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ABSTRACT: The greater geometric lability of hydrazones over oxime ethers is usebaass to overcome the reluctance of Z-
oxime ether azatrienes to undergo electrocyclization towards the synthesis of borgttesh(bmatic) pyridines and ring-fused
analogs. Such hydrazones now allow access to previously inaccessible tri- and tetrasubstitoggridines in high yields.

The prominence of heteroaromatic motifs in pharmaceutical for the coupling of heteroaromatic systems because of the syn-
agents, agrochemicals and functional materials has motivatedhetic versatility of these compountis.
synthetic chemists to devise new strategies for the efficient and
selective incorporation of these fragments into a broad range ofSeveral complementary strategies for accessing heterocyclic
molecular scaffolds. In this regard, boronic acid chemistry pro- boronic acid derivatives now exist, including borylation of C-
vides one of the most widely used approaches XIC-H bonds? cycloadditiond and cyclizatiof processes. In

this regard, we have recently reported that 2-alkynyl aryloxime
Scheme 1. Dependence of electrocyclization efficiency on ox- ethers undergo a diboration-electrocyclization sequence to gen-

ime ether stereochemistry erate a range of arene and heteroarene fused pyridine boronic
acid derivative$® Such boryl pyridine species are readily con-
Y 4 Bpin verted into a range of diverse heterocyclic structures through C-
(/i 5 mol % Pt(PPhs)s Y X C, C-O and C-N bond forming procesS&uring these studies,
~N., Bopiny, toluene ‘ we made the unexpected observation that the stereochemistry
S OMe  420°c, 16 h s - o
115EZ ' 29% of the oxime ether substrates proved critical to the electrocy-
clization efficiency. Specifically, E-oximes underwent efficient
= Ph Bpin cyclisation to the desired product, whereas Z-oximes were inert
</N ’ 10 mol % PtPPhy)y N\ Ph to cyclisation. This effect therefore led to very low yields of
SN T BpinoDcB - ¢ product in cases Where. substrates contained S|g-n|f|cant propor-
“OMe 200 °C, 16 h S =N tions of Z-oxime ether isomer (Scheme 1). Oxime ethers are
19 EZ 9% known to be resistant to thermal equilibraticamd require acid
N o~ catalysi§ or UV irradiatiorf to promote isomerization. Indeed,
< h/(N ¢ JC,OMe we were able to promote low yielding transformations, such as
- “OMe NN those shown in Scheme 1, under UV irradiation that led to sig-
Reactive towards Inertto nificant improvements in yieltlHowever, we envisaged that a
én electrocyclization _ 6r electrocyclization potentially more practical solution to this problem would be to

change the oxime ether moiety to a more geometrically labile



congener. In this regard, hydrazones are known to be stereoarises in the corresponding Z-isomers (Figurg Accordingly,
chemically labilé® and appeared to offer the opportunity to con- the diboration-electrocyclization process generally works well
vert bothE and Z-N-substituted azatrienes to desired products.on aldoxime ethers, and is only problematic in cases where the
Therefore, we set out to survey the scope of 2-alkynyl arylhy- E/Z ratios are poor (etj,m in Scheme 2) or when ketoxime
drazones in the diboration-electrocyclization process, and to asethers are employedd,e in Scheme 2). However, we envis-
sess the generality of this reaction as compared to oxime etheraged that enal derived oxime etheld (Figure 1) would be

more likely to deliver higher proportions of unreactive Z-imine-
As shown in Scheme 2, we prepared a range of 2-alkynyl aryltype isomers, suggesting that these would be interesting sub-
oxime ethers and hydrazones and subjected them to the diborastrates in which to compare the electrocyclization efficiencies
tion-electrocyclization sequence, as a one-pot procedure. Thef oxime ethers and hydrazones. Furthermore, such enal motifs
substrates derived from ortho-alkynylated acetophenbaés (readily derived from ketones in two steps) would allow swift
were all formed as a mixture of E/Z-isomers, however, oxime access to 2,3,4-trisubstituted borylpyridines that are otherwise
ethersla,e were found to undergo the transformation to prod- difficult to access.

ucts2 and5 in significantly lower yield than the corresponding
hydrazonedb,f. We were able to extend this chemistry to het-
eroaromatic fused pyridines and once again found significantly
improved yield of product to be delivered from hydrazone sub-
strates as compared to oxime ethers.

Scheme 2. One-pot diboration-electrocyclization of oximes and
hydrazone’
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Reaction conditions: 1.1 eqy@n,, 5-10 mol % Pt(PP¥§)s, 1,2-Cl,CeH,,
120°C, 30 min, then 200 °C, 16 #,20 °C, 16 h, then 200 °C, 3"ioluene
120 °C, 16 h. Hydrazone stereochemical assignmentsmate on the ba-
sis of *C-NMR spectroscopy, in line with established trends f@mes and
hydrazoned! Specifically, resonances attributed to alkyl grouisst@ the
N-heteroatom group appear upfield relative to th@ins-isomers.

Arene-substituted aldoximes are typically formed with very

high levels of E-stereochemistry because of the steric strain tha
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Figure 1. C=N configurational stabilities.

As shown in Scheme 3, thiophene derived aldoxime eflneirs
were formed as 1:1 mixtures of E:Z isomers, and this is mani-
fested in the poor yield of the isolated pyridines generated after
diboration-electrocyclization. Pleasingly, however, the respec-
tive hydrazoneds,u were isolated as single geometric isomers,
providing excellent isolated yields of both alkyl and aryl substi-
tuted pyridined.3 and14. A similar pattern was observed in the
synthesis of electron deficient aryl substituted pyridit&46

as well as in the synthesis of pyridines bearing cycloalkg)l (
and isopropenyl18) motifs at the 2-position.

