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SUPPORTING DOCUMENTATION 
 

OSCILLATORY FLOW ASSESSED 

 

Figure S1 Inlet flow rate for the 2D mCOBR CFD simulation. The net flow is also 
plotted for comparison. Black squares represent the points in the cycle for which 
solutions were computed. 

 

CFD VALIDATION 

 

Figure S2 CFD Model for a backward facing step problem. The step size, h, is 
selected to be 5mm, following Armaly’s experiment. The computational domain is 
chosen to be long enough to neglect exit effects. Shown in white, the line for which 
the axial velocity, u is null. The distance between the step and the intersection of this 
line with the lower wall is the reattachment length. Colormap shows the velocity 
magnitude for the case Re=400. The mean inlet velocity is computed from the 
Reynolds number selected following 



ܴ݁ ൌ ߤ௛ܦ௔௩௚ݑߩ   

for every Re case assessed. 

As figures S1 and S2 show, the velocity profiles also exhibit good agreement 
between the experimental and computational data. 

 

Figure S3 Axial velocity profiles for three different sections downstream of the step 
for Re = 100. Height is normalised by the height of the channel and velocities by the 
maximum velocity for better comparison. Blue line: CFD results. Red dots: Armaly’s 
experimental data. 



 

Figure S4 Axial velocity profiles for three different sections downstream of the step 
for Re = 389. Height is normalised by the height of the channel and velocities by the 
maximum velocity for better comparison. Red dots: Armaly’s experimental data. 

In order to compare the meshes employed by the solver, a quarter of a COBR cell is 
compared with the equivalent geometry in the backward facing step. These 
geometries are different in size, but the relationships of the region of interest features 
with the step size (baffle height in the case of the OBR) are kept the same as shown 
in Figure S4. 

 



Figure S5 Region of interest selected for comparison of mesh densities for the 
backward facing step and COBR geometries. 

The number of mesh elements for the highlighted area in the backward facing step 
experiment is 1312 compared with 1237 in the case of the quarter of COBR cell. The 
quadrangular elements of the top boundary layer for the backward facing step were 
discounted, as this boundary does not exist in the case of the COBR. The similarity 
of mesh densities is high, with less than 6% difference in the number of elements 
generated by COMSOL’s predefined physics-controlled ‘fine’ mesh. 

Comparing the Reynolds number in the OBR, defined as ܴ݁ ൌ ௔௩௚ݑߩ  ܦ ʹൗߤ  

 

where D is the cell width and D/2 is proportional to Dh. Taking this into account, the 
highest Reynolds number reached for a mCOBR simulation across all cases 
evaluated is 129. Taking a look at figure 7, this is well below 500 and in the regime 
considered to fit to a high degree with the CFD simulations. 

 

SURROGATE MODEL CROSS-VALIDATION 
Table S1 Cross-validation results. Sample size: 27 points. 

 K left 
out 

ș CV RMSE Training 
RMSE 

CV ı2 Test 
RMSE 

Ș 
1 (LOO) 10 0.0533 0.0013 29.3405*10-4 0.0683 

3 10 0.0535 0.0013 11.2370*10-4 0.0683 

5 2.07 0.0559 0.0207 7.4275*10-4 0.0627 

7 1.34 0.0589 0.0266 6.9889*10-4 0.0606 

9 0.90 0.0646 0.0310 7.5544*10-4 0.0593 

 0   0.0419  0.05651 

       

ı2 LOO 3.40 0.0277 0.0073 7.9538*10-4 0.0171 

3 2.76 0.0273 0.0090 2.9719*10-4 0.0175 

5 2.58 0.0283 0.0096 2.0285*10-4 0.0176 

7 2.13 0.0318 0.0111 2.1892*10-4 0.0180 

9 1.69  0.0367 0.0129 2.4812*10-4 0.0185 

 10   0.0006  0.0164 

 

Table S1 contains the following information. CV RMSE is the average RMSE 
over all kleft out points that are removed from the full training set of n=27 DoE points, 



obtained using a surrogate model trained on the remaining (n- kleft out) DoE points. This 
value is minimised by the golden search algorithm that finds ș. Training RMSE 
represents the RMSE calculated over all 27 DoE points using the surrogate model 
already tuned and Test RMSE refers to the RMSE calculated over the nested DoE 
points held out during the LOO and MC cross-validation procedures. This means that 
the learning algorithm does not have access to the hold out dataset and hence, test 
RMSE is indicative of how the tuned model will perform for uncalibrated data. In each 
case ș represents the optimal value that leads to the smallest associated CV RMSE. 

For the Ș surrogate model, Table S1 shows how, as kleft out increases, both CV 
RMSE and Training RMSE also increase. This loss in precision is a result of the 
surrogate model learning with a lower number of points. Conversely, Test RMSE 
decreases as the number of points left out grows. This is an indicator of the model 
over-fitting the training set when only a small number of points are left out [1, 2]. Even 
when kleft out = 9, a substantial difference between test RMSE and training RMSE 
values indicates the model is still over-fitting. In order to prevent this behaviour, and 
following the trend in decreasing values of ș, a surrogate model for ș=0, which 
corresponds to the conventional least squares method with 10 constant coefficients in 
the quadratic regression for the 3 design variables was computed. This yielded the 
lowest value of the test RMSE and also the minimum difference between test and 
training RMSE.  

Similar behaviour is seen for the ı2 surrogate model, for which the cross-
validation methods find decreasing values of theta as kleft out grows. Apart from the 
cross-validated surrogates, an extra one is computed for ș=10, yielding the lowest 
values for both training and test RMSE. However, as discussed before, the huge gap 
between these values suggests a severe over-fitting of the training data. Following [3] 
the most appropriate kleft out is chosen which minimises the ratio of the training RMSE 
to the test RMSE, so the surrogate models used in the following optimisation study 
use MCCV with kleft out=9 and ș=1.6898. 

 

 Figure S6. Pareto front (left) and its points represented in the design space (right) 
where the colour indicates the value of Ș and the area of the circles is proportional to 
ı2. The validation points evaluated are indicated as black stars. 
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