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Abstract

Keyword spotting (KWS) for low-resource languages has drawn

increasing attention in recent years. The state-of-the-art KWS

systems are based on lattices or Confusion Networks (CN) gen-

erated by Automatic Speech Recognition (ASR) systems. It has

been shown that considerable KWS gains can be obtained by

combining the keyword detection results from different forms

of ASR systems, e.g., Tandem and Hybrid systems. This pa-

per investigates an alternative combination scheme for KWS

using joint decoding. This scheme treats a Tandem system and

a Hybrid system as two separate streams, and makes a linear

combination of individual acoustic model log-likelihoods. Joint

decoding is more efficient as it requires just a single pass of de-

coding and a single pass of keyword search. Experiments on

six Babel OP2 development languages show that joint decoding

is capable of providing consistent gains over each individual

system. Moreover, it is possible to efficiently rescore the joint

decoding lattices with Tandem or Hybrid acoustic models, and

further KWS gains can be obtained by merging the detection

posting lists from the joint decoding lattices and rescored lat-

tices.

Index Terms: keyword spotting, joint decoding, deep neural

network, Tandem, Hybrid

1. Introduction

Keyword spotting (KWS) is the task of locating the occurrences

of a given query in a large collection of audio recordings. The

query can be a word or a phrase. The state-of-the-art KWS sys-

tems use automatic speech recognition (ASR) engines to gen-

erate word or sub-word lattices, and perform keyword search

in these lattices. Accurate ASR training usually requires a

large amount of transcribed audio data and text, which can not

be satisfied for many low-resource languages. KWS for these

low-resource languages is very challenging, and has drawn in-

creasing research attention in recent years [1, 2, 3, 4]. One of

the driving forces for this direction is the IARPA Babel pro-

gram [5]. This program aims to facilitate rapid development

This work was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Defense U.S.
Army Research Laboratory (DoD / ARL) contract number W911NF-
12-C-0012. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either ex-
pressed or implied, of IARPA, DoD/ARL, or the U.S. Government. The
authors would like to thank the LORELEI team for providing the KWS
infrastructure and multilingual deep neural network features.

of accurate KWS (the primary task) and underlying ASR tech-

nologies for any previously less studied language using a limited

amount of training data.

With very limited training resources, a single ASR engine

may not be capable of providing robust KWS performance.

However, considerable gains can be obtained by combining the

KWS results of multiple ASR systems. This is in line with

many other information retrieval tasks, for which information

fusion could significantly improve the performances [6]. Dif-

ferent ASR systems may start with similar features, but have

significant diversity in the operation mechanisms (e,g. acoustic

models and language models) that is expected to bring com-

plementary advantages. In fact many Babel evaluation partic-

ipants use system combination to improve the KWS perfor-

mances [2, 7, 8]. System combination for ASR has been well

established, such as ROVER combination [9] and Confusion

Network Combination (CNC) [10]. This concept has also been

applied to KWS. Some early work that combine systems to im-

prove the KWS performance are [11, 12, 13], which combine

KWS systems with word and sub-word models. The recent con-

tributions in this direction include [1, 2, 7, 14, 15]. Currently

most KWS combination techniques are applied on the detec-

tion posting list1, and therefore would require a separate pass of

decoding and keyword search for each individual ASR system.

This paper investigates a joint decoding scheme, which

uses on-the-fly frame-level combination of the acoustic log-

likelihoods of individual acoustic models. In particular, two

forms of deep neural network (DNN) based acoustic models,

Tandem and Hybrid, were built for joint decoding. The Tan-

dem and Hybrid acoustic models share the same hidden Markov

model (HMM) structure. In the Tandem configuration, DNN

operates as a feature extractor that provides bottle-neck features

for the back-end GMM-based acoustic model [16]. In the Hy-

brid configuration, it plays the role of the acoustic model itself

and generate HMM state posteriors [17, 18, 19]. The acoustic

log-likelihoods from the tandem GMM acoustic model and hy-

brid DNN are linearly combined as new acoustic scores, which

are used in the Viterbi decoding process.

Joint decoding can be viewed as a single multi-stream sys-

tem [20, 21]. Similar approaches have been investigated for

ASR. In [22], the interpolation of log-likelihoods generated by

a three-layer neural network and a GMM was proposed. Simi-

lar combination with a time-delay neural network and a GMM

was studied in [23]. Acoustic likelihood combination and lat-

tice combination have been compared in [24]. Joint training and

decoding has also been studied in [25, 26]. This paper examines

the performance of joint decoding for low-resource KWS.

