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Abstract

Recurrent neural network language models (RNNLMs) are

powerful language modeling techniques. Significant perfor-

mance improvements have been reported in a range of tasks in-

cluding speech recognition compared to n-gram language mod-

els. Conventional n-gram and neural network language mod-

els are trained to predict the probability of the next word given

its preceding context history. In contrast, bidirectional recur-

rent neural network based language models consider the context

from future words as well. This complicates the inference pro-

cess, but has theoretical benefits for tasks such as speech recog-

nition as additional context information can be used. However

to date, very limited or no gains in speech recognition perfor-

mance have been reported with this form of model. This pa-

per examines the issues of training bidirectional recurrent neu-

ral network language models (bi-RNNLMs) for speech recog-

nition. A bi-RNNLM probability smoothing technique is pro-

posed, that addresses the very sharp posteriors that are often

observed in these models. The performance of the bi-RNNLMs

is evaluated on three speech recognition tasks: broadcast news;

meeting transcription (AMI); and low-resource systems (Babel

data). On all tasks gains are observed by applying the smooth-

ing technique to the bi-RNNLM. In addition consistent perfor-

mance gains can be obtained by combining bi-RNNLMs with

n-gram and uni-directional RNNLMs.

Index Terms: language model, bidirectional recurrent neural

network, speech recognition, interpolation

1. Introduction

Language models (LM) are crucial components in many ap-

plication areas including speech recognition. They aim to es-

timate the probability of any given word sequence W =<

w1, w2, ..., wL >. The sequence probability can be computed

using

P (W) = P (w1, w2, ..., wL) =
L∏

t=1

P (wt|wt−1, ..., w1) (1)
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The task of language model then becomes that of calculating

the probability of word wt given its previous words wt−1
1 =<

w1, ..., wt−1 >. A variety of statistical language models have

been proposed to compute P (wt|w
t−1
1 ), including n-gram LMs

[1] and neural network LMs [2, 3]. n-gram LMs have been

the dominant language modeling approach for several decades

due to good performance and efficient implementation. Re-

cently, significant improvements have been reported with re-

current neural network (RNN) LMs over standard n-gram LMs

in many fields including speech recognition [4, 5, 6, 7]. Long

short-term memory (LSTM) based LMs [8] can further improve

performance by handling gradient vanishing issue existed in

sigmoid activation RNNLMs.

More recently, bidirectional RNNs (bi-RNNs) [9] have out-

performed unidirectional RNNs (uni-RNNs) in application ar-

eas ranging from acoustic modeling [10] to machine transla-

tion [11]. Bi-RNNs incorporate both the previous and future

information to improve prediction. However to date, in the field

of language modeling, very limited or no gains in speech recog-

nition performance have been reported with bi-RNNLMs over

uni-RNNLMs. Several alternative approaches have attempted

to use succeeding words for language modeling [12, 13, 14, 15].

The backward RNNLMs were interpolated with the forward

RNNLMs for speech recognition in [12] and [15]. [14] inves-

tigated the training of bi-RNNLMs using noise contrastive es-

timation for NLP tasks. [13] applied bi-RNNLMs on a broad-

cast news transcription task and it was reported that sigmoid

bi-RNNLMs gave small gains, while no improvements were ob-

tained from bi-LSTM LMs. This paper investigates the use of

bi-RNNLMs for speech recognition, following the work in [13].

The issues in training these bidirectional models is discussed,

and possible combination approaches. This paper further inves-

tigates the use of these bi-directional RNNLMs, showing that by

appropriately normalising the language posteriors of these mod-

els and combining them with other state-of-art language models

consistent gains can be obtained.

This paper is organised as: Section 2 gives a brief re-

view of RNNLMs, including unidirectional and bidirectional

RNNLMs. The interpolation of RNNLMs and n-gram LMs

is discussed in Section 3, followed by the proposed smoothing

method for bidirectional RNNLMs in Section 4. Experimen-

tal results are presented in Section 5 and conclusion drawn in

Section 6.

