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Abstract

In recent years there has been significant interest in Automatic

Speech Recognition (ASR) and Key Word Spotting (KWS) sys-

tems for low resource languages. One of the driving forces for

this research direction is the IARPA Babel project. This paper

examines the performance gains that can be obtained by com-

bining two forms of deep neural network ASR systems, Tandem

and Hybrid, for both ASR and KWS using data released under

the Babel project. Baseline systems are described for the five

option period 1 languages: Assamese; Bengali; Haitian Creole;

Lao; and Zulu. All the ASR systems share common attributes,

for example deep neural network configurations, and decision

trees based on rich phonetic questions and state-position root

nodes. The baseline ASR and KWS performance of Hybrid

and Tandem systems are compared for both the “full”, approxi-

mately 80 hours of training data, and limited, approximately 10

hours of training data, language packs. By combining the two

systems together consistent performance gains can be obtained

for KWS in all configurations.

Index Terms: keyword spotting, deep neural network, Tandem,

Hybrid

1. Introduction

In recent years there has been an increasing interest in Au-

tomatic Speech Recognition (ASR) and Key Word Spotting

(KWS) for low resource languages. The task of KWS is to find

occurrences of a particular word or a phrase (a.k.a. query) in

audio recordings. The state-of-the-art KWS systems are based

on the word lattices generated by an ASR system for the query

search. One of the driving forces for this research direction is

the IARPA Babel project [1]. The objective of the project is

to develop robust KWS (the primary task) and underlying ASR

technologies for any human language utilising limited amount

of data for the ASR engine training.

In this paper two Deep Neural Network (DNN) based ASR

systems [2, 3] are investigated - Tandem [4, 5] and Hybrid [6]

for both ASR and KWS. In the Tandem configuration the DNN

This work was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Defense U.S.
Army Research Laboratory (DoD / ARL) contract number W911NF-
12-C-0012. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either ex-
pressed or implied, of IARPA, DoD/ARL, or the U.S. Government. The
authors would like to thank the Lorelei team for providing the KWS in-
frastructure and morphological decomposition.

operates as a feature extractor that provides input to the back-

end HMM-GMM classifier. In contrast, in the Hybrid con-

figuration it plays the role of the acoustic model [2, 6] itself.

A stacked version of the Hybrid system is investigated in this

work. Here the features extracted from the Tandem system are

used as the input to the Hybrid system. This presents an inter-

esting contrast as the features for both the GMM-HMM system

and the Hybrid system are the same, it is only the form of clas-

sifier to obtain the observation likelihoods that differs.

The combination of these Tandem and stacked Hybrid sys-

tems for both ASR and KWS systems is also considered. This is

based on the assertion that the two systems have diverse opera-

tional mechanism and hence they likely to have complementary

advantages. The combination of ASR systems is well estab-

lished, using approaches such as ROVER combination [7] and

Confusion Network Combination (CNC) [8]. This concept has

also been applied to KWS. Some of the early work that com-

bine systems to improve the KWS performance are [9, 10, 11],

which combine KWS systems that use word and sub-word mod-

els. The recent works in this direction are [12, 13, 14, 15, 9].

[13] combines results from ASR systems with diverse compo-

nents, such as acoustic model, decoding strategy and audio seg-

mentation, to improve the KWS performance.

This paper examines the combination of Deep Neural Net-

work based ASR and KWS systems in a consistent frame-work

for five languages: Assamese, Bengali, Haitian Creole, Lao,

and Zulu. Performance is contrasted with each of the individual

systems, as well as examining the correlation between the ASR

performance and KWS performance. The next section discusses

the nature of Babel KWS task and the data. This is followed by

a brief description of the ASR and KWS systems used. Finally

the experimental results are presented.

2. Task Description

The work reported in this paper is based on the IARPA Ba-

bel [1] project, which aims to foster research on speech recog-

nition and keyword spotting for low resource languages. The

Babel speech corpus covers a range of diverse languages and is

distributed under two configurations for each language: a “full”

language pack (FLP) comprising of approximately 80 hours of

transcribed audio; and the “limited” language pack (LLP) com-

prising of about 10 hours of transcribed audio. The data is pri-

marily conversational telephone speech, recorded over a range

of acoustic conditions, such as mobile phone conversation made

from car. The FLP and LLP share the same development set of

10 hours of conversational speech. The phone set and phonetic

lexicon are supplied for every language and the lexicon contains

only those words occurring in the training data.