1Each entry in the posting list contains a query ID, occurrence time,
detection score/confidence, as well as a binary Yes/No decision.
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We carried out experiments in a consistent framework for

two data packs on six languages. The performances of joint de-

coding is compared with those of individual systems as well as a

posting list merging scheme. Moreover, it is efficient to rescore

the joint decoding lattices with Tandem and Hybrid acoustic

models. Further gains can be achieved by merging the detec-

tion posting lists from the joint decoding lattices and rescored

lattices. Section 2 presents the Babel KWS task and experi-

mental corpora. This is followed by the description of our ASR

system and KWS system. Finally come the experimental results

and conclusion.

2. Task Description

The work reported in this paper is based on the IARPA-funded

Babel program [5]. The primary objective of this program is to

foster research on technologies for rapid development of low-

resource ASR and KWS systems. In each period of this pro-

gram, Babel provides audio corpora for ASR system building

and keyword sets for KWS tuning and evaluation. In Option Pe-

riod 2 (OP2), the released development corpora involve 6 lan-

guages: Kurmanji Kurdish, Tok Pisin, Cebuano, Kazakh, Tel-

ugu, and Lithuanian. The list of official releases used in this

paper is shown in Table 1.

Language ID Release

Kurmanji Kurdish 205 IARPA-babel205b-v1.0a

Tok Pisin 207 IARPA-babel207b-v1.0a

Cebuano 301 IARPA-babel301b-v1.0b

Kazakh 302 IARPA-babel302b-v1.0a

Telugu 303 IARPA-babel303b-v1.0a

Lithuanian 304 IARPA-babel304b-v1.0b

Table 1: Babel OP2 Languages, ID, and data releases.

For each of these languages, there are four language pack

(LP) configurations, each describing a different subset of data.

This paper considers two LPs: a full LP (FLP) and a very lim-

ited LP (VLLP). The approximate amount of transcribed audio,

including speech and surrounding silence, is 40 hours for the

FLP and 3 hours for the VLLP. The audio data comprises pri-

marily conversational telephone speech, and is designed to con-

tain a diverse set of speaker and recording environments. The

keyword sets have quite different in-vocabulary (INV) and out-

of-vocabulary (OOV) distributions across languages. For ex-

ample, for the VLLP release without additional vocabulary, the

OOV rate for Tok Pisin is 23.8% while the OOV rate for Telugu

is 43.6%.

The system performance is measured by Maximum Term

Weighted Value (MTWV) [27] for KWS and Token Error Rate

(TER)2 for ASR accuracy. Term Weighted Value (TWV) is de-

fined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where θ denotes the detection threshold for Yes/No decision.

Pmiss(θ) and Pfa(θ) denote the missing and false alarm prob-

abilities given θ. The constant β, which is set to 999.9, decides

the tradeoff between missing rate and false alarm rate. MTWV

represents the maximum TWV values over the range of all pos-

sible choices of θ.

2TER is calculated in the same way as WER. For some languages
investigated in Babel, there are only token references provided. A token
could be a word, a character, a syllable, etc.
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Figure 1: An illustration of Tandem and Stacked Hybrid.

3. ASR system description

The core tool for our ASR development is an extended version

of the HTK toolkit [28]. The extension mainly includes a com-

plete integration of DNNs into HTK [29].

According to OP2 program rule, the use of phonetic lex-

icon is excluded in system training and testing. Therefore all

systems used in this paper are graphemic systems. Graphemic

lexicons are generated using a unified systematic approach

which is applicable to all unicode characters [30]. Global

state-position based decision trees [4] are used to construct

the context-dependent models. This allows unseen graphemes

to be recognised, even if they do not occur in the acoustic

model training data. The acoustic model training data only in-

cludes the provided transcribed data. No semi-supervised learn-

ing [31, 32, 33] approaches are adopted. Language models are

estimated using the vocabulary and texts just from the acoustic

transcripts.

We used two DNN based configurations, Tandem and Hy-

brid, for acoustic model training. This is illustrated in Figure 1.

