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ABSTRACT

Recently there has been increased interest in Automatic Speech

Recognition (ASR) and Key Word Spotting (KWS) systems for low

resource languages. One of the driving forces for this research di-

rection is the IARPA Babel project. This paper describes some of

the research funded by this project at Cambridge University, as part

of the Lorelei team co-ordinated by IBM. A range of topics are dis-

cussed including: deep neural network based acoustic models; data

augmentation; and zero acoustic model resource systems. Perfor-

mance for all approaches is evaluated using the Limited (approx-

imately 10 hours) and/or Full (approximately 80 hours) language

packs distributed by IARPA. Both KWS and ASR performance fig-

ures are given. Though absolute performance varies from language

to language, and keyword list, the approaches described show con-

sistent trends over the languages investigated to date. Using com-

parable systems over the five Option Period 1 languages indicates

a strong correlation between ASR performance and KWS perfor-

mance.

Index Terms: keyword spotting, deep neural network, low-resource

languages, multi-lingual systems.

1. INTRODUCTION

In recent years there has been an increasing interest in Automatic

Speech Recognition (ASR) and Key Word Spotting (KWS) for low

resource languages. One of the driving forces for this research direc-

tion is the IARPA Babel project [1]. The aim of the project is to de-

velop robust KWS and ASR technologies that can be rapidly applied

to any human language. To enable both rapid development of sys-

tems, and performance on languages for which there has traditionally

been little research, to be evaluated the program has focused systems

built using limited quantities of data. This paper gives an overview

of the research undertaken at the Cambridge University Engineering

Department (CUED) as part of the Lorelei team led by IBM. Three

This work was supported in part by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense U.S. Army Research
Laboratory (DoD/ARL) contract number W911NF-12-C-0012. The U.S.
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of IARPA, DoD/ARL, or
the U.S. Government. The authors would like to thank the Lorelei team for
providing the KWS infrastructure and morphological decomposition. The au-
thors would like to thank the following members of the CUED Speech Group
who have contributed to the Babel project work and the systems described:
X. Chen, X. Liu, P.C. Woodland, T. Yoshioka, and C. Zhang.

main research areas will be discussed: deep neural network acous-

tic models; data augmentation; and zero resource acoustic models.

The performance of these approaches is evaluated on data released

under the Babel program. Two language packs are released for each

language: a full language pack (FLP) comprising about 80 hours of

transcribed audio data; and a limited language pack (LLP) compris-

ing about 10 hours of transcribed audio data. For the LLPs (and some

of the FLPs) additional untranscribed audio data is also available.

Speech recognition systems using neural networks have had a

long history [2]. Recently there has been renewed interest in this area

with the development of deep neural network (DNN) systems [3,

4]. Currently two configurations of DNN are commonly used. The

DNN can be used as feature extractor for a standard GMM-based

HMM system [5, 6], this approach is referred to as Tandem. The

second configuration, known as Hybrid uses the network to compute

state posteriors, which are then converted into scaled likelihoods by

normalising by the state priors. In this work both forms of network

are trained for the FLP and LLP releases. System combination for

both ASR [7, 8] and KWS [9, 10, 11] are standard approaches for

improving final system performance. In addition to the performance

of the individual system performance for both ASR and KWS, the

impact of combining these two form of DNN system is described.

Data augmentation is a class of approaches where the effective

quantity of data used to train the system is increased. In this paper

these approaches are split into two distinct groups. The first is where

only the data from the target language is considered. In this case

it is necessary to use automated approaches to increase the amount

of transcribed data. One technique is to artificially create more data

with known transcriptions, for example using acoustic data perturba-

tion [12, 13, 14] or speech synthesis [15]. Another scheme assumes

that additional, untranscribed, audio data is available. In this sce-

nario it is possible to use semi-supervised training [16, 17, 18]. An

alternative class of approaches is to make use of data from other

languages to increase the available data. This has become increas-

ingly popular as DNNs are more commonly used as they are well

suited to these schemes. Two approaches have been adopted. The

first is to build multi-lingual bottleneck features for use in a Tandem

system [6, 19, 20, 21]. Alternatively Hybrid systems, with target lan-

guage specific output layers, have also been investigated [22, 6, 23].