Copyright  2014 ISCA 14-18 September 2014, Singapore
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In the Option Period 1 (OP1) phase of the project, audio

from five languages have been released: Assamese; Bengali;

Haitian Creole; Lao; and Zulu. The ASR and KWS experiments

reported in this paper are conducted on the OP1 languages (both

FLP and LLP), and the performance is evaluated on the devel-

opment data defined for the evaluation 2014. The official metric

to measure the accuracy of the system performance has been de-

fined to be Maximum Term Weighted Value (MTWV), which is

the best term weighted value [16] (TWV) that can be achieved

over all choices of detection threshold. The TWV is defined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probabilities of miss

and false alarm, respectively, θ is the detection threshold, and β

decides the relative weight given to each type of errors.

Language Release

Assamese IARPA-babel102b-v0.5a

Bengali IARPA-babel103b-v0.4b

Haitian Creole IARPA-babel201b-v0.2b

Lao IARPA-babel203b-v3.1a

Zulu IARPA-babel206b-v0.1e

This work made use of the IARPA Babel Program language

collection releases shown above.

3. ASR System Description

The core ASR toolkit, used for parameterisation, clustering,

decoding and GMM-based acoustic model training, is an ex-

tended version of the HTK-3.4.1 [17] toolkit. The multi-layer

perceptron (MLP) training used an extended version of ICSI’s

QuickNet [18], which allows deeper network configurations to

be used, to train both Tandem and Hybrid systems.

The ASR acoustic models for both Tandem and Hybrid

systems shared the same underlying attributes for all language

packs. The underlying context-dependent states were specified

using state [19, 20, 21], rather than phone-state, roots of the

decision tree. Questions involving X-SAMPA attribute and po-

sition of the phone in the word were then used. This was found

to provide additional robustness to the rare phones, for example

the X-SAMPA phone /kx/ in Zulu. With no phone mappings

and phone-state roots these would be modelled as monophones.

To further improve the ability to model rare phones, diphthongs

were split into their constituent parts, with additional markers

added to indicate that the unit was derived from a diphthong.

In addition all systems were based on deep neural networks.

Two configurations were used. The Tandem configuration used

a single neural network with PLP and pitch features as the input.

The output of this network was then used in a Hybrid system

yielding a stacked configuration. This is illustrated in Figure 1.

Both the Tandem and stacked Hybrid MLPs were initialised us-

ing layer-by-layer discriminative pre-training. Further details of

the two acoustic models are given below.

The language models (LM) for all systems were built using

the vocabulary and training data from the audio transcriptions.

For all systems trigram class-based language models, interpo-

lated with the word-based language models, were used.

3.1. Tandem System

The development of Tandem system is based on [22]. An MLP

was trained using cross-entropy, and context dependent targets

Figure 1: Tandem and Stacked Hybrid systems

were defined by a phonetic decision tree. The input to the net-

work was 9 frames of PLP with pitch 1 appended, and delta,

delta-deltas and triples added. This yields a total input vector

size of 504. All systems had a bottleneck layer of 26 nodes.

The 26 dimensional bottleneck features were then trans-

formed using a global semi-tied covariance matrix [23] and then

appended to HLDA projected PLP features (39 dimensions) and

pitch with delta and delta-delta parameters. This yields a com-

plete feature of 68 dimensions. These are the baseline features

for the Tandem system below.

A speaker adaptive training (SAT) system using global con-

strained maximum likelihood linear regression (CMLLR) at

a speaker level [24] was then constructed, followed by both

Minimum Phone Error (MPE) [25] and feature-space MPE

(fMPE) [26] training. The CMLLR transforms were estimated

using maximum likelihood (ML) on the ML estimated acoustic

models. These were then fixed, and MPE and fMPE training

were applied using the CMLLR normalised features.