Both configurations share common front-end DNNs as feature

extractors to generate bottleneck (BN) features. The front-end

DNN training is initialised by layer-wise discriminative pre-

training with context-independent (CI) states as targets. Due

to the very limited amount of training data, the initialisation is

important for VLLP, and gives about 0.5% TER reduction in a

preliminary experiment with a Tandem system on Cebuano. For

the FLP, the input to the front-end DNNs is 936 dimensional

feature vectors, which are comprised of 9 frames of filter-bank

features and pitch, appended with delta, double deltas and triple

deltas. The FLP front-end is a unilingual DNN trained using the

data of the target language. In contrast, the VLLP front-end is

a MRASTA based multilingual DNN [34, 35], which is initially

trained with the data from 11 Babel BP and OP1 FLPs and fine-

tuned on the target language. The BN layer consists of 26 nodes

for FLP, and 62 nodes for VLLP.

3.1. Tandem SAT

The input features for Tandem HMM-GMM systems are

concatenated features, including BN features, 52-dimensional

PLP+∆+∆2+∆3, 3-dimensional pitch+∆+∆2 and 3-

dimensional probability of voicing (POV)+∆+∆2 features.

Pitch and POV are estimated using the Kaldi toolkit [36].

The final dimension of input features is 84 for FLP and 120
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for VLLP. Cepstral mean normalisation (CMN) and cepstral

variance normalisation (CVN) are applied. This is followed

by feature transformations, including heteroscedastic linear

discriminant analysis (HLDA) for PLP features, and global

semi-tied transform [37] for BN features. Thus the dimension-

ality of Tandem features is reduced from 84 to 71 for FLP, and

from 120 to 107 for VLLP. For FLP, the transformed features

are then warped by Gaussianization [38].

Two sets of acoustic models are constructed. One is

Speaker-Independent (SI) model, which is based on the Tandem

features and estimated using Minimum Phone Error (MPE) [39]

criterion. The other is estimated using Speaker Adaptive Train-

ing (SAT) [40]. SAT is performed using constrained maximum

likelihood linear regression (CMLLR) [41] followed by MPE.

In the decoding process, SI model with trigram LM is used

to produce hypotheses for CMLLR estimation. The resulted

CMLLR transforms are used to obtain speaker normalised fea-

tures, which are then taken as input of the Tandem-SAT model.

According to the quantity of transcribed data, the number of

context-dependent (CD) states is 6000 for the FLP and 1000 for

the VLLP. Each state has an average of 16 components.

3.2. Stacked Hybrid

As illustrated in Figure 1, the stacked Hybrid system use the

same features as Tandem system. The same CMLLR trans-

forms generated by Tandem-SAT models are also applied for

speaker normalisation. To utilise long time span information,

the input to the hybrid DNN is a concatenation of 9 con-

secutive feature vectors. The network configuration is differ-

ent between FLP and VLLP. For FLP, a network structure of

639 × 10005 × 6000 is used. For VLLP, the network struc-

ture is set to 963 × 10004 × 1000. Similar to the front-end

DNN training, all hybrid DNNs are initialised by layer-wise

pre-training with CI targets. Fine-tuning is done using cross-

entropy criterion with CD targets. The number of CD states

is the same as in Tandem system. Subsequently MPE-based

sequence-discriminative training [42] is applied for further im-

provement.

3.3. Joint Decoding

Although our Tandem system and Hybrid system use the same

feature extractor, same vocabulary and language model, the dif-

ferences in feature usage (1 frame vs. 9-frame concatenation)

and acoustic model structure (GMM vs. DNN) are expected

to provide complementary advantages. Our previous work [15]

has shown that significant gains could be observed by combin-

ing these two systems. More specifically, TER reduction was

obtained with CNC [10], and KWS improvement was achieved

by a posting list merging scheme, which simply combined the

posting lists from Tandem and Hybrid systems prior to sum-to-

one (STO) normalisation [7]. Both CNC and posting list merg-

ing are post-system techniques, i.e., the combination can only

be done after each individual finishes a separate complete de-

coding and KWS.