2. Recurrent Neural Network LMs

Traditionally, language models are trained to predict the word

probability based on the current history, P (wt|w
t−1
1 ). For these

form of model, whether an n-gram or uni-directional RNNLM,

the probability of word sequence W can then be computed us-

ing Equation (1). This form of language model will be referred
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to as unidirectional LMs (uni-LMs).

Incorporating future information into the prediction of the

current word complicates the calculation of the sentence proba-

bility. The simple decomposition shown in Equation (1) cannot

be used with these bidirectional LMs (bi-LMs). The probabil-

ity of a word now takes the form P (wt|w
t−1
1 , wL

t+1). To ad-

dress this issues, the individual word probabilities are combined

within a Product of Experts (PoE) framework to yield the total

sentence probability. Thus

Pbi(W) =
1

Zbi

L∏

i=1

P (wt|w
t−1
1 , w

L
t+1) =

1

Zbi

P̂bi(W) (2)

where P̂bi(W) is the product of word probabilities from bi-

RNNLMs over sequence W and Zbi is a sentence-level nor-

malisation term,

Zbi =
∑

W∈Θ

P̂bi(W) (3)

where Θ denotes the set of all possible word sequences. Un-

fortunately, it is impractical to calculate Zbi, complicating the

calculation of perplexity for bi-LMs.

2.1. Unidirectional RNNLMs

Projection Layer

Recurrent Layer

Output Layer

wt−1

wt−1wt−2

wt

wt

wt+1

wt+1

wt+2

xt−2 xt−1 xt xt+1

ht−3
ht−2 ht−1 ht

ht+1

Figure 1: An example unidirectional RNNLM.

Figure 1 shows a typical unidirectional RNNLM. The oper-

ation of this model is as follows. First, each word in the input

layer is projected to a low-dimensional, continuous, space via a

linear projection layer. This projected, word vector xt−1 is then

combined with the history vector ht−2, which represents the

word history wt−2
1 to form a new history vector ht−2. This is

then fed to a softmax function to yield the probability distribu-

tion over the word at time t. Thus the prediction of the current

word, wt, is dependent on a representation of the complete his-

tory of words wt−1
1 . A range of non-linear functions have been

used in the recurrent layer. Sigmoid [3] and long short-term

memory (LSTM) [16] activations are two popular choices for

language modeling.

2.2. Bidirectional RNNLMs

To incorporate future information into the word prediction an

additional hidden unit is incorporated into the model. This

topology is shown in Figure 2. This second history vector en-

codes the complete future history wL
t+1, and allows the bidirec-

tional RNNLM, wt, P (wt|w
t−1
1 , wL

t+1), to be computed.

The training of bi-RNNLMs is more complicated than uni-

RNNLMs as the future information must be taken into account.

In [13], all sentences in the training corpus were concatenated to

form a single sequence. This sequence was then “chopped” into

sub-sequences with the averaged sentence length. Bi-RNNLMs

were trained with minibatch mode on GPU by processing mul-

tiple sequences. This allows bi-RNNLMs to be efficiently

trained. However, consistency issues can arise when not cutting

at sentence boundaries as history vectors are reset in the middle
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Recurrent Layer

Output Layer

wt−1

wt−1wt−2
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wt

wt

wt+1
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wt+1
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Figure 2: An example bidirectional RNNLMs.

of a sentence. In this paper, the bi-RNNLMs are trained in a

more consistent fashion. Multiple sentences are aligned from

left to right to form minibatches during bi-RNNLM training.

In order to handle issues caused by variable sentence lengths,

NULL tokens are appended to the end of sentences to ensure

that the aligned sentences have the same length. These NULL

tokens are not used for parameter update.

Although the perplexity of bi-RNNLMs is difficult to

obtain, the log-likelihood of P (wt|w
t−1
1 , wL

t+1) can still

be used as objective function during training. An unnor-

malised, “pseudo”, PPL can also be calculated by using

P (wt|w
t−1
1 , wL

t+1) in a similar fashion to the uni-LMs. How-

ever, the pseudo PPL of bi-RNNLMs cannot be directly com-

pared with PPL of uni-LMs as the unnormalised probability

is used in bi-RNNLMs. Note, in this paper, (uni- and bi-)

RNNLMs with an unclustered, full output layer are trained ef-

ficiently on GPU [17] with a modified version of the CUED-

RNNLM toolkit [18].

