm(ω,θ0)|

N
.

Then, the DM design under the constant magnitude con-

straint can be modified into

min ||pm,SL − wH
mSSL ||2

subject to wH
m s(ω, θ0) = pm(ω, θ0)

||wm||∞ ≤ |pm(ω, θ0)|
N

. (23)

The above problem (23) can be solved by the CVX toolbox

in MATLAB [24], [25].

Note that if

|p0(ω, θ0)| = |pm(ω, θ0)| = |pM−1(ω, θ0)|, (24)

form = 0, . . . ,M−1, representing different symbolswith the

same magnitude, such as in PSK-type modulation schemes,

then

|p0(ω, θ0)|
N

= |pm(ω, θ0)|
N

= |pM−1(ω, θ0)|
N

, (25)

i.e. the magnitudes of coefficients for different antennas and

different symbols will become the same. This will further

reduce the implementation complexity of the whole DM

system.

Now we prove the formulation (20) only works for one

desired direction with maximum magnitude response. With-

out loss of generality, the maximum beam response in the

mainlobe direction for one symbol (m = 0) is represented

by p0(ω, θ0) =
√
2
2

+
√
2
2
i. If there are two desired directions

θ0 and θ1 receiving the same symbol, then the equality con-

straints in (20) can be represented by

w∗
0,0 + w∗

0,1e
j2πd1 cos θ0 + . . . + w∗

0,N−1e
j2πdN−1 cos θ0

=
√
2

2
+

√
2

2
i

w∗
0,0 + w∗

0,1e
j2πd1 cos θ1 + . . . + w∗

0,N−1e
j2πdN−1 cos θ1

=
√
2

2
+

√
2

2
i

|w0,n| = δ0 = |p0(ω, θ0)|
N

= 1

N
, n = 0, 1, . . .N − 1. (26)

We add up the first two constraints and have the following

results

2w∗
0,0 + w∗

0,1(e
j2πd1 cos θ0 + ej2πd1 cos θ1 ) + . . .

+w∗
0,N−1(e

j2πdN−1 cos θ0 + ej2πdN−1 cos θ1 )

=
√
2 +

√
2i

⇒ |2w∗
0,0 + w∗

0,1(e
j2πd1 cos θ0 + ej2πd1 cos θ1 ) + . . .

+w∗
0,N−1(e

j2πdN−1 cos θ0 + ej2πdN−1 cos θ1 )| = 2

⇒ |2w∗
0,0| + |w∗

0,1(e
j2πd1 cos θ0 + ej2πd1 cos θ1 )| + . . .

+ |w∗
0,N−1(e

j2πdN−1 cos θ0 + ej2πdN−1 cos θ1 )| ≥ 2

⇒ 2|w∗
0,0| + |w∗

0,1| × |ej2πd1 cos θ0 + ej2πd1 cos θ1 | + . . .

+ |w∗
0,N−1| × |ej2πdN−1 cos θ0 + ej2πdN−1 cos θ1 | ≥ 2

(27)

When θ0 6= θ1, we have |ej2πd1 cos θ0 +ej2πd1 cos θ1 | < 2. Then,

with |w0,n| = |p0(ω,θ0)|
N

= 1
N
, the left side of the last inequality

in (27) can be found to be

⇒ 2|w∗
0,0| + |w∗

0,1| × |ej2πd1 cos θ0 + ej2πd1 cos θ1 | + . . .

+ |w∗
0,N−1| × |ej2πdN−1 cos θ0 + ej2πdN−1 cos θ1 |

<
1

N
× 2 + 1

N
× 2 + . . . + 1

N
× 2 = 2, (28)

However, according to (27), it should be larger or equal to 2,

which contradicts the above result. As a result, the number of

directions with the same maximum magnitude value cannot

be larger than one.

For eavesdroppers with a known direction, we can apply

a corresponding constraint to make the beam response at this

direction as low as possible. This constraint will not affect the

proposed constant magnitude constraint.

Another note is that the proposed constraint cannot only

be applied to a linear antenna array, but also a planar antenna

array or a circular antenna array by changing the correspond-

ing steering vectors.

IV. DESIGN EXAMPLES

In this section, we consider an N = 20 ULA with a half

wavelength spacing between adjacent antennas. Note that the

proposed constraint works well irrespective of the number

of antennas. Both broadside and off-broadside designs are

provided. For the broadside design, the desired direction is

pointed to θML = 90◦, while θSL ∈ [0◦, 85◦]∪[95◦, 180◦] for
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FIGURE 2. Resultant beam responses for the broadside design without
magnitude constraint in (8).