Scheme 3. Diboration-electrocyclization sequence towards pyr-
idines

R? Bpin
Rl _Z  5mol%PtPPhy), R! R
| Bopin,, toluene |
Ny 120°C,16h =N
R’ R? X (E:2) Yield
"Bu 1r; OMe (50:50) 13; 40%
@\ "Bu  1s; NMe, (>98:2) 13; 90%
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"Bu  1w; NMe, (>98:2) 15; 87%
Ph 1x; OMe (70:30) 16; 50%
o~ Ph  1y; NMe, (>98:2) 16; 68%
P °CsHs 123 NMe, (>98:2) 17; 82%
MeO
O |_r"r>7 1ba; NMe, (>98:2)18; 55%
o

2Reaction conditions: 1.1 egyiin,, 5 mol % Pt(PP)),, toluene, 120 °C
16h.

With the superiority of N,N-dimethylhydrazones confirmese,
sought to establish the geometric lability of these substrates. A
sample of pure Bh was obtained and its equilibration to the Z-
isomer was confirmed by 400 MH#H NMR spectroscopy
Specifically, allowing a solution of this compound to stand in
CDCl; for 14 days at room temperature resulted in a gradual
{somerization to a 90:10 E/Z ratio. Furthermdg provides a



higher yield of6 (76%) than would be expected from the initial X Y
E/Z ratio of 55:45, suggesting that hydrazone isomerization oc- ~Bu 1.2:ClCeHs_
curs readily at the reaction temperature, and precedes electro- 200°C.6h
cyclization. While this assertion builds on the assumption that *N\NMe MeoN-Y
the Z-hydrazone isomer is inert to cyclization, at this stage we z
cannot rule out the possibility that Z-hydrazones are inherently  pinB  Bpin Bpin pinB  Bpin
more reactive towards electrocyclization than the correspond-  ~. =\, ~Bpin By - -
ing oxime ethers. B
- =N, =N, =N, =N,
Finally, we demonstrated the amenability of this process to 21 WMz o NV, ) N 3 NMe
larger scale reactions, forming isoquinoli2@ with three or- Conversion
thogonal coupling sites at multigram-scale, with reduced cata- @200°C  32% 21% 25% 1% >98%
lyst loading (Scheme 4). 6h
Starting 955 94:6 1:99 >08:2 >08:2
. . alkene Z/E
Scheme 4. Multi-gram scale synthesis 20 R P
ecovered 5347 91:9 18:82 13:87
alkene Z/E
SiMe; Bpin — ping ~ Bpin Bpin
4 1 mol % Pt(PPh), N SiMes 7] a " gy Tol., 120°C a X y . -Bu
" Bping, 1,2-Cl,CoHs 1 ST N\=y s 16h N LN
cl Z " *NMe, 120 °C-200 °C, 20 h cl Z NMe, =N S
19 73% 20 25 26 NMe2 <2% conv >98% conv

13.7 g, 49.1 mmol 12.9 g, 35.7 mmol

The reactions shown in Schefeaise some intriguing discus-
Having explored the relationship between oxime ether/hydra-sion points: (1) the stereochemistry of the C1 position of the
zone stereochemistry and the rate of electrocyclization, we nexplefin does not seem to significantly impact the rate of for-
wanted to ascertain the impact that the degree of substitutiormation of product; (2) The incorporation of a boronic ester at
and stereochemistry at the olefin moiety exerted. Accordingly, C1 improves reaction conversion; (3) Measurable olefin scram-
we prepared a series of hydrazones with ortho-Z-1-hexenebling can be observed in all cases where starting material is re-
groups and heated these at 200 °C for 6 hours in order to comcovered. With regard to this last point, we do not believe that
pare their relative reactivities (Scheme 5). Borylated alkenesalkene isomerization is the resaftrotation around a C=C bond
21-22 underwent cyclization with comparable convensj weakened through conjugation to the appended hydrazone
wherea3 proved to be significantly less reactive. In addition, (Scheme 6). Indeed, hydrazor&sand28 do not undergo any
E/Z isomerization was observed in the recovered starting matedetectable isomerization under the same conditions.
rial in all instances, with substantial stereochemical scrambling o )
occurring the cases @l and23. Interestingly, the oxime ether ~ Scheme 6. Isomerization control experiments
24 was found to be significantly more reactive than the corre-
sponding hydrazones when both were employed as E-stereois
mers. Finally, the surprising rate enhancements observed by

R u
borylated alkene containing substrates were further exemplified R 7 Bu - TR
by a competition experiment which showed t&tunderwent 200 °C
significantly faster cyclization as compared?® T en

Scheme 5. Relative reactivities in cyclization reactions \ \ \
NMe, NMe, NMe,

>99:1 Z:E R = Bpin 27 >99:1 Z.E
955ZE R=H28 95:5 Z.E

We have formulated a mechanism to explain these observa-
tions. As shown in SchenTgY=H or Bpin), reversible disrota-
tory electrocyclization of 2V providesV that can undergo syn-
elimination to the product, or epimerization at nitrogen to gen-
erateV’. Anti-elimination ofV’ would also provide the product,
however, electrocyclic ring opening should proceed such that
the electron donating NMegroup rotates outwards according
to Houk’s torquoselectivity rules,'® thereby generating BEY.

The difference in reactivity of borylated and non-borylated al-
kenes may therefore originate from the ease of aromatization by
elimination of pinB-NMe versus H-NMg, rather than their rel-
ative electrocyclization efficiency.

Scheme 7. Proposed mechanism
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