In this work the impact of multi-lingual bottleneck features, using

the configuration discussed in [21], will be discussed.

The above approaches have assumed that there is some tran-

scribed audio data available for the target language. For some sit-

uations, it may not be possible to transcribe any audio. The final re-

search area will be referred to as zero acoustic model resources [21].

Here it is assumed that there is no transcribed audio data, just a lim-

ited amount of language model data and a lexicon. The aim here
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is to build a language-independent (LI) acoustic model. This model

can then be used directly for ASR, or KWS. Alternatively the LI

acoustic model can be used to transcribe audio data in the target lan-

guage, which can then be used for training. This is effectively an

unsupervised acoustic model training process [24, 25].

For all experiments the core ASR toolkit, used for acoustic

feature generation, clustering, decoding and GMM-based acoustic

model training, was an extended version of the HTK-3.4.1 [26]

toolkit. The MLP training used an extended version (to allows

deeper network configurations) of ICSI’s QuickNet [27], to train

both Tandem and Hybrid systems. The results given in this paper

were generated at various stages of system development. Thus re-

sults are not necessarily consistent across tables, however within a

table all results are comparable unless otherwise stated. The focus

of this paper is acoustic modelling. The language models for all

systems used the vocabulary and training data from the audio tran-

scriptions. For all systems N-gram language models (either bigram

or trigram) were used, optionally interpolated with class-based lan-

guage models.

For all ASR systems in this work, the underlying context-

dependent states were specified using state, rather than phone-state,

roots of the decision tree. Here questions involving X-SAMPA at-

tributes and position of the phone in the word were used for both left,

right and centre context. This was found to yield additional robust

to rare phones, for example the X-SAMPA phone /kx/ in Zulu. If

phone/state-position decision tree roots are used for these rare phone,

there is insufficient data to train any context models. Effectively

these rare phones are modelled as monophones. To further improve

the ability to model rare phones, diphthongs (and triphthongs) were

split into their constituent parts, with additional markers added to

indicate that the unit was derived from a diphthong.

2. TASK DESCRIPTION

The work reported in this paper was undertaken as part pf the IARPA

Babel [1] program, which aims to foster research on speech recog-

nition and keyword spotting for low resource languages. The Ba-

bel speech corpora covers a range of diverse languages and is dis-

tributed under two configurations for each language - the “full” lan-

guage pack (FLP) and the “limited” language pack (LLP). The FLP

and LLP packs consist of approximately 80 hours and 10 hours of

speech for training, respectively. The data is recorded in “real-life”

scenarios, such as conversational telephone speech, over a range of

acoustic conditions, such as mobile phone conversation made from

car. The FLP and LLP share the same development set of about 10

hours of conversational speech. The phone set and phonetic lexicon

are supplied for every language pack and contains only those words

occurring in the transcribed audio data for that language pack.

In the Option Period 1 (OP1) phase of the project, five languages

were released for development: Assamese; Bengali; Haitian Creole;

Lao; and Zulu. The ASR and KWS experiments reported in this pa-

per are primarily conducted on these OP1 languages (both FLP and

LLP), and the performance is evaluated on the development data.

The official metric to measure the accuracy of the system perfor-

mance has been defined to be the Maximum Term Weighted Value

(MTWV), which is the best term weighted value [28] (TWV) that

can be achieved over all choices of detection threshold. The TWV is

defined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probability of miss and false

alarm, respectively and β is 999.9.

Below are listed the releases of the languages that are used in

the experiments. The languages marked in bold are the development

language from OP1. The languages marked with a † are used as

training languages for the multi-language and language-independent

system in sections 5.2 and 6 respectively.

