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An Alkyne Diboration-6 -Electrocyclization Strategy to Pyridine 

Boronic Acid Derivatives ** 
Helena Mora-Radó,[a] Laurent Bialy,[b] Werngard Czechtizky,[b] María Méndez[b] and Joseph P. A. 

Harrity*[a] 

Abstract:  We report a new and efficient synthesis of pyridine-based 
heteroaromatic boronic acid derivatives via a novel diboration-6-
electrocyclization strategy. This method delivers a range of 
functionalized heterocycles from readily available starting materials.  

Nitrogen based heterocyclic compounds constitute important 
building blocks for organic synthesis since they are found in 
many pharmaceutical and agrochemical targets. In this regard, 
heteroaromatic boronic acid derivatives are one of the most 
valuable classes of intermediates in synthetic chemistry.[1] Their 
value lies in their unique combination of high stability and rich 
reactivity, allowing them to participate in a wide range of 
functionalization reactions. Traditional approaches to these 
compounds relied on elaboration of pre-formed scaffolds 
through C-X or C-H borylation.[2] Complementary strategies such 
as cycloaddition reactions[3] and annelative borylations[4] have 
become more established quite recently, and allow 
functionalized aromatic boronic acid scaffolds to be made 
available in a direct manner.  
The synthesis of pyridines via 6-electrocylization reactions 
represents an interesting and alternative means for the bespoke 
synthesis of this class of heterocyclic intermediates, and the 
reaction is compatible with a range of common functional groups 
such as esters, aldehydes and ethers.[5,6] Importantly, in the 
context of boronic acid derivatives, we envisaged that we could 
take advantage of catalytic diborylation methodology[7] to 
transform readily available yne-ene-oximes into pyridine boronic 
esters. As shown in Scheme 1, central to our objective was the 
activation of the alkynes substrate towards electrocyclization 
whilst simultaneously incorporating useful functionality. 
Moreover, we expected that this process would selectively 
eliminate only one of the two boronic ester moieties; thereby 
obviating the common problem of differentiating between the two 
boronate units generated by diboration chemistry.[8] 

 

Scheme 1.  The diboration-6-electrocyclization strategy. 

The substrates for this study were readily prepared in two steps 
from 2-bromo aryl aldehydes by Sonogashira coupling and 
condensation with O-methylhydroxylamine.[9] To our delight, all 
substrates underwent smooth diborylation under Pt-catalysis to 
deliver the corresponding products in good to excellent yields 
(Scheme 2). The scope of the chemistry was found to be quite 
general with a range of substituents tolerated on the alkyne and 
aryl rings. A relatively high catalyst loading was used in our 
scoping studies so that the reactions were complete in 30 min. 
However, we found it possible to lower the catalyst loading to 3 
mol% and this had only a minor effect on the reaction yield over 
a slightly increased reaction time of 2.5 h. 

 

Scheme 2.  Diboration of 2-alkynyl aryloximes. [a] Reaction conducted with 3 
mol% Pt-catalyst over 2.5 h. 
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With a range of 1-azatrienes in hand, we turned our attention to 
the pyridine forming 6-electrocyclization step. o-DCB (ortho-
dichlorobenzene) proved to be the optimal solvent to perform 
this transformation and a reaction temperature of 200 oC led to 
complete conversion within 16 h. Pleasingly all substrates 
underwent the key cyclisation step giving rise to a large number 
of functionalized isoquinoline derivatives after elimination of 
MeOBpin. We observed that the silyl-substituted triene 1 
required the use of slightly lower temperatures to avoid 
protodesilylation, and the free alcohol bearing substrate 3 
required protection as a TBS-ether[9] to avoid protodeborylation 
during the electrocyclisation process. Notably, chemoselective 
electrocyclization was observed in the reactions of 15 and 16, 
and the corresponding naphthalenes were not observed via the 
potentially competing 6-cyclization in these cases (Scheme 3).  
 

 

Scheme 3.  6-electrocyclization to isoquinolines. [a] Reaction conducted at 
180 oC for 16 h. o-DCB: 1,2-dichlorobenzene. 

We were able to extend our studies to include aliphatic 1-
azatrienes and our results are shown in Scheme 4. Substrates 
21, 22 and 25 were prepared in a similar manner as before,[9] 
and the O-methyl oximes were subjected to B2pin2 in the 
presence of the Pt-catalyst. In each of these cases however, we 
were unable to isolate the intermediate diborylation products, 
and instead these reactions directly furnished the cyclized 
pyridine boronates 23, 24 and 26 in good yield at 120 oC. The 
one-pot diboration-electrocyclization observed in substrates 21, 
22 and 25 reflects the increased reactivity of aliphatic substrates 
towards pyridine formation. Nonetheless, a similar sequence 
could also be achieved with aryloximes. Specifically, 
isoquinoline 14 could be prepared directly from the 
corresponding alkyne on ~ 0.5 g scale by utilizing a telescoped 
diboration-electrocyclization sequence. 
 