In contrast, this paper investigates an alternative combina-

tion scheme, which is referred to as joint decoding. As a kind

of multi-stream scheme [20, 21], joint decoding treats Tandem

and Hybrid as two separate streams, and makes on-the-fly com-

bination of the acoustic log-likelihoods during one single pass

of decoding. KWS can then be carried out using the joint de-

coding lattices. Compared to CNC and posting list merging,

joint decoding is more efficient as it requires only a single pass

of decoding and a single pass of keyword search. In addition,

with the joint decoding lattices, it is efficient to perform rescor-

ing with Tandem or Hybrid acoustic models. This can be done

by first determining the joint decoding lattices and then decod-

ing within the determinized lattices using one single acoustic

model. Alternatively, it is also feasible to cache the arc likeli-

hoods from each model for fast rescoring. The rescored lattices

tend to be biased to one particular model, and may be comple-

mentary to the original joint decoding lattices.

During decoding, Tandem and Hybrid acoustic models

are both used in acoustic observation probability computation.

Given a speech frame ot, the observation log-likelihood gener-

ated by a state si is computed as

L(ot|si) = λTLT (ot|si) + λHLH(ot|si), (2)

where λT and λH denote the weights for Tandem and Hybrid 3,

respectively. LT (ot|si) represents the Tandem log-likelihood

calculated from the ith state (assuming a GMM distribution

with wm, µm and Σm as the weight, mean and covariance for

the mth component, respectively),

LT (ot|si) = log
∑

m∈si

wmN (ot|µm,Σm). (3)

LH(ot|si) is the log-likelihood generated by the Hybrid model,

LH(ot|si) = log p(si|ot) + log p(ot)− log p(si), (4)

where the posterior probability p(si|ot) is the output of the ith
target state in the DNN output layer, and the prior probability

p(si) is approximately estimated from the state-level alignment

of the training data. p(ot) is assumed to be equal across states.

The combined acoustic log-likelihoods are then used for Viterbi

decoding. It is worth noting that the Tandem and Hybrid mod-

els share the same decision tree in our implementation. Due to

the change in the range of acoustic log-likelihoods, the gram-

mar scale and beam setting used in decoding should be scaled

properly.

4. KWS system description

Indexing and search in our KWS implementation are based on

the weighted finite state transducer (WFST) framework [14,

43]. First the audio collection is converted into word lattices

with the ASR system. Word lattices are then processed to gen-

erate word index and grapheme index. These indexes contain

word or grapheme identities, start and end states, and the asso-

ciated posterior probabilities.

During search, a query is represented as a weighted finite

state acceptor (WFSA), and subsequently the composition oper-

ation is carried out to retrieve detection postings. More specifi-

cally, each in-vocabulary (IV) query term is converted to a word

WFSA, and composed with the word index. If one IV term does

not get any return, it is converted to a grapheme WFSA and

searched again in the grapheme index. This is known as cas-

cade search. On the other hand, the search for out-of-vocabulary

(OOV) term are operated only on the grapheme level, i.e., all

OOVs are represented as grapheme WFSAs, and composed

with the grapheme index. Language model scores are ignored in

OOV search. To further boost the OOV detection performance,

a query expansion using grapheme-to-grapheme confusability

(NBestP2P) [1] is applied. NBestP2P is set to 100 in all the ex-

periments for this paper. Finally the IV and OOV search posting

lists are merged and STO score normalisation is applied to gen-

erate the final KWS output.

3In this paper, the same weight setting is applied to all the states for
simplicity, though it is possible to design state-specific weights.
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5. Experimental Results

Experiments were carried out on the development sets of six

Babel OP2 languages as described in Section 2. Each language

has approximately 10 hours of audio for indexing, and 2000

queries for search. The evaluation metrics are TER for ASR and

MTWV for KWS. Given that the primary objective of Babel

program [5] is to improve KWS performances, all the system

configurations were tuned to optimise MTWV, not TER.

System
Tok Pisin Cebuano

FLP VLLP FLP VLLP

T 40.7 52.6 54.2 63.9

H 39.2 50.7 52.8 63.2

T ⊕ H 38.8 49.9 52.3 61.4

J 38.4 48.6 52.0 60.9

T|J 40.6 52.6 54.2 63.8

H|J 39.3 50.4 53.0 63.2

T|J ⊕ H|J 38.7 49.7 52.2 61.5

J ⊕ T|J ⊕ H|J 38.4 48.9 52.0 60.7

Table 2: ASR performance (%TER) for FLP and VLLP on Tok

Pisin (207) and Cebuano (301). T: single Tandem system; H:

single Hybrid system; J: Joint decoding. T|J means rescoring

joint decoding lattices with Tandem models. ⊕ indicates CNC,

i.e., T⊕H indicates CNC with Tandem and Hybrid systems.