Language Id Release

Cantonese† 101 IARPA-babel101-v0.4c

Assamese† 102 IARPA-babel102b-v0.5a

Bengali 103 IARPA-babel103b-v0.4b

Pashto† 104 IARPA-babel104b-v0.4aY

Turkish† 105 IARPA-babel105b-v0.4

Tagalog† 106 IARPA-babel106-v0.2f

Vietnamese 107 IARPA-babel107b-v0.7

Haitian Creole 201 IARPA-babel201b-v0.2b

Lao† 203 IARPA-babel203b-v3.1a

Zulu† 206 IARPA-babel206b-v0.1e

For all the experiments there is approximately 10 hours of audio

to recognise, and 2000 KW terms for the KWS task 1. In this paper

Token Error Rate (TER), rather than WER, is used when discussing

ASR results. For the broad range of languages investigated under the

Babel program, some languages, for example Vietnamese, do not

have references at the word level. Thus TER removes the concept

of word (though measured in the same fashion). The TER results

quoted are based on Confusion Network (CN) decoding [29] applied

to the lattices that were used for KWS unless otherwise stated.

It is worth emphasising that given the targets of the project,

KWS performance of greater than 0.3, where choices of system con-

figuration have been made they were based on KWS performance,

not ASR performance.

3. KWS SYSTEM DESCRIPTION

The focus of the research at CUED is on improving ASR systems for

low-resources languages. However, since the Babel program uses

KWS to assess performance, this section gives a brief description of

the Lorelei team KWS system, and the approaches adopted to handle

KWS with low-resource languages.

The KWS system is based on a weighted finite state transducer

(WFST) framework [30]. First an ASR system is used to gener-

ate word lattices. These lattices are then processed to generate the

word indices for the in-vocabulary (IV) search and phonetic indices

to accommodate out-of-vocabulary (OOV) search. The timing in-

formation is pushed to the output labels of the arcs of the resulting

WFSTs. The arcs in the resulting WFST after the push operation can

be expressed as a 5-tuple (p, i, o, w, q), where p and q indicate the

start and end states, i denotes the input label, which can be a word in

case of IV search or a phoneme in case of OOV search, w indicates

the posterior probability associated with the input label, and finally

o denotes the output label.

The IV queries are searched in the word index, whereas the OOV

queries are searched in the phonetic index. More specifically, for the

IV search, each query is converted to a word weighted finite state

acceptor (WFSA) and a composition operation is carried out with

the word index in order to retrieve the hit list for the query. Each hit

list is identified by the name of the audio file, the starting time of the

query, duration and the score, which is the posterior probability de-

rived from the WSFT. On the other hand, for the OOV search, each

1For Vietnamese, the base period surprise language, a more limited set of
about 900 keywords was used.
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query is first expanded to a reasonable phonetic representation using

a grapheme-to-phoneme converter, which may not give accurate pro-

nunciation for all query terms. The resulting pronunciation is then

represented as a phonetic WFSA, and a composition with the pho-

netic WFST is carried out to retrieve the hit lists for the OOV terms.

It is possible to vary the number of phone query confusions [31]. In

the simplest case no confusions are included, the identity P2P case.

For the experiments in this work the number of confusions was in

the range 100 to 50000. The IV queries that did not return hits were

searched again in the phoneme index which is known as the cascaded

search. Finally the IV, OOV and cascaded search hit lists are com-

bined and sum-to-one (STO) [30] score normalisation is applied to

make sure that sum of all normalised detection scores for each query

is 1.0.

For some languages that are morphologically rich the number

of OOV terms can become very large impacting performance. For

example for the Zulu LLP 61% of the query terms were OOV, com-

pared to 31% for the Bengali LLP. To address this problem a mor-

phological KWS can be used [32]. Here initially IV word terms are

found. Then IV morph terms are found, finally OOV morph terms

are found.

KWS Process MTWV

IV OOV Tot

Word 0.2655 0.0000 0.1033

+phone 0.2596 0.0970 0.1606

+cascade 0.2609 0.0970 0.1611

+lm0 0.2649 0.1338 0.1851

+morph 0.2615 0.2073 0.2287

Table 1: MTWV scores comparing KWS system stages for Zulu LLP.

The impact of the various stages for KWS are shown for the

Zulu LLP in Table 1. The ASR system is the Tandem system used

in section 7. The most basic search just examines the in-vocabulary

terms, a word search (Word). To handle OOV terms phone confu-

sions can be added (+phone). This handles the OOV terms, but the

performance on these terms is significantly worse than for the IV

terms. To improve IV performance, cascade search can be added

(+cascade). For Zulu this gave only a small improvement, but for

some languages, such as Vietnamese, large gains were observed. For

the OOV search, there is not expected to be any benefit from using

the language model scores from the IV terms, but these influence the

scores associated with the phones. To address this, the lattices gener-

ated by the ASR system are mapped to remove the language model

component (+lm0) for the OOV search. This improves the OOV

search. Finally by using morphological decomposition (+morph),

some of the OOV terms are mapped to be IV in terms of the mor-

phology lattices. This further improves the OOV performance. Note,

the slight variation in the IV word performance is due to shifts in the

MTWV operating point.