 

Scheme 4. One-pot diboration-electrocyclization. 

We next decided to explore the suitability of ketoximes to deliver 
more substituted heterocyclic products. As shown in Scheme 5, 
condensation of 27 with O-methylhydroxylamine provided a 4:1 
mixture of oxime isomers E/Z-28 that could be separated by 
chromatography. The major isomer was assigned as E-28 on 
the basis of comparative 1H NMR spectroscopy[9] and the 
propensity of acetophenone oximes to adopt the E-
configuration.[10] We decided to subject the individual oxime 
isomers to the diboration-electrocyclization sequence. In the 
event, E-28 underwent efficient conversion to the aza-triene E-
29 which was smoothly converted into isoquinoline 30 in high 
yield. In contrast, Z-28 provided the corresponding diborylation 
product Z-29 in low yield. Moreover, and to our surprise, this 
substrate was found to be inert to electrocyclization.  

 

Scheme 5.  6-electrocyclization of E/Z-oxime isomers. 

The dependence of oxime stereochemistry on the efficiency of 
electrocyclization of azatrienes is intriguing and has not been 
documented to the best of our knowledge. The reason could be 
steric in nature and related to the lower reactivity of Z-1-
substituted butadienes in Diels-Alder reactions.[11] Further 
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investigations as to the underlying causes of this phenomenon 
are currently underway. 
The potential of the heterocyclic boronic esters to be further 
exploited for synthesis was next investigated by employing two 
representative organoboron transformations. Specifically, as 
highlighted in Scheme 6, compound 14 was oxidized to the 
corresponding phenol 31 and converted to the azido product 32 
in good yield in both cases. 

 

Scheme 6.  Representative functionalization reactions of 14. 

In conclusion we report a new and efficient synthesis of pyridine-
based heteroaromatic boronic acid derivatives via a novel 
diboration-6-electrocyclization pathway. This strategy allows 
rapid access to bicyclic pyridines, although the suitability of this 
method to access monocyclic heterocycles will likely require 
further method development. Moreover, this method has raised 
an intriguing result that the cyclization of oxime derived trienes 
appears to depend on the substrate stereochemistry.  Further 
studies to establish the generality of this observation together 
with the underlying causes are underway and will be reported in 
due course. 

Experimental Section 

Typical diboration-electrocyclization procedure as exemplified by 
the formation of 14: B2pin2 (640 mg, 2.5 mmol)) was added to a stirred 
solution of (E)-2-(2-cyclopropylethynyl)benzaldehyde O-methyl oxime 
(456 mg, 2.3 mmol) in toluene (15 mL). Then Pt(PPh3)4 (132 mg, 0.12 
mmol, 5 mol%) was added and the reaction was stirred at 120 °C for 1 h. 
The reaction mixture was allowed to cool to room temperature and 1,2-
Cl2C6H4 was added (30 mL). The reaction mixture was stirred at 200 °C 
for a further 16 h. The solution was allowed to cool to room temperature 
and was filtered through a pad of silica gel. The residue was purified by 
flash column chromatography on silica gel eluting with petroleum ether 
(40/60) and ethyl acetate to afford 3-cyclopropyl-4-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)isoquinoline 14 (480 mg, 71%) as an orange oil. 
1H NMR (400 MHz, CDCl3) į = 9.09 (s, 1H), 8.11 (dd, J = 8.5, 1.0 Hz, 
1H), 7.84 (d, J = 8.0 Hz, 1H), 7.62 (ddd, J = 8.5, 7.0, 1.5 Hz, 1H), 7.45 
(ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 2.61 – 2.54 (m, 1H), 1.49 (s, 12H), 1.22 – 
1.18 (m, 2H), 1.02 – 0.96 (m, 2H); 13C NMR (101 MHz, CDCl3) į = 160.7, 
153.8, 139.5, 130.4, 128.0, 126.3, 126.1, 125.5, 84.3, 25.0, 16.6, 9.9; 11B 
NMR (128 MHz, CDCl3) į = 32.8 (br); FTIR:  = 2978 (m), 1619 (m), 
1562 (m), 1495 (m), 1235 (s), 1134 (s) cm-1. HRMS calculated for 
C18H22BNO2: m/z 295.1853, found: 295.1856.  
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Get in the ring!  -Alkynyl ,-unsaturated oximes undergo a sequential alkyne 
diboration-6 electrocyclization sequence to deliver a range of pyridine boronic acid 
derivatives. The scope of this chemistry to deliver useful heterocyclic products is 
described. 
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