FIGURE 3. Resultant phase responses for the broadside design without
magnitude constraint in (8).

the sidelobe region. For the off-broadside design, θML = 60◦

and θSL ∈ [0◦, 55◦] ∪ [65◦, 180◦]. The desired response in

the desired direction is a value of one (magnitude) with 90◦

phase shift (QPSK), i.e.,
√
2

2
+ i

√
2

2
, −

√
2

2
+ i

√
2

2
, −

√
2

2
− i

√
2

2
,

√
2

2
−i

√
2

2
(29)

for symbols ‘00’, ‘01’, ‘11’, ‘10’, and a value of 0.1 (magni-

tude) with random phase shifts over the sidelobe regions. The

constant magnitude of weight coefficient

|pm(ω, θ0)|
N

= 0.05. (30)

To verify the performance of the proposed design, the beam

and phase patterns for the designs with and without constant

magnitude constraint for weight coefficients are given. Bit

error rate (BER) is calculated based on which quadrant the

received complex-valued signal falls into. Here the signal to

noise ratio (SNR) is set at 12 dB in the mainlobe direction,

106 bits are transmitted, and the same additive white Gaus-

sian noise (AWGN) power levels for all directions are also

assumed.

For the broadside design without constant magnitude con-

straint in (8), Figs. 2 and 3 show the beam and phase patterns

for symbols ‘00, 01, 11, 10’, where we can see that all

main beams are exactly pointed to 90◦ (the desired direction)

TABLE 2. Magnitude of weight coefficients for the broadside design
without magnitude constraint in (8) for symbol ‘00’ (m = 0).

TABLE 3. Magnitude of weight coefficients for the broadside design
without magnitude constraint in (8) for symbol ‘01’ (m = 1).

TABLE 4. Magnitude of weight coefficients for the broadside design
without magnitude constraint in (8) for symbol ‘11’ (m = 2).

TABLE 5. Magnitude of weight coefficients for the broadside design
without magnitude constraint in (8) for symbol ‘10’ (m = 3).

FIGURE 4. Resultant beam responses for the broadside design with
magnitude constraint in (23).

with a low sidelobe level, and the phases in the desired

direction follow the standard QPSK constellation mappings,

but random for the rest of the angles. However, as shown

in Tables 2, 3, 4 and 5, the magnitude of weight coefficients

VOLUME 7, 2019 154715
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FIGURE 5. Resultant phase responses for the broadside design with
magnitude constraint in (23).

TABLE 6. Magnitude of weight coefficients for both broadside and
off-broadside designs with magnitude constraint in (23) for symbols ‘00’,
‘01’, ‘11’ and ‘10’ (m = 0, 1, 2, 3).

FIGURE 6. BER for the broadside design with magnitude constraint
in (23).

are not the same; in other words, constant magnitude for

weight coefficients are not achieved.

In contrast, for the design with constant magnitude con-

straint in (23), Figs. 4 and 5 show the corresponding beam

and phase patterns, which satisfies the DM design. The mag-

nitudes of all weight coefficients are shown in Table 6. It can

be seen that all magnitudes are equal to 0.05, the same as

the given magnitude
|pm(ω,θ0)|

N
= 0.5, demonstrating the

effectiveness of the proposed design. The BER performance

of the proposed design is shown in Fig. 6, where we can see

that in 90◦ (the desired direction) the value is down to 10−5,

while at other directions it fluctuates around 0.5, illustrating

the practicality of the proposed design.

For the off-broadside design with constant magnitude con-

straint in (23), Figs. 7 and 8 show the corresponding beam

FIGURE 7. Resultant beam responses for the off-broadside design with
magnitude constraint in (23).

FIGURE 8. Resultant phase responses for the off-broadside design with
magnitude constraint in (23).

FIGURE 9. BER for the off-broadside design with magnitude constraint in
(23).

and phase patterns, where we can see that the main beam

points to the desired direction 60◦, with a standardQPSK. The
magnitudes of all weight coefficients are the same as 0.05,

as shown in Table 6. The corresponding BER performance is

shown in Fig. 9, again with a satisfactory result.

V. CONCLUSION

To reduce the implementation complexity, a constant mag-

nitude constraint for weight coefficients has been introduced

into the directional modulation design for the first time, and

154716 VOLUME 7, 2019
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by employing the absolute value inequalities, the resultant

non-convex constantmagnitude constraint is transformed into

a convex form so that its solution can be found conveniently

by existing convex optimisation toolboxes. As shown in

the provided design examples, with the proposed constraint,

a constant magnitude of weight coefficients can be achieved

for different antennas with a given symbol, and when all

the magnitudes of the symbols are the same, we will have

a constant weight coefficient magnitude for all antennas and

symbols, with an even lower implementation complexity.
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