4. DEEP NEURAL NETWORK ACOUSTIC MODELS

In common with most state-of-the-art speech recognition system,

significant performance gains can be obtained using DNNs [3, 4]

for limited resource systems. In this work both Hybrid and Tandem

systems were constructed. The Tandem configuration used a single

network with PLP and pitch features at the input. The output of this

network was then used in a hybrid system yielding a stacked config-

uration. This is illustrated in Figure 1. All networks were initialised

with layer-by-layer discriminative pre-training [4]. Further details of

Fig. 1. Tandem and Stacked Hybrid systems

the two acoustic models are given below. The results for the individ-

ual systems, and combination, are given in section 7.

4.1. Tandem System

The development of the Tandem systems was based on [33]. An

MLP was trained using cross-entropy, and context dependent targets

defined by a phonetic decision tree. The input to the network was

9 frames of PLP with pitch2 appended, and delta, delta-deltas and

triples added. This yields a total input vector size of 504. The net-

work was configured to have a bottleneck layer of 26. The 26 dimen-

sional bottleneck features were transformed using a global semi-tied

covariance matrix [34] and then appended to HLDA projected PLP

features (39 dimensions) and pitch with delta and delta-delta param-

eters. This yields a complete feature of 68 dimensions. These are

the baseline features for the hybrid system below.

A speaker adaptive training (SAT) system using global con-

strained maximum likelihood linear regression (CMLLR) at a

speaker level [35], was then constructed incorporating both Min-

imum Phone Error (MPE) [36] training and feature-space MPE

(fMPE) [37]. The CMLLR transforms were estimated using max-

imum likelihood (ML) on the ML estimated acoustic models. These

were then fixed and MPE and fMPE estimated using these trans-

forms.

A multi-pass decoding and adaptation process was used for all

experiments in this paper:

1. speaker-independent (SI) decoding with a PLP-based MPE

system;

2. a global CMLLR transform was estimated for each speaker

using the Tandem ML-SAT model;

3. global CMLLR and MLLR transforms were estimated using

the Tandem-SAT fMPE+MPE acoustic model;

4. speaker adapted decoding using the Tandem-SAT

fMPE+MPE system and a bigram word-based language

model;

5. lattice rescore with a class-based language model and confu-

sion network (CN) generation.

2Initial experiments showed that using pitch as an input to the MLP sig-
nificantly improved the performance of tonal languages such as Lao, with
smaller improvements for non-tonal languages

SLTU-2014, St. Petersburg, Russia, 14-16 May 2014

18



The configuration of the Tandem systems for the two language

packs was tuned to the quantities of data available.

Full Language Pack: the target number of states was set at about

6000 for both the MLP and HMM system. Five hidden layers,

including the bottleneck layer, were used. The network configu-

ration was (including input and target layers): 504x10004x26x6000.

Limited Language Pack: the target number of states was set at

about 1000 for both the MLP and HMM system. Four hidden layers,

including the bottleneck layer, were used. The network configuration

was (including input and target layers): 504x1000x5002x26x1000.

4.2. Stacked Hybrid System

As shown in Figure 1 the hybrid system was trained in a stacked

fashion. First the bottleneck MLP for the Tandem system was con-

structed. Using the ML Tandem-SAT system, and the ML-estimated

CMLLR transforms these features were transformed to be speaker

specific. Again 9 vectors, each of 68-dimensions, were then stacked

together to yield a total input vector the network of 612 features.

Speaker adapted decoding with the Hybrid system, used the trans-

forms generated at stage (2) of the Tandem decoding process to

transform the features to be speaker specific. Hybrid decoding with

a bigram language model, was then followed by the lattice rescoring

and CN generation as in step (5) of the Tandem decoding.