3. Interpolation of RNNLMs and n-gram
LMs

n-gram and uni-RNN LMs have different, complementary,

modeling ability [19]. Improved performance is possible by in-

terpolating these two models together. The same should be true

for bi-LMs. In this section, two possible interpolation methods

for bi-LMs are briefly described.

3.1. Linear Interpolation

linear interpolation of two uni-LMs (e.g. n-gram and RNN

LMs) is commonly used. Here

P (wt|w
t−1
1 ) = λPrnn(wt|w

t−1
1 ) + (1− λ)Png(wt|w

t−1
1 )

(4)

where λ is the interpolation weight of RNNLM. The result-

ing interpolated probability is a valid probability mass function

(PMF) and can be to calculate sequence, sentence, probabilities.

Applying the same approach to bi-LMs would yield

P (wt|w
t−1
1 , w

L
t+1) = (5)

λPuni(wt|w
t−1
1 ) +

1

Zbi

(1− λ)Pbi(wt|w
t−1
1 , w

L
t+1)

As previously discussed it is not practical to compute the nor-

malisation term Zbi. Thus linear interpolation is challenging for

bi-LMs.

3.2. Log-linear Interpolation

An alternative approach is to apply linear interpolation in the

log domain, log-linear interpolation [20]. For two uni-LMs this

yields

P (wt|w
t−1
1 ) = (6)

1

Z(wt−1
1 )

Prnn(wt|w
t−1
1 )λPng(wt|w

t−1
1 )1−λ
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where Z(wt−1
1 ) is the history-dependent normalisation term. It

can be computed by summing over the vocabulary V ,

Z(wt−1
1 ) =

∑

w∈V

Prnn(w|wt−1
1 )λPng(w|wt−1

1 )1−λ
(7)

Log-linear model combination with bi-LMs is again more

complicated due to the need to compute normalisation terms

with future words. To address this the models can be combined

at the word sequence Ŵ level.Thus considering a uni-LM and

bi-LM

P (W) =
1

Z
Puni(W)λPbi(W)1−λ

=
1

Z̄
Puni(W)λP̂bi(W)1−λ

(8)

where Z̄ is the sentence-level normalisation term and P̂bi(W)
is defined in Equation (2). The log of LM probabilities are nor-

mally used in speech recognition, thus Equation 8 becomes

logP (W) = C + λ logPuni(W) + (1− λ) log P̂bi(W) (9)

where C is a constant and does not alter the rank ordering of

hypotheses. Thus, sentence level log-linear interpolation of uni-

LMs and bi-LMs is valid, and the unnormalised form (with C)

used for speech recognition. Hence, though the performance

of bi-RNNLMs cannot be evaluated using perplexity, it can be

evaluated with WER. It is also worth noting that the sentence

level log-linear interpolation can be re-expressed as word level

log-linear interpolation of the two models.

4. Bidirectional RNNLMs probability
Smoothing

To investigate the performance of bi-RNNLMs, an initial con-

trast of the pseudo-perplexity of the bi-RNNLM was compared

to the perplexity of a uni-RNNLM, both trained on the AMI

data. Table 1 shows the results. Though the two numbers are not

directly comparable, the dramatically lower pseudo-perplexity

of the bi-RNNLM indicates that the individual predicted word

probabilities of the bi-RNNLM are much higher than that of

uni-RNNLM. Thus the predicted word probability distribution

of bi-RNNLMs is expected to much sharper (lower entropy)

than that of uni-RNNLMs. A similar trend was also observed

on other tasks.

RNNLM Dir. (Pseudo) PPL

sigm
uni 85.2

bi 27.8

Table 1: (Pseudo) PPLs of uni-RNN and bi-RNN LMs on AMI

It is interesting to consider the impact of having a signifi-

cantly lower entropy on the word predictions of the bi-RNNLM.