A multi-pass decoding and adaptation process was used:

1. speaker-independent (SI) decoding with a PLP-based

MPE system 2;

2. a global CMLLR transform was estimated for each

speaker using the Tandem ML-SAT model;

3. global CMLLR and MLLR transforms were estimated

using the Tandem-SAT fMPE+MPE acoustic model;

4. speaker adapted decoding using the Tandem-SAT

fMPE+MPE system and a bigram word-based LM;

5. lattice rescoring with a class-based language model and

confusion network (CN) generation.

The configurations of the two language packs were tuned

to the quantities of data available. The details are as follows:

Full Language Pack: the number of target states was set

at about 6000 for both the MLP and HMM systems. Five

hidden layers, including the bottleneck layer were used, and the

network configuration was (including input and target layers):

1Initial experiments showed that using pitch as an input to the MLP
significantly improved the performance of tonal languages such as Lao,
with smaller improvements for non-tonal languages.

2Though the performance was worse than a Tandem SI system, the
final adapted performance was better because of cross-system effects.
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504x10004x26x6000.

Limited Language Pack: the number of target states was set

at about 1000 for both the MLP and HMM systems. Four

hidden layers, including the bottleneck layer were used. The

network configuration including input and target layers was:

504x1000x5002x26x1000. To moderate the impact of the

limited training data either Vocal Tract Length Perturbation

(VTLP) [27, 28] was used (Bengali, Haitian Creole, and Lao) or

semi-supervised approaches [29, 30, 31] (Assamese and Zulu)

were used to train the MLP. For VTLP 8 warp factors for each

of the training speakers were used, effectively increasing the

size of the training corpus to be the same as the FLP. For the

unsupervised data, all the untranscribed audio was recognised

and confidence based thresholds used to select 50% of the data.

3.2. Stacked Hybrid System

As shown in Figure 1, the hybrid system was trained in a stacked

fashion. First the bottleneck MLP for this Tandem system was

constructed. These features were speaker normalised using the

ML estimated CMLLR transforms from the ML Tandem-SAT

system. Again 9 vectors, each of 68-dimensions, were then

stacked together to yield a total input vector of 612 features.

Speaker adapted decoding with the Hybrid system used the CM-

LLR transforms generated at stage (2) of the Tandem decoding

process to speaker normalise the features. A bigram language

model was used for the Hybrid decoding, which was followed

by the lattice rescoring using the class-based language model

and CN generation as in step (5) of the Tandem decoding.

The configurations of the two language packs were tuned

to the quantities of data available. The details are as follows:

Full Language Pack: the number of target states was set at

about 6000 for the MLP. Five hidden layers were used, and the

network configuration including input and target layers was:

612x10005x6000.

Limited Language Pack: the default number of states was set

at about 1000 for the MLP. Four hidden layers were used, and

the default network configuration including input and target

layers was: 612x1000x5003x1000. Due to time constraints,

data augmentation was only applied to the Zulu Hybrid system.

Here semi-supervised training [29, 30, 31] was used in the

same fashion as it was in the case of the Tandem system, and

the number of target states was increased to 3000.

3.3. System Combination

Given the different forms of classifier being used for the Tan-

dem and Hybrid systems, they may be expected to be comple-

mentary to one another. To investigate this, the confusion net-

works generated by the Tandem and Hybrid systems are com-

bined to produce a merged CN [8]. Before combining the two

systems, the posterior probability associated with the CN of

each system, based on the arc posteriors from the lattice, were

mapped to remove any biases in the confidence measures.

4. KWS System Description

The KWS system is based on the weighted finite state trans-

ducer (WFST) [12]. First the ASR system is used to generate

word lattices. These lattices are then processed to generate the

word indices for the in-vocabulary (IV) search and phonetic in-

dices to accommodate out-of-vocabulary (OOV) search. The

timing information is pushed to the output labels of the arcs of

the resulting WFSTs. The arcs in the WFST after the push oper-

ation can be expressed as a 5-tuple (p, i, o, w, q), where p and q

indicate the start and end states, i denotes the input label, which

is a word in case of IV search or a phoneme in case of OOV

search, w indicates the posterior probability associated with the

input label, and finally o denotes the output label.