The configuration of the Hybrid systems for the two language

packs was tuned to the quantities of data available.

Full Language Pack: the target number of states was set at about

6000 for the MLP. Five hidden layers were used, the network con-

figuration was (including input and target layers): 612x10005x6000.

Limited Language Pack: the default target number of states was

set at about 1000 for the MLP. Four hidden layers were used as the

default network configuration, (including input and target layers):

612x1000x5003x1000.

5. DATA AUGMENTATION

When there is very limited training data, approaches that increase

the quantity of training data available have been proposed. In this

paper the approaches are split into two broad categories. The first

is data and transcription generation, where audio data is either ar-

tificially generated [12, 13, 14], or additional transcriptions gener-

ated in a semi-supervised fashion [16, 17, 18]. An alternative ap-

proach is to make use of data from other languages [6, 19, 20, 21],

multi-language resources. The form of these approaches examined

at CUED, and preliminary results, are discussed in the next two sec-

tions.

5.1. Data and Transcription Generation

Two forms of within language data augmentation were investigated:

vocal tract length perturbation; and semi-supervised training. For

vocal tract length perturbation (VTLP) [12], 8 warp factors were

randomly selected in the range 0.8 to 1.2. The data was then per-

turbed by the selected warp factor. This increased the quantity of

training data to be approximately the same as the FLP. For the semi-

supervised training, the LLP system was used to recognise the un-

transcribed data. Confidence based-selection was then used to select

about 50% of the data with no transcriptions. This data was then

added to the supervised LLP data and used to train a system. Finally

discriminative MAP of the semi-supervised system to the (super-

vised) LLP data was performed. It is also possible to combine these

two approaches to further increase the quantity of data. For further

information about the experimental configuration, and additional re-

sults, see [38].

Data Augmentation TER MTWV

HMM BN-MLP (%) Tot

— — 78.4 0.1362

— vtlp 77.1 0.1496

— semi 77.7 0.1468

— semi+vtlp 76.7 0.1446

semi semi 76.9 0.1490

semi semi+vtlp 76.1 0.1441

semi+vtlp semi+vtlp 76.1 0.1454

Table 2: %TER (no CN) and MTWV for Zulu (206) LLP perfor-

mance using data augmentation approaches - semi-supervised train-

ing (semi) and Vocal Tract Length Perturbation (vtlp) .

Table 2 shows the impact of the two data augmentation ap-

proaches on the LLP Zulu system. The acoustic model configura-

tion used for these experiments was Tandem-SAT. First considering

the ASR performance. Data augmentation for training the BN MLP

yielded performance gains. At these high TERs, 78.4%, the gains

from semi-supervised training were smaller than those from VTLP.

However combining the two approaches yielded additional gains.

Applying semi-supervised approaches to also training the acoustic

model HMM gave further gains. However for this task combining

both semi-supervised training and VTLP to train the HMM did not

yield gains over just using semi-supervised training.

The performance on KWS was not as consistent as the ASR per-

formance. Again using any form of data augmentation yielded a

performance gain. However the best performing system used only

VTLP data augmentation.

5.2. Multi-Language Resources

Rather than artificially generating data or transcriptions, it is also

possible to make use of data from other languages. In this work only

the Tandem configuration was used and the MLPs used to extract

the bottleneck features were trained on multi-lingual data, the LLPs

from seven training languages described in section 2 were used for

this purpose.

 State Position

 Tagalog  Pashto  Cantonese

Fig. 2. Context Dependent MLP Targets

When training these multi-language networks there are two

forms of targets that can be used, illustrated in Figure 2. The option

on the left is where the MLP targets are context-dependent (though

context independent targets can be used) and language-specific, for
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example [20]. Thus the normalisation summation (shown in blue)

acts on single language. This approach is useful as there is no re-

quirements for consistency in the phonetic labels from the individual

languages. The network will attempt to generate a projection layer

that maximises the average within-language discrimination over the

training languages.

The second approach, and the one adapted in these experiments,

is to have a single decision tree that covers all languages [21]. This

requires that there is a consistent phonetic labelling scheme for all

languages, which is the case for Babel where X-SAMPA is used.

Now the normalisation term is over all context dependent targets.