The held-out evaluation data will not have exactly the same

form as the training data. Furthermore, speech recognition sys-

tems will make errors, for example due to unusual acoustic data

or word sequence. The bi-RNLLM will give low probability to

these error-full, unusual, words sequences. In standard systems

this issue would be addressed by optimising the language model

scale factor. An alternative approach adopted here is to intro-

duce an additional tunable parameter, α to smooth the probabil-

ity distribution. Thus word probability is

P (wi|w
t−1
1 , w

L
t+1) =

exp(αyi)∑
V

j
exp(αyj)

(10)

where yi is the activation before softmax function in the out-

put layer. α is set empirically set after training the bi-RNNLM

as previously The output distribution is smoothed and flattened

when α is less than 1. In this paper, α was set to 0.7 for all

tasks.
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Figure 3: Entropy of uni-RNN, bi-RNN and smoothed bi-RNN

LMs on AMI. The counter is ordered by the entropy values of

uni-RNNLM.

To further illustrate the sharpness, low entropy, of the indi-

vidual word probabilities, the average sentence word-prediction

entropy was computed for the for uni-RNNLM, bi-RNNLM and

smoothed bi-RNNLM (α = 0.7) on held out data from the AMI

corpus. These averages are shown in Figure 3. To help in-

terpretability the sentences are ordered by the average entropy

of the uni-RNNLM. All plots follow the same general trend.

The unsmoothed bi-RNNLM has a significantly lower average

entropy than the other systems. It is interesting that the oper-

ating point (α = 0.7) has a higher average entropy than the

uni-RNNLM. This is not unsurprising as combining models in

a PoE framework (to yield the bi-RNNLM sentence probabili-

ties) is known to “over-sharpen” the distributions.

5. Experiments

The performance of the bi-RNNLMs was evaluated on three

corpora: broadcast news (BN); AMI meeting data (multiple dis-

tant microphone (MDM) configuration); and Dholuo ( IARPA-

babel403b-v1.0b) from the Babel project. A DNN-based hy-

brid system with sequence training [21] was built for BN; joint

decoding of Tandem and DNN-HMM systems [22] were used

on the AMI and Babel tasks. CMLLR-based speaker adapta-

tion were applied for all tasks. The vocabularies of BN, AMI

and Babel are 59K, 41K and 18K respectively. The sizes of

words for n-gram LM training in BN, AMI and Babel are 1.5G,

2G and 467K; the number of word for RNNLMs training are

15M, 2.4M and 467K. A 4-gram LM was trained for AMI and

3-gram LMs for BN and Babel. All RNNLMs were trained

with a modified version of CUED-RNNLM Toolkit [18]. For

uni-RNNLMs, the hidden layer sizes of BN, AMI and Babel

corpora were 512, 256 and 100 hidden, while for bi-RNNLMs,

256, 128 and 50 hidden nodes were used for each direction. In

this paper, linear interpolation was used between n-gram LMs

and uni-RNNLMs1, and log-linear interpolation between uni-

LMs and bi-LMs.

It is not easy to do lattice rescoring for bi-RNNLMs, though

it is feasible for uni-RNNLMs as shown in [23]. For simplic-

ity, 100-best rescoring was used for speech recognition for all

1log-linear interpolation did not outperform linear interpolation ac-
cording to our experiments for uni-LMs
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WER
BN AMI

Babel
dev eval dev eval

1-best 12.8 11.8 30.4 31.0 47.9

100-best oracle 10.0 9.5 17.7 17.7 32.6

Table 2: Oracle WERs of 100-best list on three corpora

RNNLMs. The oracle WERs of 100-best list for the tasks are

shown in Table 2.

Task RNNLM PPL WER

dev eval

BN

— 151.9 12.8 11.8

sigm 112.8 12.1 11.2

LSTM 104.4 11.9 11.0

AMI
— 182.1 30.4 31.0

sigm 143.3 29.1 29.6

Babel
— 115.3 47.9 —

sigm 81.0 46.6 —

Table 3: PPL and WER results of uni-RNNLMs on three tasks

Table 3 shows the PPL and WER results for n-gram LMs

and uni-RNNLMs on the tasks. In addition to the baseline

sigmoid-based RNNLMs, the performance of an LSTM-based

system on the BN task is shown. Note more training data was

available for BN compared to AMI and Babel where no gains

over the sigmoid-based baseline were obtained. For these base-

line, uni-LM, systems, linear interpolation was used (λ = 0.5).