The IV queries are searched in the word index, whereas the

OOV queries are searched in the phonetic index. More specif-

ically, for the IV search, each query is converted to a word

weighted finite state acceptor (WFSA) and a composition op-

eration is carried out with the word index in order to retrieve the

hit list (a.k.a posting list) for the query. Each hit list is identified

by the name of the audio file, the starting time of the query, du-

ration and the score, which is the posterior probability derived

from the WFST. On the other hand, for the OOV search, each

query is first expanded to a reasonable phonetic representation

using a grapheme-to-phoneme converter, which may not give

accurate pronunciation for all queries. The resulting pronuncia-

tion is then represented as a phonetic WFSA, and a composition

with the phonetic WFST is carried out to retrieve the hit lists for

the OOV terms. To boost the OOV search performance a large

number of query expansion using a phone-to-phone (P2P) con-

fusion model (NBestP2P) [13] was incorporated. The values of

the NBestP2P were set in the range of 1000 to 50000. In addi-

tion, it was observed that the OOV performance can be further

improved by zeroing the language model score. The IV queries

that did not return hits were searched again in the phoneme in-

dex which is known as the cascaded search. Finally, the IV,

OOV and cascaded search hit lists are combined and sum-to-

one (STO) [12] score normalisation is applied to make sure that

sum of all normalised detection scores for each query is 1.0.

For some languages that are morphologically rich the num-

ber of OOV terms can become very large, adversely impacting

the performance. For example for the Zulu LLP 61% of the

query terms were OOV, compared to 31% for the Bengali LLP.

To address this problem a morphological KWS was used for

Zulu [32]. Here initially IV word terms are found. Then IV

morph terms are found, finally OOV morph terms are found.

KWS Process MTWV

IV OOV Total

Word 0.2649 0.1338 0.1851

Morphological 0.2615 0.2073 0.2287

Table 1: MTWV scores comparing morphological and word

KWS systems for Zulu LLP.

The impact of the morphological search on the Zulu LLP

is shown in Table 1. It is observed that the overall (cascaded

search) MTWV score increases, primarily due to the improve-

ment in the OOV search (this is the morph-level OOV search).

The slight degradation in IV word performance is due to a shift

in the MTWV operating point. In initial experiments, morpho-

logical search yielded a performance gain only for Zulu system.

In this work, a simple merging of the posting lists from the

Tandem and Hybrid systems, prior to STO normalisation, was

used in order to combine the two KWS systems together, rather

than a more complicated approach such as MTWV-weighted

CombMNZ method discussed in [12]. In initial experiments,

there was a slight degradation in performance by using this

merging, rather than CombMNZ, but it simplified the pipeline.
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5. Experimental Results

For all experiments the development data audio and keyword

spotting list are associated with the sets shown in Section 2. For

each language the development set has approximately 10 hours

of audio, and 2000 terms to search for. In this paper Token Error

Rate (TER), rather than WER, is used when discussing ASR

results. For the broad range of languages investigated under the

Babel programme, some languages, for example Vietnamese,

do not have references at the word level. Thus TER removes

the concept of word (though measured in the same fashion).

It is worth emphasising that given the objective of the

project to be a KWS performance of greater than 0.3, wher-

ever choices of system configuration have been made, they were

based on the KWS performance, not on the ASR performance.

Language Id LP TER (%)

Tandem Hybrid CNC

Assamese 102
FLP 54.2 55.1 52.8

LLP 65.1 67.8 64.3

Bengali 103
FLP 54.9 56.6 54.3

LLP 67.0 69.5 66.8

Haitian
201

FLP 48.7 50.3 48.2

Creole LLP 60.5 63.4 60.4

Lao 203
FLP 48.5 51.9 48.9

LLP 61.2 65.8 61.3

Zulu 206
FLP 62.1 64.4 61.2

LLP 71.5 74.1 70.6

Table 2: %TER with CN decoding for Tandem and Hybrid and

CNC for Full (FLP) and Limited (LLP) Language Packs.