Thus the projection layer is optimised to discriminate between all

context-dependent labels. The rationale for this approach is that

when the network is to be applied to an unseen language, the phone-

set and important phonetic context structure is unknown when the

MLP are being trained. By maximising discrimination over all pos-

sible context dependent phones, it is hoped that any unseen phonetic

contexts will also be easily separated.

Language Id BN TER MTWV

MLP (%) Tot

Assamese† 102
UL 68.0 0.2132

ML 66.4 0.2382

Zulu† 206
UL 75.8 0.1274

ML 74.4 0.1396

Bengali⋆ 103
UL 68.6 0.2392

ML 67.0 0.2551

Haitian
201

UL 62.2 0.4054

Creole ML 61.1 0.4266

Vietnamese 107
UL 69.3 0.1851

ML 68.2 0.1908

Table 3: %TER and MTWV LLP performance using Target Lan-

guage BN features (UL) or Multi-Language BN (ML). † indicates

that the language was seen in the ML BN training data, ⋆ indicates

“identity” phone-mapping OOV search.

Table 5.2 shows the ASR and KWS results for languages seen

in the training data (Assamese and Zulu) and languages not seen

in the training data (Bengali, Haitian Creole and Vietnamese). The

combination of the seven languages yields comparable quantities of

data to a single language FLP. Thus for these experiments the FLP

BN MLP configuration, 504×10004×26×6000, was used. For all

languages, even those that are not represented in the training data,

performance gains are obtained for both ASR and KWS.

The systems shown above have only included a limited amount

of data from each language. Additional gains have been obtained

by including data from the FLPs, and also “fine-tuning” to the target

language [39].

6. “ZERO ACOUSTIC MODEL RESOURCE” SYSTEMS

Using phonetic labels from X-SAMPA, for example, it is possible to

generate lexicons that have the same set of labels for all languages.

However even if the X-SAMPA label is consistent across two lan-

guages the realisation of that phone may vary significantly between

languages. This limitation impacts the ability to generate language-

independent (LI) acoustic models. Despite this, it is still an interest-

ing goal to see what performance can be obtained using state-of-the-

art approaches for language-independent modelling as well as inves-

tigating whether these approaches can be used to bootstrap acoustic

models in an unsupervised fashion.

Fig. 3. Cumulative Phone Occurrences against Language Release

One of the first issues to be considered when constructing these

LI acoustic models is the phone coverage. Figure 3 shows the cumu-

lative phone coverage over the ten languages considered. The order-

ing is the base period development languages (101,104,105,106), the

base period surprise language (107) and then the five option period 1

development languages (102,103,201,203,206). Note for these plots

diphthongs (and triphthongs) are split into their constituent units. It

is clear from the plot that the phone coverage has not yet converged.

Indeed the overall X-SAMPA attribute file at CUED comprises 215

entries, of which only 62% have currently been seen.

Fig. 4. Language Independent Acoustic Models

The overall structure of the LI acoustic models is shown in Fig-

ure 4. The same decision tree is used for the targets of the BN-MLP

and the acoustic model, though this is not a requirement. The states

for unseen phones for the target language are determined using the

phonetic attributes from X-SAMPA. It is possible to use language

questions in the decision tree construction process. For the results in

this section language questions were not used. For additional details

of the experimental set-up see [40].

As discussed in section 2 seven languages were used as training

data for the LI acoustic model (these were the same languages as

used to train the BN features in the previous section). The LLPs for

each of the languages were used. For the three unseen languages,

the number of unseen phones were: Vietnamese (107) 7; Bengali

(103) 12; and Haitian Creole (201) 2. To handle this issue, the state-

position roots to the decision trees were used. Thus unseen phones

were mapped to leaf nodes using X-SAMPA phone attributes. The
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language model training data and lexicon were taken from the LLPs

for the training languages. To avoid any bias from using the tran-

scriptions from the LLP to train the language model, the LLP tran-

scribed data was not used. For all experiments a Tandem-SAT sys-

tem was used.