Table 2 shows the TER with different systems for Tok Pisin

and Cebuano. In this table, rows 3-5 correspond to the base-

line performance, while row 6-10 are all based on joint decod-

ing. All the TER numbers are obtained with trigram LMs and

CN decoding. Among the baselines, T⊕H gives consistently

better performances than each individual system. For joint de-

coding, the combination weights were tuned on Kurmanji Kur-

dish VLLP, and then set as λT = 0.25 and λH = 1.0. Com-

paring joint decoding with T⊕H, better TER can be observed.

This demonstrates the capability of joint decoding to exploit the

complementary nature between individual models. Rescoring

the joint decoding lattices gives similar performances as a sep-

arate decoding. CNC with joint decoding lattices and rescored

lattices does not bring consistent TER reduction. This may in-

dicate that lattice rescoring with a weaker acoustic model does

not benefit the one-best ASR output.

System
Tok Pisin Cebuano

FLP VLLP FLP VLLP

T 0.4067 0.2882 0.3598 0.2254

H 0.4189 0.3132 0.3783 0.2384

T ⊗ H 0.4421 0.3438 0.3986 0.2711

J 0.4423 0.3444 0.4005 0.2722

T|J 0.4142 0.2939 0.3656 0.2312

H|J 0.4277 0.3247 0.3893 0.2502

T|J ⊗ H|J 0.4453 0.3479 0.3995 0.2736

J ⊗ T|J ⊗ H|J 0.4476 0.3532 0.4023 0.2799

Table 3: KWS performances (MTWV) for FLP and VLLP on

Tok Pisin (207) and Cebuano (301). ⊗ represents posting list

merging.

Table 3 shows the KWS performances. Among the baseline

systems, T⊗H, which combines the KWS posting lists prior

to STO score normalisation, gives significant gains over each

individual system. Joint decoding provides quite comparable

T H J M
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0.2
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Kurmanji Kurdish

T H J M

0.2

0.3
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Kazakh
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Figure 2: KWS performances on the other four Babel OP2 lan-

guages. Black bar represents FLP, and white bar represents

VLLP. T: single Tandem system; H: single Hybrid system; J:

Joint decoding; M: J⊗ T|J ⊗ H|J (merging KWS posting lists

of joint decoding lattices and rescored lattices).

MTWV performance to T⊗H, with MTWV improvement rang-

ing from 0.0002 to 0.0019. This is promising as joint decoding

only requires one pass of keyword search while T⊗H requires

two passes. Moreover, rescoring has been applied to the joint

decoding lattices with all individual acoustic models, and KWS

runs have been conducted on all sets of lattices. Comparing the

rescored lattices (T|J or H|J) with single decoding ones (T or

H), it can be observed that the rescored lattices provide consis-

tently better MTWV numbers. With the KWS results from all

the lattices, it is interesting to see if they are complementary

and can be combined via posting list merging for better per-

formances. Corresponding performances are listed in the last

line of Table 3. Consistent gains over single joint decoding sys-

tems can be observed, with MTWV improvement ranging from

0.0018 to 0.0088.

Experiments on the other four languages were conducted

in the same configurations. The KWS performance is shown

in Figure 2. The advantage of joint decoding over individual

systems can also be observed across all languages, with larger

gains for VLLP and smaller gains for FLP. The gain from com-

bining the KWS results of joint decoding lattices and rescored

lattices is also confirmed on these four languages.

6. Conclusion

In this paper, a joint decoding scheme has been investigated

for keyword spotting under the Babel program. Joint decoding

combines Tandem and Hybrid systems based on the acoustic

log-likelihoods. This gives information fusion of two separate

systems within one single pass of decoding and keyword search.

Experiments on six Babel OP2 languages have demonstrated

that joint decoding can achieve comparable performances to

CNC and KWS posting list merging. In addition, it is effi-

cient to rescore the joint decoding lattices with each individual

acoustic model. Further KWS gains are obtained by merging

the KWS results of joint decoding lattices and rescored lattices.

Although in this paper the joint decoding implementation takes

in only two systems, it can be generalised to include more sys-

tems with more diverse features using a single pass of decoding.

When more systems become feasible, it would be interesting to

consider how to efficiently select complementary systems and

optimise their combination weights.
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