Table 2 shows the ASR system performance on each of

the languages, and each configuration. There are some general

trends. For these DNN systems, the Tandem system consis-

tently outperforms the Hybrid configuration. Part of this differ-

ence in performance may be because of the use of cross-entropy

for the training, rather than sequence training. The difference

in performance is also greater for the LLP than the FLP. This

can partly be attributed to the use of data augmentation for the

Tandem system, but not for the Hybrid system. In general the

combination of the Tandem and Hybrid ASR systems helped to

improve the performance. The outlier for this was Lao, where

the difference in the performance between the Tandem and Hy-

brid systems was the greatest among all languages.

Language Id LP MTWV

Tandem Hybrid Merge

Assamese 102
FLP 0.4660 0.4730 0.4946

LLP 0.2569 0.2360 0.2771

Bengali 103
FLP 0.5151 0.5121 0.5388

LLP 0.2992 0.2615 0.3100

Haitian
201

FLP 0.6387 0.6329 0.6602

Creole LLP 0.4648 0.4336 0.4867

Lao 203
FLP 0.5951 0.5881 0.6149

LLP 0.4262 0.3790 0.4439

Zulu 206
FLP 0.3770 0.3654 0.4084

LLP 0.2287 0.1924 0.2366

Table 3: MTWV for Tandem and Hybrid and their combination

for Full (FLP) and Limited (LLP) Language Packs.

Table 3 shows the performance of the KWS system on each

of the languages and language packs. For the FLPs the perfor-

mance of both the Tandem and Hybrid systems is very similar,

for Assamese the Hybrid system yielded the best performance.

For the LLPs there is still a gap in performance, with the Tan-

dem system outperforming the Hybrid. This was also true when

comparing the Tandem with no data augmentation to the Hybrid

system. In contrast to the ASR system combination, merging

posting lists improved the KWS performance in every config-

uration, even for Lao LLP where the difference in the KWS

performance is large. For the combined system, 8 out of the 10

configurations achieved the program goal of 0.3 TWV, although

there was a slight degradation when the threshold is automati-

cally determined rather than using the MTWV.

Assamese&

Bengali&

H.&Creole&

Lao&

Zulu&

Assamese&

Bengali&

H.&Creole&

Lao&

Zulu&

0&

0.1&
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0.4&

0.5&

0.6&

0.7&

45.0& 50.0& 55.0& 60.0& 65.0& 70.0& 75.0&

M
T
W

V
%

%%TER%

Figure 2: MTWV against TER, ♦ indicates FLP, △ LLP

Given that the 10 configurations have been run in a con-

sistent framework, it is interesting to examine the correlation

between the ASR performance and the KWS performance. Fig-

ure 2 shows the plot of MTWV against TER (%) for all five

option period 1 languages for both LLP and FLP configura-

tions. Here the CNC TER% and the Merged MTWV scores

are given. From the plot it is observed that the correlation be-

tween the two is high (Pearson Correlation Coefficient -0.945,

R2 value 0.911). It is also clear that some languages, such as

Haitian Creole and Lao, are simpler than the others at least for

this task. Further, the KWS performance of Assamese on the

development Keyword List is lower for both FLP and LLP than

what is expected considering its ASR performance.

6. Conclusions

In this paper the use and combination of deep neural network

based Tandem and Hybrid systems were investigated for both

ASR and KWS on low resource languages. The systems were

evaluated on five languages from the Babel Program using both

the Full (FLP, about 80 hours) and Limited (LLP, about 10

hours) Language Pack configurations. The baseline Hybrid sys-

tems yielded comparable performance for KWS, the primary

task, as the Tandem systems for the FLP configuration. For the

LLP the Hybrid performance was poorer. However in combina-

tion, the two different forms of classifier yielded complemen-

tary KWS systems and gains in MTWV were observed for all

languages and both FLP and LLP configurations. Similar trends

were observed for the secondary ASR task. However for Lao,

where there was the greatest difference in ASR performance

between the Tandem and Hybrid systems, slight degradations

in the combined performance were observed.
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