System TER MTWV

(%) IV OOV Tot

Haitian Creole (201)

LD fMPE 61.7 0.4673 0.2347 0.4317

LI fMPE 77.2 0.2250 0.0966 0.2058

UN ML 71.4 0.2907 0.1462 0.2691

Bengali (103)

LD fMPE 68.5 0.3173 0.0987 0.2504

LI fMPE 81.1 0.1929 0.0775 0.1573

UN ML 75.9 0.2068 0.0913 0.1723

Vietnamese (107)

LD† fMPE 69.3 0.1962 0.1081 0.1851

LI fMPE 87.6 0.0255 0.0268 0.0257

UN ML 84.9 0.0086 0.0357 0.0174

Table 4: LLP performance using Language Dependent (LD), Lan-

guage Independent (LI), and Unsupervised (UN) models. † indicates

that plp features were used as the input to the BN MLP.

Table 4 shows the performance of the LI acoustic models against

the language dependent acoustic models (LD) on the three unseen

languages. As expected the performance of the LI acoustic models

is significantly worse in terms of both ASR and KWS performance

for all languages. For Vietnamese (107) the performance is very

poor. For additional analysis of these results see [40].

In addition Table 4 shows the performance of using the LI acous-

tic models to bootstrap a new language in a completely unsuper-

vised fashion. In this preliminary work the transcriptions from the LI

acoustic models were used in the standard system build framework.

Using these unsupervised transcriptions for discriminative training

(either MPE or fMPE) degraded performance 3. The MLP to obtain

the bottleneck features was not retrained, so the multi-lingual BN

features from section 5.2 were used. Note none of the languages in

Table 4 were in the training data for this network. For Haitian Creole

and Bengali unsupervised trained acoustic models (UN) improved

performance, both for ASR and KWS, over the LI acoustic models.

This indicates the limitations of assuming phone consistency over

multiple languages (as used in the LI models).

For Vietnamese, where the ASR performance was significantly

worse than Haitian Creole and Bengali, there were slight gains in

TER, however no gain in KWS performance. In some way this is not

surprising as extrapolating the graph in Figure 5 at ASR performance

levels of about 85% the KWS performance is starting to just look like

noise.

The above results have been generated using transcriptions from

the LI acoustic models. It is also possible to use the unsupervised

acoustic models to retranscribe the data. This mode will be investi-

gated in future work.

3The default parameter settings for I-smoothing were used. It is possible
to tune the system to ensure than MPE does not degrade performance, but
this tuning was not done.

7. HYBRID AND TANDEM SYSTEM COMBINATION

Given the different forms of classifier being used for the Tandem

and Hybrid system, they may be expected to be complementary to

one another. To investigate this for ASR , the confusion networks

generated by the Tandem and Hybrid systems were combined us-

ing CN combination (CNC) [8]. Before combining the two sys-

tem, the posterior probability associated with the CN of each sys-

tem, based on the arc posteriors from the lattice, were mapped to re-

move any biases in the confidence measures. In this work, a simple

merging of the posting lists from each of the systems, prior to STO

normalisation, was used for combining the KWS systems together,

rather than a more complicated approach such as MTWV-weighted

CombMNZ method discussed in [30]. In initial experiments, there

was a slight degradation in performance by using the merging, rather

than CombMNZ, but it simplifies the pipeline.

To moderate the impact of the quality of data in the LLP ei-

ther Vocal Tract Length Perturbation (VTLP) was used (Bengali,

Haitian Creole, and Lao) or semi-supervised approaches (Assamese

and Zulu) were used to train the BN MLP for the Tandem system.

For both VTLP and semi-supervised training, the approaches de-

scribed in section 5.1 were used. Due to time constraints, data aug-

mentation was only applied to the Zulu Hybrid system. Here semi-

supervised training, in the same fashion as the Tandem system was

used, and the number of target states increased to 3000.

Language Id LP TER (%)

Tandem Hybrid CNC

Assamese 102
FLP 54.2 55.1 52.8

LLP 65.1 67.8 64.3

Bengali 103
FLP 54.9 56.6 54.3

LLP 67.0 69.5 66.8

Haitian
201

FLP 48.7 50.3 48.2

Creole LLP 60.5 63.4 60.4

Lao 203
FLP 48.5 51.9 48.9

LLP 61.2 65.8 61.3

Zulu 206
FLP 62.1 64.4 61.2

LLP 71.5 74.1 70.6

Table 5: %TER with CN decoding for Tandem and Hybrid and CNC

for Full (FLP) and Limited (LLP) Language Packs.

