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In the Li et al. (2018) paper, we presented evidence of a dolomitization event at the Permian-Triassic boundary (PTB) and linked it to microbial 

blooms under anoxic conditions. We welcome this opportunity to clarify some important points in our paper in response to the comment of Gregg et 
al. (2019). 

Gregg et al. (2019) argue that we did not provide data to confirm the presence of dolomite, and that the proxy mol Mg/(Mg+Ca) of carbonate rocks 
may be affected by the content of Mg-rich clay. In order to minimize the influence of clays in marly samples, we used the element Al for preliminary 
screening. All samples with Al >4% were excluded from the analysis (since pure shales typically contain 8-12% Al, this threshold excluded samples 
containing >33-50% non-carbonate material). Furthermore, samples with Al <4% were checked by cross-plotting Mg/Ca versus Al to determine 
whether a regression existed (Fig. DR5). Moreover, XRD data were available for some (but not all) of our studied sections, and we checked these 
records against our dolomite values based on Mg-Ca concentrations. Among the sections that we checked were Yangou (Li et al., 2017), Meishan 
(Liang, 2002), and Nhi Tao (Algeo et al., 2007). At Yangou, for example, both the XRD data and our geochemical data show a shift from pure calcium 
carbonate (> 90%) below the PTB to dolomite (> 80%) above it. In all cases tested, the XRD and geochemical data yielded consistent interpretations 
of changes in carbonate mineralogy.  

Gregg et al. (2019) propose that recrystallization of primary Mg carbonates during late diagenesis may be an explanation for PTB dolomitization. 
Late diagenetic dolomitization is common in the geological record (Holland and Zimmerman, 2000), but this hypothesis cannot account for dolomiti-
zation of our study units for the following reasons: (I) Late diagenetic dolomitization preferentially occurs in supratidal facies, in which high Mg 
concentrations promote dolomite precipitation (Alsharhan and Kendall, 2003), and in deep-water facies, in which clays provide a Mg source. However, 
PTB dolomites are concentrated in intermediate-depth facies and are rare in shallow- and deep-water facies. (II) The PTB dolomitization event was 
temporally constrained to the earliest Triassic Griesbachian substage, an interval characterized by significant seawater sulfate drawdown (Song et al., 
2014), which would have facilitated dolomite formation at that time. (III) Dolomite precipitated during late burial diagenesis commonly consists of 
coarse rhombs with multizoned cements in CL images (Choquette et al., 2008). Photomicrographs and CL images of dolomite samples from the PTB 
sections show that the homogenous dolomitic matrix consists of fine subhedral to euhedral dolomite crystals (Fig. DR7), showing weak signs of late 
diagenetic dolomitization. (IV) Enclosed in the PTB dolomite crystals are abundant fossilized bacteria and organic matter with honeycomb structures 
(interpreted as extracellular polymeric substances, EPS), suggesting microbial influences on dolomite precipitation.  

Gregg et al. (2019) also argue that the experiments we cited provide no convincing evidence of laboratory dolomite synthesis via microbial mediation. 
Although the XRD patterns of microbially induced minerals grown in experiments did not confirm the presence of a stoichiometric dolomite phase 
(Gregg et al., 2015), these Mg-rich carbonate or Ca-dolomite precipitates overcame the hydration energy barriers of Mg2+ cations and are interpreted 
as precursors of stoichiometric dolomite (Petrash et al., 2017). Some uncertainty exists regarding how Ca-rich, disordered precursor phases stabilize to 
ordered stoichiometric dolomite in the natural environment, but this transformation must occur as the latter has been widely documented in organic-
rich marine sediments of Neogene age (Burns and Baker, 1987; Bontognali et al., 2010). 
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