The uni-RNNLMs shows significant gains in terms of both

PPLs and WERs. The LSTM LM yields moderate additional

gains over the sigmoid RNNLM on BN.

Task RNNLM Dir. WER

dev eval

BN

sigm

uni 12.1 11.2

bi 12.3 11.3

uni+bi 11.7 10.8

LSTM

uni 11.9 11.0

bi 11.8 11.0

uni+bi 11.5 10.5

AMI sigm

uni 29.1 29.6

bi 29.7 30.2

uni+bi 29.0 29.6

Babel sigm

uni 46.6 —

bi 47.5 —

uni+bi 46.5 —

Table 4: WERs of bi-RNNLM on three tasks

Table 4 shows WER results of bi-RNNLMs, compared to

the uni-RNNLM: “uni” is the baseline for linear interpolation

of n-gram and uni-RNN LMs from Table 3; “bi” indicates log-

linear interpolation of n-gram and bi-RNN LMs (λ = 0.5));

and “uni+bi” indicates n-gram LM is linearly interpolated with

the uni-RNNLM followed by log-linearly interpolated with the

bi-RNNLM (the interpolation weights of n-gram, uni-RNN, bi-

RNN were 0.35, 0.35 and 0.3 respectively). From Table 4,

bi-RNNLMs yield comparable performance to uni-RNNLMs

on the BN data. This is consistent with the observations in

[13]. The combination of n-gram LMs, uni-RNNLMs and bi-

RNNLMs yields 0.4%-0.5% WER reduction over the baseline

uni-RNNLMs. However, for the other tasks, AMI and Babel,

which have higher WERs, only marginal improvements were

obtained. One possible reason is the sensitivity of the word

probability predictions to errors when no bi-RNNLM smooth-

ing is applied.

Task RNNLM Dir. WER

dev eval

BN

sigm

uni 12.1 11.2

bi 12.1 11.1

uni+bi 11.8 10.9

LSTM

uni 11.9 11.0

bi 11.9 10.9

uni+bi 11.6 10.6

AMI sigm

uni 29.1 29.6

bi 29.0 29.6

uni+bi 28.5 29.2

Babel sigm

uni 46.6 —

bi 46.5 —

uni+bi 46.2 —

Table 5: WERs of smoothed bi-RNNLM on three tasks

The final experiments examine the impact of bi-RNNLM

smoothing (α = 0.7), discussed in Section 4, on performance.

The results can be found in Table 5. Using this simple smooth-

ing approach, consistent and significant performance gain can

be achieved on all three tasks by using bi-RNNLMs. Compared

to the baseline system (n-gram + uni-RNN LMs), bi-RNNLMs

provide an additional 0.4% to 0.6% WER reduction. It is also

worth noting that a fixed language model scale was used for

each task in all experiments. Tuning the language model scale

factor did not alter the performance. Note the use of smooth-

ing with uni-RNNLMs, despite optimising α, yielded no per-

formance gains.

6. Conclusion

In this paper, bidirectional RNNLMs are investigated for speech

recognition. Compared to previous work [13], where the bi-

RNNLMs were examined on a broadcast news transcription

task with a low word error rate and combined with n-gram LMs

only, a more complete study was performed: three corpora with

different WERs were investigated; and the combination of bi-

RNNLMs, n-gram and uni-RNN LMs was investigated. Bi-

RNNLMs yielded good performance improvements on broad-

cast data, which has a relatively low WER. However, for the

other two corpora which have higher WERs, only marginal im-

provements were obtained. In order to overcome the sensitivity

issue of bi-RNNLMs to recognition errors, a simple smooth-

ing method was proposed. Consistent and significant WER im-

provements can be obtained on the all three tasks.

It is clear that succeeding words are helpful to improve

speech recognition performance. However, there are issues

that need to be addressed to make these forms of bi-directional

models generally applicable: better distribution smoothing ap-

proaches; improved combination schemes; more efficient train-

ing approaches; and lattice rescoring techniques. These will be

explored in future work.
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