Table 5 shows the STT system performance on each of the lan-

guages, and each configuration. There are some general trends. For

these DNN systems, the Tandem system consistently outperformed

the Hybrid configuration. Part of this difference in performance may

be because of the use of cross-entropy, rather than sequence train-

ing [41]. The difference in performance was also greater for the

LLP than the FLP. This can partly be attributed to the use of data

augmentation for the Tandem system, but not the Hybrid system.

In general the combination of the Tandem and Hybrid STT results

yielded gains. The outlier for this was Lao, where the difference in

performance between the Tandem and Hybrid systems was greatest.

Table 6 shows the performance of the KWS system on each of

the languages and language packs. For the FLPs the performance of

both the Tandem and Hybrid systems was very similar, for Assamese

the Hybrid system yielded the best performance. For the LLPs there

was still a gap in performance with the Tandem system outperform-

ing the Hybrid. This was also true when comparing the Tandem with

no data augmentation to the Hybrid system. In contrast to the ASR

combination, merging posting lists improved KWS performance in
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Language Id LP MTWV

Tandem Hybrid Merge

Assamese 102
FLP 0.4660 0.4730 0.4946

LLP 0.2569 0.2360 0.2771

Bengali 103
FLP 0.5151 0.5121 0.5388

LLP 0.2992 0.2615 0.3100

Haitian
201

FLP 0.6387 0.6329 0.6602

Creole LLP 0.4648 0.4336 0.4867

Lao 203
FLP 0.5951 0.5881 0.6149

LLP 0.4262 0.3790 0.4439

Zulu 206
FLP 0.3770 0.3654 0.4084

LLP 0.2287 0.1924 0.2366

Table 6: MTWV for Tandem and Hybrid and their combination for

Full (FLP) and Limited (LLP) Language Packs.

every configuration, even for Lao LLP where there were large dif-

ferences in KWS performance. For the combined system, 8 out of

the 10 configurations achieved the program goals of 0.3 TWV. Note

these numbers are based on the MTWV, not the performance with an

automatically determined threshold. However, there is usually only

a slight degradation when the threshold is automatically determined

rather than using the MTWV.
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Zulu&
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Fig. 5. MTWV against TER, ♦ indicates FLP, △ LLP

Given that configurations for five languages, and two language

pack sizes, have been run in a consistent framework, it is interesting

to examine the correlation between the ASR performance and the

KWS performance. Figure 5 shows the plot of MTWV against TER

(%) for all five option period 1 languages in both LLP and FLP con-

figurations. Here the CNC TER% and the Merged MTWV values

are given. The correlation between the two is high (Pearson Corre-

lation Coefficient -0.945, R2 value 0.911). From the plot it is also

clear that some languages, Haitian Creole and Lao, are simpler at

least for this task. Also the performance of Assamese on the devel-

opment Keyword List, is lower for both FLP and LLP than expected

for the ASR performance.

8. CONCLUSIONS

This paper has described some of the research undertaken at CUED

under the Babel program as part of the Lorelei team led by IBM. The

aim of the project is to develop robust KWS and ASR technologies

that can be rapidly applied to any human language. Data distributed

under the Babel project has been used throughout this paper to il-

lustrate both ASR and KWS performance. Primarily the languages

from Option Period 1 (OP1) have been used: Assamese, Bengali,

Haitian Creole, Lao and Zulu. Two sizes of language pack are dis-

tributed for each language: a Full Language Pack (FLP) with approx-

imately 80 hours of transcribed audio data; and a Limited Language

Pack (LLP) with about 10 hours of transcribed data. Three main

research areas have been described: deep neural networks (DNNs)

for acoustic modelling; data augmentation; and zero-acoustic model

resource systems. Finally contrasts between Tandem and Hybrid

DNN systems, and their combination for both ASR and KWS are

described.

It is clear from the level of performance of the systems described

in this paper, that though it is possible to construct ASR and KWS

systems that can achievable useful levels of performance, there is

still a significant amount of work required in the area of low-resource

language speech processing systems.
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